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Abstract
We study a new way to convergence results for a nonlinear hyperbolic equation with
bilinear element. Such equation is transformed into a parabolic system by setting the
original solution u as ut = q. A linearized backward Euler finite element method (FEM)
is introduced, and the splitting skill is exploited to get rid of the restriction on the ratio
between h and τ . The boundedness of the solutions about the time-discrete system
in H2-norm is proved skillfully through temporal error. The spatial error is derived
without the mesh-ratio, where some new techniques are utilized to deal with the
problems caused by the new parabolic system. The final unconditional optimal error
results of u and q are deduced at the same time. Finally, a numerical example is
provided to support the theoretical analysis. Here h is the subdivision parameter, and
τ is the time step.
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1 Introduction
Consider the following nonlinear hyperbolic equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – ∇ · (a(u)∇u) = f (u), (X, t) ∈ Ω × (0, T],

u = 0, (X, t) ∈ ∂Ω × (0, T],

u(X, 0) = u0(X), ut(X, 0) = u1(X), X ∈ Ω ,

(1)

where Ω ⊂ R
2 is a rectangle with boundary ∂Ω parallel to the coordinate axes, 0 < T < ∞,

X = (x, y), and a(u) and f (u) are known smooth functions on R, for which we assume that
0 < a0 ≤ a(u) ≤ a1.

A nonlinear hyperbolic equation is a kind of important problems on nonlinear vibration,
the permeation fluid mechanics, and so on. Indeed, such partial differential equations
(PDEs) have attracted lots of attention to various methods, especially numerical meth-
ods. For example, the two-grid method was studied for solving a type of nonlinear hyper-
bolic equations, and the error estimate in H1-norm was deduced in [1]. Newton’s modified
method was utilized to a nonlinear wave equation depending on different norms of the ini-
tial conditions in [2], and optimal error results were given in the L2- and H1-norms. The
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interpolation theory and integral identity skill were used to obtain a superclose result for
the nonlinear hyperbolic equations with nonlinear boundary condition in [3]. Moreover,
the global superconvergence was also obtained through the interpolated postprocessing
technique. The Galerkin alternating-direction method was applied to a three-dimensional
nonlinear hyperbolic equation in [4], and the error estimates in the H1- and L2-norms
were deduced. A mixed FEM was discussed in [5] and [6], and optimal error estimates
were derived.

The inverse inequality is usually employed to discuss the boundedness of numerical so-
lution Un

h in a nonlinear evolution equation, and such an issue usually results in some
time-step restrictions, such as τ = O(h), hr = O(τ ) (1 ≤ r ≤ k + 1, k ≥ 0), and τ = O(h2) in
[4] and [6], respectively. To get rid of such a restriction, [7, 8] took advantage of a special
inequality for getting unconditional superclose results for nonlinear Sobolev equations.
In [9] a corresponding time-discrete system to split the error into two parts, the temporal
error and the spatial error, is introduced. Then the spatial error leads to the unconditional
boundedness of a numerical solution in the L∞-norm. Subsequently, this so-called split-
ting technique was also applied to the other nonlinear parabolic type equations in [10–18].
Later, in [19] and [20] a second-order scheme for the nonlinear hyperbolic equation and
the unconditional superconvergence analysis by using the splitting skill were given. It can
be seen that constructing a linearized form for a nonlinear hyperbolic equation is not an
easy task in comparison with nonlinear parabolic equations. In fact, there are lots of lit-
erature referring to parabolic equations [21–24]. In [24] a special technique to change
sine-Gordon equation into a parabolic system through ut = q was used, and optimal order
error estimates of the Crank–Nicolson fully discrete scheme were obtained.

Inspired by [24], in this paper, we consider the unconditional convergent estimates for
(1), which is a much more general nonlinear model than that in [24], with a bilinear ele-
ment. First of all, we change a nonlinear hyperbolic equation into a nonlinear parabolic
system. Such a practice can be used to avoid the difficulty in constructing a linearized
scheme for a nonlinear hyperbolic equation and also give the error analysis for u and q = ut

at the same time. Then we develop a linearized backward Euler FE scheme for the non-
linear parabolic system and apply the idea of splitting technique in [10–20] to split the
error into the temporal and spatial errors. We obtain a temporal error, which implies the
regularities of the solutions about the time-discrete equations. The spatial error result is
exploited to get rid of the restriction on the ratio between h and τ . The unconditional
optimal error results of u and q are simultaneously deduced. Note that, differently from
[17, 18], we utilize some new tricks such as rewriting some error terms, the new mean-
value technique, and some other skills to handle new difficulties brought by the special
nonlinear parabolic system during the process. Further, the results in this paper also hold
for linear conforming triangular elements but do not hold for some other particular ele-
ments; for example, the biquadratic finite element for �vh|k = 0 cannot be true, where vh

belongs to the FE space. Some numerical results in the last section also show the validity
of the theoretical analysis.

Throughout this paper, we denote the natural inner production in L2(Ω) by (·, ·) and
the norm by ‖ · ‖0, and let H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}. Further, we use the classical
Sobolev spaces W m,p(Ω), 1 ≤ p ≤ ∞, denoted by W m,p, with norm ‖ ·‖m,p. When p = 2, we
simply write ‖·‖m,p as ‖·‖m. Besides, we define the space Lp(a, b; Y ) with norm ‖f ‖Lp(a,b;Y ) =
(
∫ b

a ‖f (·, t)‖p
Y dt)

1
p , and if p = ∞, the integral is replaced by the essential supremum.
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2 Conforming FE approximation scheme
Let Ω be a rectangle in the (x, y) plane with edges parallel to the coordinate axes, and let
Γh be a regular rectangular subdivision. Given K ∈ Γh, let the four vertices and edges be
ai, i = 1 ∼ 4, and li = aiai+1, i = 1 ∼ 4 (mod 4), respectively. Let Vh be the usual bilinear
FE space, and let Vh0 = {vh ∈ Vh, vh|∂Ω = 0}. Also, it can be found in [25] that if u ∈ H2(Ω),
then

(∇(u – Ihu),∇vh
)

= 0, vh ∈ Vh0, (2)

where Ih be the so-called Ritz projection operator on Vh0.
Set {tn : tn = nτ ; 0 ≤ n ≤ N} be a uniform partition of [0, T] with time step τ = T/N .

We denote σ n = σ (X, tn). For a sequence of functions {σ n}N
n=0, we denote ∂̄tσ

n = σn–σn–1

τ
,

n = 1, 2, . . . , N . With these notations, setting ut = q, the weak form of (1) is seeking u, q ∈
H1

0 (Ω) such that, for all v ∈ H1
0 (Ω),

⎧
⎪⎪⎨

⎪⎪⎩

(∂̄tun, v) = (qn, v) + (Rn
1, v), v ∈ H1

0 (Ω),

(∂̄tqn, v) + (a(un–1)τ
∑n

i=1 ∇qi,∇v) + (a(un–1)∇u0,∇v)

= (f (un–1), v) + (Rn
2 + Rn

3 + Rn
4, v), v ∈ H1

0 (Ω),

(3)

where

Rn
1 = ∂̄tun – un

t , Rn
2 = ∂̄tqn – qn

t , Rn
4 = –

(
f
(
un–1) – f

(
un)),

Rn
3 = –∇ ·

(

a
(
un–1)τ

n∑

i=1

∇qi – a
(
un)

∫ tn

0
∇q ds

)

– ∇ · (∇u0(a
(
un–1) – a

(
un))).

We develop the linearized Galerkin FEM to problem (3): seek Un
h , Qn

h ∈ Vh0 such that

⎧
⎪⎪⎨

⎪⎪⎩

(∂̄tUn
h , vh) = (Qn

h, vh), vh ∈ Vh0,

(∂̄tQn
h, vh) + (a(Un–1

h )τ
∑n

i=1 ∇Qi
h,∇vh)

+ (a(Un–1
h )∇U0

h ,∇vh) = (f (Un–1
h ), vh), vh ∈ Vh0,

(4)

where U0
h = Ihu0 and Q0

h = Ihu1. A well-known consequence is that the linear system (4)
may always be solved for Un

h and Qn
h ; see [26].

3 Error estimates for the time-discrete system
To get rid of the ratio restriction between h and τ , we introduce a time-discrete system as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂̄tUn = Qn, (X, t) ∈ Ω ,

∂̄tQn – ∇ · (a(Un–1)τ
∑n

i=1 ∇Qi) – ∇ · (a(Un–1)∇U0)

= f (Un–1), (X, t) ∈ Ω ,

Un = 0, Qn = 0, (X, t) ∈ ∂Ω ,

U0 = u0(X), Q0 = u1(X), X ∈ Ω .

(5)
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The existence and uniqueness of solutions for this linear elliptic system (5) are obvious.
To show the unconditional results, the regularities of Un and Qn are inevitable, and we
therefore need some estimates for un –Un and qn –Qn. In what follows, we set en � un –Un,
δn � qn – Qn (n = 1, 2, . . . , N ), analyze the temporal errors and give the regularity results
for Un and Qn. It is easy to see that e0 = δ0 = 0.

Theorem 1 Let um and Um (m = 0, 1, 2, . . . , N ) be solutions of (1) and (5), respectively,
u, q ∈ L2(0, T ; H3(Ω)), ut , qt ∈ L∞(0, T ; H2(Ω)), and utt ∈ L2(0, T ; L2(Ω)). Then for m =
1, . . . , N , there exists τ0 such that when τ ≤ τ0, we have

∥
∥em∥

∥
2 + τ

( m∑

i=2

∥
∥∂̄tei∥∥2

2

) 1
2

+
∥
∥δm∥

∥
1 + τ

∥
∥
∥
∥
∥

m∑

i=1

δi

∥
∥
∥
∥
∥

2

+ τ

( m∑

i=2

∥
∥δi∥∥2

2

) 1
2

≤ C0τ , (6)

∥
∥∂̄tUm∥

∥
2 +

∥
∥Qm∥

∥
2 ≤ C0, (7)

where C0 is a positive constant independent of m, h, and τ .

Proof Setting K0 � 1+max1≤m≤N (‖um‖0,∞ +
√

τ (
∑m

i=1 ‖∂̄tui‖2
0,∞) 1

2 ), we begin to prove (6)–
(7) by mathematical induction. When m = 1, by (1) and (5) we have the error equation

⎧
⎨

⎩

∂̄te1 = δ1 + R1
1,

∂̄tδ
1 – ∇ · (a(u0)τ∇δ1) = R1

2 + R1
3.

(8)

With δ0 = 0, multiplying the second equation of (8) by �δ1 and integrating it over Ω , we
get

1
τ

∥
∥∇δ1∥∥2

0 + τ
∥
∥a

1
2
(
u0)�δ1∥∥2

0 = –
(
au

(
u0)∇u0τ∇δ1,�δ1) –

(
R1

2 + R1
3,�δ1)

≤ Cτ
∥
∥∇δ1∥∥

0

∥
∥�δ1∥∥

0 + Cτ
∥
∥�δ1∥∥

0. (9)

Further, since e1 ∈ H2(Ω) ∩ H1
0 (Ω), using the first equation of (8), we get

∥
∥e1∥∥

2 = τ
∥
∥∂̄te1∥∥

2 ≤ Cτ
∥
∥�δ1∥∥

0 + Cτ
∥
∥R1

1
∥
∥

2. (10)

Thus there exist positive constants τ1, τ2, C1, C2 such that when τ ≤ τ1, we have

∥
∥e1∥∥

2 + τ
∥
∥∂̄te1∥∥

2 +
∥
∥δ1∥∥

1 + τ
∥
∥δ1∥∥

2 ≤ C1τ , (11)

which implies

∥
∥
∥
∥

U1 – U0

τ

∥
∥
∥
∥

2
+

∥
∥Q1∥∥

2 ≤ C2, (12)

∥
∥U1∥∥

0,∞ ≤ ∥
∥e1∥∥

0,∞ +
∥
∥u1∥∥

0,∞ ≤ CC1τ +
∥
∥u1∥∥

0,∞ ≤ K0, (13)

where τ ≤ τ2 ≤ 1/CC1.
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By mathematical induction we assume that (6) and (7) hold for m ≤ n – 1. Then there
exists τ3 such that

∥
∥Um∥

∥
0,∞ +

√
τ

( m∑

i=1

∥
∥∂̄tUi∥∥2

0,∞

) 1
2

≤ C
∥
∥em∥

∥
2 + C

√
τ

( m∑

i=1

∥
∥∂̄tei∥∥2

2

) 1
2

+
∥
∥um∥

∥
0,∞ +

√
τ

( m∑

i=1

∥
∥∂̄tui∥∥2

0,∞

) 1
2

≤ CC0τ + CC0
√

τ +
∥
∥um∥

∥
0,∞ +

√
τ

( m∑

i=1

∥
∥∂̄tui∥∥2

0,∞

) 1
2

≤ K0, (14)

where τ ≤ τ3 = min{1/2CC0, 1/4C2C2
0}.

Then we begin to prove (6) and (7) for m = n. Subtracting (5) from (1), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂̄ten = δn + Rn
1,

∂̄tδ
n – ∇ · (a(Un–1)τ

∑n
i=1 ∇δi) – ∇ · (τ

∑n
i=1 ∇qi(a(un–1) – a(Un–1)))

– ∇ · (∇u0(a(un–1) – a(Un–1)))

= f (un–1) – f (Un–1) + Rn
2 + Rn

3 + Rn
4.

(15)

Multiplying the second equation of (15) by �δn and integrating, we get

1
2τ

(∥
∥∇δn∥∥2

0 –
∥
∥∇δn–1∥∥2

0

)
+

(

a
(
Un–1

h
)
τ

n∑

i=1

�δi,�δn

)

= –

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

,�δn

)

–

(

∇ ·
(

τ

n∑

i=1

∇qi(a
(
un–1) – a

(
Un–1))

)

,�δn

)

–
(∇ · (∇u0(a

(
un–1) – a

(
Un–1))),�δn)

–
(
f
(
un–1) – f

(
Un–1),�δn) –

(
Rn

2 + Rn
3 + Rn

4,�δn). (16)

Observe that (a(Un–1)τ
∑n

i=1 �δi,�δn) cannot be bounded directly; we rewrite it as

(

a
(
Un–1)τ

n∑

i=1

�δi,�δn

)

= τ

∫

Ω

a
(
Un–1)

n–1∑

i=1

�δi · �δn + τ
∥
∥a

1
2
(
Un–1)�δn∥∥2

0

=
1
2
τ

∫

Ω

a
(
Un–1)

( n∑

i=1

�δi

)2

–
1
2
τ

∫

Ω

a
(
Un–1)

( n–1∑

i=1

�δi

)2

+
1
2
τ
∥
∥a

1
2
(
Un–1)�δn∥∥2

0.
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Then we have

1
2τ

(∥
∥∇δn∥∥2

0 –
∥
∥∇δn–1∥∥2

0

)
+

1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–1)

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

–
1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–2)

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+
1
2
τ
∥
∥a

1
2
(
Un–1)�δn∥∥2

0

≤ Cτ 2∥∥∂̄tUn–1∥∥
2

∥
∥
∥
∥
∥

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

–

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

,�δn

)

–

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)),�δn

)

–

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1,�δn

)

–

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)),�δn

)

–
(
�u0(a

(
un–1) – a

(
Un–1)),�δn) –

(∇u0(au
(
Un–1)∇en–1),�δn)

–
(∇u0∇un–1(au

(
un–1) – au

(
Un–1)),�δn) –

(
f
(
un–1) – f

(
Un–1),�δn)

–
(
Rn

2 + Rn
3 + Rn

4,�δn) �
10∑

i=1

Ai.

In what follows, we will bound Ai, i = 2 ∼ 10, one by one. Note the particularity of �δn

on the left-hand side, so we have to use new ways to handle �δn on the right-hand side
instead of applying the Young inequality directly. In view of Green’s formula, it follows that

A9 = –
(
fu

(
μn–1

1
)
en–1,�δn)

=
(
fuu

(
μn–1

1
)∇μn–1

1 en–1,∇δn) +
(
fu

(
μn–1

1
)∇en–1,∇δn)

≤ C
∥
∥∇en–1∥∥2

0 + C
∥
∥∇δn∥∥2

0,

where μn–1
1 = Un–1 + λn–1

1 en–1 and 0 < λn–1
1 < 1.

For A2 ∼ A8, A10, it is not so obvious to be dealt with. We choose to rewrite �δn by
τ

∑n
i=1 �∂̄tδ

i and then try to transfer τ from one side in the inner product to the other;
more precisely,

A4 = –

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n∑

i=1

∂̄t�δi

)

=

(

au
(
Un–1)∇en–1∇qn, τ

n–1∑

i=1

�δi

)

+

(

τ

n–1∑

i=1

∇qiau
(
Un–2)∂̄t∇en–1, τ

n–1∑

i=1

�δi

)

+

(

τ

n–1∑

i=1

∇qi∇en–1 au(Un–1) – au(Un–2)
τ

, τ
n–1∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

≤ C
∥
∥∂̄t∇en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥∇en–1∥∥

0

∥
∥∂̄tUn–1∥∥

0,∞

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0
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+ C
∥
∥∇en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

– ∂̄t

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n–1∑

i=1

�δi

)

≤ C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–1∥∥2

0 + C
∥
∥∂̄tUn–1∥∥2

0,∞

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

.

Similarly,

A10 =

(

∂̄tRn
2 + ∂̄tRn

3 + ∂̄tRn
4, τ

n–1∑

i=1

�δi

)

– ∂̄t

(

Rn
2 + Rn

3 + Rn
4, τ

n∑

i=1

�δi

)

≤ Cτ 2 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

Rn
2 + Rn

3 + Rn
4, τ

n∑

i=1

�δi

)

.

For A2, we rewrite it as follows:

A2 = –

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�∂̄tδ
i

)

=

(

au
(
Un–2)∇Un–2∇δn, τ

n–1∑

i=1

�δi

)

+

((

τ

n∑

i=1

∇δi

)

au
(
Un–2)∂̄t∇Un–1, τ

n–1∑

i=1

�δi

)

+

((

τ

n∑

i=1

∇δi

)

∇Un–1 au(Un–1) – au(Un–2)
τ

, τ
n–1∑

i=1

�δi

)

– ∂̄t

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

� A2i.

In view of the embedding theorem, this yields

A22 ≤ C

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

0

∥
∥∂̄t�Un–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

≤ C

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C
∥
∥∂̄t�Un–1∥∥2

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

.

To get round the need of Ui ∈ H3(Ω), i = 1, 2, . . . , n – 1, we split Ui, i = 1, 2, . . . , n – 1, into
two parts; with inductive assumption (14), it reduces to

A21 = –

(

au
(
Un–2)∇en–2∇δn, τ

n–1∑

i=1

�δi

)

+

(

au
(
Un–2)∇un–2∇δn, τ

n–1∑

i=1

�δi

)

≤ C
∥
∥�en–2∥∥

0

∥
∥�δn∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥∇δn∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0
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≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+
a0

4
∥
∥�en–2∥∥2

0

∥
∥�δn∥∥2

0 + C
∥
∥∇δn∥∥2

0

≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+
a0

4
τ
∥
∥�δn∥∥2

0 + C
∥
∥∇δn∥∥2

0.

Similarly, we have

A23 ≤ C
∥
∥�Un–1∥∥

0

∥
∥∂̄t�Un–1∥∥

0

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

≤ C

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C
∥
∥∂̄t�Un–1∥∥2

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

.

We split A3 as

A3 = –

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

∂̄t�δi

)

=

(

τ

n–1∑

i=1

�qi (a(un–1) – a(Un–1)) – (a(un–2) – a(Un–2))
τ

, τ
n–1∑

i=1

�δi

)

+

(
(
a
(
un–1) – a

(
Un–1))�qn, τ

n–1∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

�
3∑

i=1

A3i.

We can see that

A32 =

(
(
a
(
un–1) – a

(
Un–1))�qn, τ

n–1∑

i=1

�δi

)

≤ C
∥
∥∇en–1∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

.

Since

(a(un–1) – a(Un–1)) – (a(un–2) – a(Un–2))
τ

= a′(μn–1
2

)
∂̄ten–1 + ∂̄tun–1(a′(μn–1

3
)

– a′(μn–1
2

))
, (17)

where

μn–1
3 = un–2 + τλn–1

3 ∂̄tun–1, μn–1
2 = Un–2 + τλn–1

2 ∂̄tUn–1,

0 < λn–1
2 < 1, 0 < λn–1

3 < 1,

and

μn–1
3 – μn–1

2 = en–2 + τλn–1
2 ∂̄ten–1 + ∂̄tun–1τ

(
λn–1

3 – λn–1
2

)
,
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we see that

A31 ≤
∥
∥
∥
∥
∥
τ

n–1∑

i=1

�qi

∥
∥
∥
∥
∥

0,4

∥
∥
∥
∥

(a(un–1) – a(Un–1)) – (a(un–2) – a(Un–2))
τ

∥
∥
∥
∥

0,4

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

≤ C
∥
∥∂̄t∇en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥∇en–2∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ Cτ

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

≤ Cτ 2 + C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–2∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

,

whence

A3 ≤ Cτ 2 + C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–2∥∥2

0 + C
∥
∥∇en–1∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

.

Rewriting A5, A6, A8, with (17), we obtain

A6 =

(

�u0 (a(un–1) – a(Un–1)) – (a(un–2) – a(Un–2))
τ

, τ
n–1∑

i=1

�δi

)

– ∂̄t

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

≤ ∥
∥�u0∥∥

0,4

∥
∥
∥
∥

(a(un–1) – a(Un–1)) – (a(un–2) – a(Un–2))
τ

∥
∥
∥
∥

0,4

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

– ∂̄t

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

≤ C
∥
∥∂̄t∇en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥∇en–2∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ Cτ

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

– ∂̄t

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

≤ Cτ 2 + C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–2∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

,

A5 = –

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

∂̄t�δi

)

=

(

τ

n–1∑

i=1

∇qi∇un–2 (au(un–1) – au(Un–1)) – (au(un–2) – au(Un–2))
τ

, τ
n–1∑

i=1

�δi

)
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+

(
(
au

(
un–1) – au

(
Un–1))τ

n–1∑

i=1

∇qi∂̄t∇un–1, τ
n–1∑

i=1

�δi

)

+

(
(
au

(
un–1) – au

(
Un–1))∇un–1∇qn, τ

n–1∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

≤ C
∥
∥
∥
∥

(au(un–1) – au(Un–1)) – (au(un–2) – au(Un–2))
τ

∥
∥
∥
∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

– ∂̄t

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

≤ Cτ 2 + C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–1∥∥2

0 + C
∥
∥∇en–2∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

,

and

A8 =

(

∇u0∇un–2 (au(un–1) – au(Un–1)) – (au(un–2) – au(Un–2))
τ

, τ
n–1∑

i=1

�δi

)

+

(

∇u0(au
(
un–1) – au

(
Un–1))∂̄t∇un–1, τ

n–1∑

i=1

�δi

)

– ∂̄t

(

∇u0∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

≤ Cτ 2 + C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–1∥∥2

0 + C
∥
∥∇en–2∥∥2

0

+ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

∇u0∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

.

Finally, A7 can be bounded as

A7 =

(

∇u0au
(
Un–2)∂̄t∇en–1, τ

n–1∑

i=1

�δi

)

+

(

∇u0∇en–1 au(Un–1) – au(Un–2)
τ

, τ
n–1∑

i=1

�δi

)

– ∂̄t

(

∇u0au
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

≤ C
∥
∥∂̄t∇en–1∥∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0

+ C
∥
∥∇en–1∥∥

0

∥
∥∂̄tUn–1∥∥

0,∞

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

0
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– ∂̄t

(

∇u0au
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

≤ C
∥
∥∂̄t∇en–1∥∥2

0 + C
∥
∥∇en–1∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C
∥
∥∂̄tUn–1∥∥2

0,∞

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

∇u0au
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

.

Moreover, because

∥
∥∇ ∂̄ten∥∥

0 =
∥
∥∇(

δn + Rn
1
)∥
∥

0 ≤ C
∥
∥∇δn∥∥

0 + C
∥
∥∇Rn

1
∥
∥

0 ≤ C
∥
∥∇δn∥∥

0 + Cτ ,
∥
∥�∂̄ten∥∥

0 =
∥
∥�

(
δn + Rn

1
)∥
∥

0 ≤ C
∥
∥�δn∥∥

0 + C
∥
∥�Rn

1
∥
∥

0 ≤ C
∥
∥�δn∥∥

0 + Cτ , (18)

∥
∥∇en∥∥

0 ≤ C
√

τ

( n∑

i=1

∥
∥∇ ∂̄tei∥∥2

0

) 1
2

≤ C
√

τ

( n∑

i=1

∥
∥∇δi∥∥2

0

) 1
2

+ Cτ ,

we have

1
τ

(∥
∥∇δn∥∥2

0 –
∥
∥∇δn–1∥∥2

0

)
+ τ

∥
∥
∥
∥
∥

a
1
2
(
Un–1)

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– τ

∥
∥
∥
∥
∥

a
1
2
(
Un–2)

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ τ
∥
∥�δn∥∥2

0

≤ Cτ 2 + C
∥
∥∇δn∥∥2

0 + C
∥
∥∇δn–1∥∥2

0 + Cτ

n∑

i=1

∥
∥∇δi∥∥2

0

+ C

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C
∥
∥∂̄tUn–1∥∥2

2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

– ∂̄t

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

– ∂̄t

(

∇u0au
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

– ∂̄t

(

Rn
2 + Rn

3 + Rn
4, τ

n∑

i=1

�δi

)

– ∂̄t

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

– ∂̄t

(

∇u0∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

.
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Summing this inequality from 2 to n, we get

∥
∥∇δn∥∥2

0 +

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+
n∑

i=2

∥
∥τ�δi∥∥2

0

≤ ∥
∥∇δ1∥∥2

0 + τ 2∥∥�δ1∥∥2
0 + Cτ 2 + Cτ

n∑

i=1

∥
∥∇δi∥∥2

0 + Cτ

n∑

i=1

∥
∥
∥
∥
∥
τ

i–1∑

j=1

�δj

∥
∥
∥
∥
∥

2

0

+ Cτ 2
n∑

i=2

i–1∑

j=1

∥
∥∇δj∥∥2

0 + Cτ

n∑

i=1

∥
∥∂̄t�Ui–1∥∥2

0

∥
∥
∥
∥
∥
τ

i–1∑

j=1

�δj

∥
∥
∥
∥
∥

2

0

–

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

+
(
au

(
U0)∇U0(τ∇δ1), τ�δ1) –

(

τ

n∑

i=1

�qi(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

–

(

τ

n∑

i=1

∇qiau
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

–

(

�u0(a
(
un–1) – a

(
Un–1)), τ

n∑

i=1

�δi

)

–

(

∇u0au
(
Un–1)∇en–1, τ

n∑

i=1

�δi

)

–

(

Rn
2 + Rn

3 + Rn
4, τ

n∑

i=1

�δi

)

+
(
R1

2 + R1
3 + R1

4, τ�δ1) –

(

τ

n∑

i=1

∇qi∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

–

(

∇u0∇un–1(au
(
un–1) – au

(
Un–1)), τ

n∑

i=1

�δi

)

. (19)

Due to

(

au
(
Un–1)∇Un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

=

(

au
(
Un–1)∇un–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

–

(

au
(
Un–1)∇en–1

(

τ

n∑

i=1

∇δi

)

, τ
n∑

i=1

�δi

)

≤ Cτ
1
4

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ C

∥
∥
∥
∥
∥
τ

n∑

i=1

∇δi

∥
∥
∥
∥
∥

2

0

+
1
4

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

≤ Cτ
1
2

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+
1
2

∥
∥
∥
∥
∥
τ

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ Cτ

n∑

i=1

∥
∥∇δi∥∥2

0, (20)
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after obvious estimates and a kickback of τ
∑n

i=1 ‖∇δi‖2
0, together with our earlier estimate

for n = 1, we obtain

∥
∥∇δn∥∥2

0 + τ 2

∥
∥
∥
∥
∥

n∑

i=1

�δi

∥
∥
∥
∥
∥

2

0

+ τ 2
n∑

i=2

∥
∥�δi∥∥2

0 ≤ Cτ 2. (21)

Here by (18) we have

τ

∥
∥
∥
∥
∥

n∑

i=1

∂̄tei

∥
∥
∥
∥
∥

2

+ τ

( n∑

i=2

∥
∥∂̄tei∥∥2

2

) 1
2

≤ Cτ (22)

and, further,

∥
∥en∥∥

2 = τ

∥
∥
∥
∥
∥

n∑

i=1

∂̄tei

∥
∥
∥
∥
∥

2

≤ Cτ . (23)

Then we conclude that there exist τ4, τ5, C3, C4 such that when τ ≤ τ4, we have

∥
∥en∥∥

2 + τ

( n∑

i=2

∥
∥∂̄tei∥∥2

2

) 1
2

+
∥
∥δn∥∥

1 + τ

∥
∥
∥
∥
∥

n∑

i=1

δi

∥
∥
∥
∥
∥

2

+ τ

( n∑

i=2

∥
∥δi∥∥2

2

) 1
2

≤ C3τ , (24)

which leads to

∥
∥en∥∥

2 ≤ τ
1
4 ,

∥
∥∂̄tUn∥∥

2 ≤ C4, (25)

∥
∥Un∥∥

0,∞ +
√

τ

( n∑

i=1

∥
∥∂̄tUi∥∥2

0,∞

) 1
2

≤ C
∥
∥en∥∥

2 + C
√

τ

( n∑

i=1

∥
∥∂̄tei∥∥2

2

) 1
2

+
∥
∥un∥∥

0,∞ +
√

τ

( n∑

i=1

∥
∥∂̄tui∥∥2

0,∞

) 1
2

≤ CC3τ + CC3
√

τ +
∥
∥un∥∥

0,∞ +
√

τ

( n∑

i=1

∥
∥∂̄tui∥∥2

0,∞

) 1
2

≤ K0, (26)

where τ ≤ τ5 = min{1/2CC3, 1/4C2C2
3}. Clearly, C3, C4 have nothing to do with C0, and

thus (6) and (7) hold for m = n if we take C0 ≥ ∑4
i=1 Ci and τ0 ≤ min1≤τ≤5 τi. Then the

induction is closed. The proof is completed. �

Remark 1 The special method used to tackle the left-hand side of (16) is important to
deduce the regularities of Un and Qn in the H2-norm. Further, the terms including �δn

on the right-hand side needs innovative technologies to treat.

4 Error estimates for spatial-discrete system and optimal error results
In this section, we will establish τ -independent optimal error results for un and qn through
the spatial results. We decompose the errors as follows:

Ui – Ui
h = Ui – IhUi + IhUi – Ui

h � ηi + ξ i,
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Qi – Qi
h = Qi – IhQi + IhQi – Qi

h � ri + θ i, i = 1, 2, . . . , n,

and we are now ready for the unconditional spatial results.

Theorem 2 Let um and Um
h be solutions of (3) and (4), respectively, for m = 1, 2, . . . , N .

Under the conditions of Theorem 1, there exist τ ′
0, h′

0 such that, for τ ≤ τ ′
0 and h ≤ h′

0, we
have

∥
∥um – Um

h
∥
∥

0 +
∥
∥qm – Qm

h
∥
∥

0 = O
(
h2 + τ

)
(27)

and

∥
∥∇(

um – Um
h

)∥
∥

0 +
∥
∥∇(

qm – Qm
h
)∥
∥

0 = O(h + τ ). (28)

Proof Before discussing (27) and (28), we shall pause to give the results

∥
∥ξm∥

∥
0 +

∥
∥θm∥

∥
0 + τ

( m∑

i=1

∥
∥∇θ i∥∥2

0

) 1
2

≤ C′
0h

(
h + τ

1
2
)

(29)

by mathematical induction, where C′
0 is a positive constant independent of m, τ , and h.

Since ‖IhUm‖0,∞ +
√

τ (
∑m

i=2 ‖∂̄tIhUi‖2
0,∞) 1

2 ≤ C, let K ′
0 � 1 + ‖IhUm‖0,∞ +

√
τ ×

(
∑m

i=2 ‖∂̄tIhUi‖2
0,∞) 1

2 . We begin with m = 1:

(
∂̄tθ

1, vh
)

+
(
a
(
U0)τ∇θ1,∇vh

)

= –
(
∂̄tr1, vh

)
–

(
a
(
U0)τ∇r1,∇vh

)

–
((

a
(
U0) – a

(
U0

h
))

τ∇Q1
h,∇vh

)
–

(
a
(
U0

h
)∇η0,∇v

)

–
(∇U0(a

(
U0) – a

(
U0

h
))

,∇v
)

+
(
f
(
U0) – f

(
U0

h
)
, vh

)
. (30)

Taking vh = θ1 in (30), we get

1
τ

∥
∥θ1∥∥2

0 + τ
∥
∥a

1
2
(
U0)∇θ1∥∥2

0

= –
(
∂̄tr1, θ1) –

(
a
(
U0)τ∇r1,∇θ1)

–
((

a
(
U0) – a

(
U0

h
))

τ∇Q1
h,∇θ1) –

(
a
(
U0

h
)∇η0,∇θ1)

–
(∇U0(a

(
U0) – a

(
U0

h
))

,∇θ1) +
(
f
(
U0) – f

(
U0

h
)
, θ1). (31)

It is easy to see that

(
∂̄tr1, θ1) ≤ Ch2∥∥∂̄tU1∥∥

2

∥
∥θ1∥∥

0 ≤ Ch4 + C
∥
∥θ1∥∥2

0,

(∇U0(a
(
U0) – a

(
U0

h
))

,∇θ1) ≤ C
∥
∥r0∥∥

0

∥
∥∇θ1∥∥

0 ≤ Ch2τ +
1

8τ

∥
∥θ1∥∥2

0,
(
f
(
U0) – f

(
U0

h
)
, θ1) ≤ C

∥
∥r0∥∥

0

∥
∥θ1∥∥

0 ≤ Ch4 + C
∥
∥θ1∥∥2

0.
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Denoting γ (X)|K = 1
|K |

∫

K γ (X) dX and then using the mean-value technique, we obtain

(
a
(
U0)τ∇r1,∇θ1)

=
∑

K

((
a
(
U0) – a

(
U0

))
τ∇r1,∇θ1)

K

–
∑

K

a
(
U0

)|K
(
τ
(∇e1 – ∇Ihe1),∇θ1)

K +
∑

K

a
(
U0

)|K
(
τ
(∇u1 – ∇Ihu1),∇θ1)

K

≤ Ch2τ
∥
∥U1∥∥

2

∥
∥∇θ1∥∥

0 + Chτ
∥
∥e1∥∥

2

∥
∥∇θ1∥∥

0 ≤ Ch4 + Ch2τ 2 + Cτ 2∥∥∇θ1∥∥2
0,

(
a
(
U0

h
)∇η0,∇θ1)

=
∑

K

((
a
(
U0

h
)

– a
(
U0

h
))∇η0,∇θ1)

K +
∑

K

a
(
U0

h
)|K

(∇η0,∇θ1)

K

≤ Ch2∥∥u0∥∥
2

∥
∥∇θ1∥∥

0 ≤ Ch
√

τ
1√
τ

∥
∥θ1∥∥

0 ≤ Ch2τ +
1

8τ

∥
∥θ1∥∥2

0.

By Theorem 1 we have

((
a
(
U0) – a

(
U0

h
))

τ∇Q1
h,∇θ1)

= –
((

a
(
U0) – a

(
U0

h
))

τ∇θ1,∇θ1)

–
((

a
(
U0) – a

(
U0

h
))

τ∇r1,∇θ1) –
((

a
(
U0) – a

(
U0

h
))

τ∇δ1,∇θ1)

+
((

a
(
U0) – a

(
U0

h
))

τ∇q1,∇θ1)

≤ Ch2τ
∥
∥U0∥∥

2

∥
∥∇θ1∥∥

0,∞
∥
∥∇θ1∥∥

0

+ Ch3τ
∥
∥U0∥∥

2

∥
∥U1∥∥

2

∥
∥∇θ1∥∥

0,∞ + Ch2τ
∥
∥∇δ1∥∥

0

∥
∥∇θ1∥∥

0,∞

+ Ch2τ
∥
∥∇q1∥∥

0,∞
∥
∥∇θ1∥∥

0

≤ Ch4 + Ch2τ 2 + Chτ
∥
∥∇θ1∥∥2

0 + Cτ 2∥∥∇θ1∥∥2
0.

Allocating all the estimates obtained, we have

1
τ

∥
∥θ1∥∥2

0 + τ
∥
∥∇θ1∥∥2

0

≤ Ch4 + Ch2τ + Chτ
∥
∥∇θ1∥∥2

0 + C
∥
∥θ1∥∥2

0 + Cτ 2∥∥∇θ1∥∥2
0. (32)

Thus there exist τ ′
1, τ ′

2, h′
1, h′

2, C′
1 such that, for τ ≤ τ ′

1 and h ≤ h′
1, we have

∥
∥θ1∥∥

0 + τ
∥
∥∇θ1∥∥

0 ≤ C′
1h(h +

√
τ ), (33)

which implies

∥
∥U1

h
∥
∥

0,∞ ≤ Ch–1∥∥ξ 1∥∥
0 +

∥
∥IhU1∥∥

0,∞

≤ CC′
1h + CC′

1
√

τ +
∥
∥IhU1∥∥

0,∞ ≤ K ′
0, (34)

where h ≤ h′
2 ≤ 1/2CC′

1 and τ ≤ τ ′
2 ≤ 1/2CC′

1.
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By mathematical induction we assume that (29) holds for m ≤ n – 1. Then there exist τ ′
3

and h′
3 such that

∥
∥Um

h
∥
∥

0,∞ +
√

τ

( m∑

i=2

∥
∥∂̄tUi

h
∥
∥2

0,∞

) 1
2

≤ Ch–1

(
∥
∥ξm∥

∥
0 +

√
τ

( m∑

i=2

∥
∥∂̄tξ

i∥∥2
0

) 1
2
)

+

(
∥
∥IhUm∥

∥
0,∞ +

√
τ

( m∑

i=2

∥
∥∂̄tIhUi∥∥2

0,∞

) 1
2
)

≤ 2CC′
0h + 2CC′

0
√

τ +

(
∥
∥IhUm∥

∥
0,∞ +

√
τ

( m∑

i=2

∥
∥∂̄tIhUi∥∥2

0,∞

) 1
2
)

≤ K ′
0, (35)

where h ≤ h′
3 ≤ 1/4CC′

0 and τ ≤ τ ′
3 ≤ 1/6(CC′

0)2.
Then we prove that (29) also holds for m = n. By (4) and (5) we derive the error equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂̄tξ
n, vh) = –(∂̄tη

n, vh) + (θn, vh) + (rn, vh),

(∂̄tθ
n, vh) + (a(Un–1

h )τ
∑n

i=1 ∇θ i,∇vh)

= –(∂̄trn, vh) – (a(Un–1)τ
∑n

i=1 ∇ri,∇vh)

– ((a(Un–1) – a(Un–1
h ))τ

∑n
i=1 ∇IhQi,∇vh) – (a(Un–1

h )∇η0,∇v)

– (∇U0(a(Un–1) – a(Un–1
h )),∇v) + (f (Un–1) – f (Un–1

h ), vh).

(36)

For vh = θn in the second equation of (36), we have

τ

(

a
(
Un–1

h
)

n∑

i=1

∇θ i,∇θn

)

= τ

∫

Ω

a
(
Un–1

h
)

n–1∑

i=1

∇θ i · ∇θn + τ
∥
∥a

1
2
(
Un–1

h
)∇θn∥∥2

0

=
1
2
τ

∫

Ω

a
(
Un–1

h
)
( n∑

i=1

∇θ i

)2

–
1
2
τ

∫

Ω

a
(
Un–1

h
)
( n–1∑

i=1

∇θ i

)2

+
1
2
τ
∥
∥a

1
2
(
Un–1

h
)∇θn∥∥2

0,

and hence we find

1
2τ

(∥
∥θn∥∥2

0 –
∥
∥θn–1∥∥2

0

)
+

1
2
τ
∥
∥a

1
2
(
Un–1

h
)∇θn∥∥2

0

+
1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–1

h
)

n∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

–
1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–2

h
)

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

≤ Cτ 2∥∥∂̄tUn–1
h

∥
∥

0,∞

∥
∥
∥
∥
∥

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

–
(
∂̄trn, θn) –

(

a
(
Un–1)τ

n∑

i=1

∇ri,∇θn

)
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–

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇IhQi,∇θn

)

–
(
a
(
Un–1

h
)∇η0,∇θn)

–
(∇U0(a

(
Un–1) – a

(
Un–1

h
))

,∇θn) –
(
f
(
Un–1) – f

(
Un–1

h
)
, θn)�

7∑

i=1

Bi. (37)

Obviously,

B1 ≤ Cτ 2

∥
∥
∥
∥
∥

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

,

B2 ≤ Ch2∥∥∂̄tUn
h
∥
∥

2

∥
∥θn∥∥

0 ≤ Ch4 + C
∥
∥θn∥∥2

0, (38)

B7 ≤ Ch4 + C
∥
∥ξn–1∥∥2

0 + C
∥
∥θn∥∥2

0.

Similarly to the proof of A2 ∼ A8 and A10, we rewrite θn by τ
∑n

i=1 ∂̄tθ
i and then try to

transfer τ from one side to the other in the inner product. For simplicity and concreteness,
with the help of (2), we show that

B5 =

(

au
(
μn–1

4
)
∂̄tUn–1

h ∇η0, τ
n–1∑

i=1

∇θ i

)

–
1
τ

∫

Ω

∇η0

(

a
(
Un–1

h
)
τ

n∑

i=1

∇θ i – a
(
Un–2

h
)
τ

n–1∑

i=1

∇θ i

)

=
∑

K

(
(
au

(
μn–1

4
)
∂̄tξ

n–1 – au
(
μn–1

4
)
∂̄tξn–1

)∇η0, τ
n–1∑

i=1

∇θ i

)

K

+
∑

K

au
(
μn–1

4
)
∂̄tξn–1|K

(

∇η0, τ
n–1∑

i=1

∇θ i

)

–

(

au
(
μn–1

4
)
∂̄tη

n–1∇η0, τ
n–1∑

i=1

∇θ i

)

+
∑

K

(
(
au

(
μn–1

4
)
∂̄tUn–1 – au

(
μn–1

4
)
∂̄tUn–1

)∇η0, τ
n–1∑

i=1

∇θ i

)

K

+
∑

K

au
(
μn–1

4
)
∂̄tUn–1|K

(

∇η0, τ
n–1∑

i=1

∇θ i

)

–
1
τ

∫

Ω

∇η0

(

a
(
Un–1

h
)
τ

n∑

i=1

∇θ i – a
(
Un–2

h
)
τ

n–1∑

i=1

∇θ i

)

≤ Ch2∥∥∂̄tξ
n–1∥∥

1

∥
∥u0∥∥

2,4

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,4

+ Ch2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

–
1
τ

∫

Ω

∇η0

(

a
(
Un–1

h
)
τ

n∑

i=1

∇θ i – a
(
Un–2

h
)
τ

n–1∑

i=1

∇θ i

)

≤ Ch4 + C
∥
∥∂̄tξ

n–1∥∥2
0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

–
1
τ

∫

Ω

∇η0

(

a
(
Un–1

h
)
τ

n∑

i=1

∇θ i – a
(
Un–2

h
)
τ

n–1∑

i=1

∇θ i

)

,
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where μn–1
4 = Un–2

h + τλn–1
4 ∂̄tUn–1

h and 0 < λn–1
4 < 1. Again transferring τ from one part of

the inner product to the other, we have

B3 = –

(

a
(
Un–1)τ

n∑

i=1

∇ri, τ
n∑

i=1

∇ ∂̄tθ
i

)

=

(

a
(
Un–2)∇rn, τ

n–1∑

i=1

∇θ i

)

+

(
a(Un–1) – a(Un–2)

τ
τ

n∑

i=1

∇ri, τ
n–1∑

i=1

∇θ i

)

– ∂̄t

(

a
(
Un–1)τ

n∑

i=1

∇ri, τ
n∑

i=1

∇θ i

)

�
3∑

i=1

B3i.

We split B31 and B32 and estimate them as follows:

B31 =
∑

K

(
(
a
(
Un–2) – a

(
Un–2

))∇rn, τ
n–1∑

i=1

∇θ i

)

K

–
∑

K

a
(
Un–2

)|K
(

∇ei – ∇Ihei, τ
n–1∑

i=1

∇θ i

)

K

+
∑

K

a
(
Un–2

)|K
(

∇ui – ∇Ihui, τ
n–1∑

i=1

∇θ i

)

K

≤ Ch2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

+ Ch
√

τ

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

≤ Ch4 + Ch2τ + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

,

B32 =

(
a(Un–1) – a(Un–2)

τ
τ

n∑

i=1

(∇ei – ∇Ihei), τ
n–1∑

i=1

∇θ i

)

+
∑

K

((
a(Un–1) – a(Un–2)

τ
–

a(Un–1) – a(Un–2)
τ

)

× τ

n∑

i=1

(∇ui – ∇Ihui), τ
n–1∑

i=1

∇θ i

)

K

+
∑

K

a(Un–1) – a(Un–2)
τ

∣
∣
∣
∣
K

(

τ

n∑

i=1

(∇ui – ∇Ihui), τ
n–1∑

i=1

∇θ i

)

K

≤ Ch
√

τ

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

+ Ch2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

≤ Ch4 + Ch2τ + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

.
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Then we have

B3 ≤ Ch4 + Ch2τ + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

a
(
Un–1)τ

n∑

i=1

∇ri, τ
n∑

i=1

∇θ i

)

.

Note that

B6 =

(

∇U0au
(
μn–2

5
)(

∂̄tξ
n–1 + ∂̄tη

n–1), τ
n–1∑

i=1

∇θ i

)

+

(

∇U0(ξn–1 + ηn–1)au(μn–1
5 ) – au(μn–2

5 )
τ

, τ
n–1∑

i=1

∇θ i

)

– ∂̄t

(

∇U0au
(
μn–1

5
)(

ξn–1 + ηn–1), τ
n∑

i=1

∇θ i

)

≤ Ch4 + C
∥
∥ξn–1∥∥2

0 + C
∥
∥∂̄tξ

n–1∥∥2
0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

– ∂̄t

(

∇U0au
(
μn–1

5
)(

ξn–1 + ηn–1), τ
n∑

i=1

∇θ i

)

,

where

μn–1
5 = Un–1 + λn–1

5
(
ξn–1 + ηn–1), 0 < λn–1

5 < 1,

and
∣
∣
∣
∣
au(μn–1

5 ) – au(μn–2
5 )

τ

∣
∣
∣
∣ ≤ ∣

∣∂̄tUn–1∣∣ + λn–1
5

(∣
∣∂̄tξ

n–1∣∣ +
∣
∣∂̄tη

n–1∣∣
)
.

Rewriting B4 and splitting it into several parts, we obtain

B4 =

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇ri, τ
n∑

i=1

∇ ∂̄tθ
i

)

–

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇Qi,∇θn

)

= –

(
(
a
(
Un–2) – a

(
Un–2

h
))∇rn, τ

n–1∑

i=1

∇θ i

)

–

(

τ

n∑

i=1

∇ri (a(Un–1) – a(Un–1
h )) – (a(Un–2) – a(Un–2

h ))
τ

, τ
n–1∑

i=1

∇θ i

)

+ ∂̄t

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇ri, τ
n∑

i=1

∇θ i

)

–

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇Qi,∇θn

)

.
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It is obvious that

–

(
(
a
(
Un–2) – a

(
Un–2

h
))∇rn, τ

n–1∑

i=1

∇θ i

)

≤ Ch
∥
∥Un∥∥

2

(
Ch2∥∥Un–2∥∥

2 +
∥
∥ξn–2∥∥

0

)
∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,∞

≤ Ch4 + C
∥
∥ξn–2∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

.

Because

(a(Un–1) – a(Un–1
h )) – (a(Un–2) – a(Un–2

h ))
τ

= au
(
μn–1

6
)
∂̄tUn–1 – au

(
μn–1

7
)
∂̄tUn–1

h

= au
(
μn–1

7
)(

∂̄tξ
n–1 + ∂̄tη

n–1)

+ ∂̄tUn–1(au
(
μn–1

6
)

– au
(
μn–1

7
))

, (39)

where

μn–1
6 = Un–2 + τλn–1

6 ∂̄tUn–1, μn–1
7 = Un–2

h + τλn–1
7 ∂̄tUn–1

h ,

0 < μn–1
6 ,μn–1

7 < 1,

and

μn–1
6 – μn–1

7 = ξn–2 + ηn–2 + τλn–1
7

(
∂̄tξ

n–1 + ∂̄tη
n–1)

+ τ ∂̄tUn–1(λn–1
6 – λn–1

7
)
,

it follows that

(

τ

n∑

i=1

∇ri (a(Un–1) – a(Un–1
h )) – (a(Un–2) – a(Un–2

h ))
τ

, τ
n–1∑

i=1

∇θ i

)

≤ Ch2

∥
∥
∥
∥
∥
τ

n∑

i=1

Qi

∥
∥
∥
∥
∥

2

∥
∥
∥
∥

(a(Un–1) – a(Un–1
h )) – (a(Un–2) – a(Un–2

h ))
τ

∥
∥
∥
∥

0

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,∞

≤ (∥
∥∂̄tξ

n–1∥∥
0 +

∥
∥∂̄tη

n–1∥∥
0 +

∥
∥ξn–2∥∥

0 +
∥
∥ηn–2∥∥

0 + τ
)
Ch

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

≤ Ch4 + Ch2τ +
∥
∥∂̄tξ

n–1∥∥2
0 +

∥
∥ξn–2∥∥2

0 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

.
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The fourth part of B4 can be found:

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇Qi,∇θn

)

=

(

au
(
μn–1

8
)
ηn–1τ

n∑

i=1

∇Qi,∇θn

)

+

(

au
(
μn–1

8
)
ξn–1τ

n∑

i=1

∇Qi,∇θn

)

, (40)

where μn–1
8 = Un–1 + λn–1

8 (Un–1
h – Un–1) and 0 < λn–1

8 < 1.
On one hand,

(

au
(
μn–1

8
)
ηn–1τ

n∑

i=1

∇Qi,∇θn

)

=

(

au
(
μn–1

8
)
ηn–1τ

n∑

i=1

∇Qi, τ
n∑

i=1

∂̄t∇θ i

)

=

(

au
(
μn–2

8
)
ηn–2∇δn, τ

n–1∑

i=1

∇θ i

)

+

(

au
(
μn–2

8
)
τ

n∑

i=1

∇δi∂̄tη
n–1, τ

n–1∑

i=1

∇θ i

)

+

(

ηn–1τ

n∑

i=1

∇δi au(μn–1
8 ) – au(μn–2

6 )
τ

, τ
n–1∑

i=1

∇θ i

)

–

(

au
(
μn–2

8
)
ηn–2∇qn, τ

n–1∑

i=1

∇θ i

)

–

(

au
(
μn–2

8
)
τ

n∑

i=1

∇qi∂̄tη
n–1, τ

n–1∑

i=1

∇θ i

)

–

(

ηn–1τ

n∑

i=1

∇qi au(μn–1
8 ) – au(μn–2

6 )
τ

, τ
n–1∑

i=1

∇θ i

)

+ ∂̄t

(

au
(
μn

8
)
ηnτ

n∑

i=1

∇Qi, τ
n∑

i=1

∇θ i

)

≤ Ch4 + Ch2τ + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ ∂̄t

(

au
(
μn

8
)
ηnτ

n∑

i=1

∇Qi, τ
n∑

i=1

∇θ i

)

.

On the other hand,

–

(

au
(
μn–1

8
)
ξn–1τ

n∑

i=1

∇Qi, τ
n–1∑

i=1

∂̄t∇θ i

)

= –

(

au
(
μn–2

8
)
ξn–2∇Qn, τ

n–1∑

i=1

∇θ i

)

–

(

au
(
μn–2

8
)
τ

n∑

i=1

∇Qi∂̄tξ
n–1, τ

n–1∑

i=1

∇θ i

)

–

(

τ

n∑

i=1

∇Qiξn–1 au(μn–1
8 ) – au(μn–2

8 )
τ

, τ
n–1∑

i=1

∇θ i

)

+ ∂̄t

(

au
(
μn–1

8
)
ξn–1τ

n∑

i=1

∇Qi, τ
n∑

i=1

∇θ i

)

�
4∑

i=1

Di. (41)
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Now we make use of the mean-value technique:

D1 =
∑

K

(
(
au

(
μn–2

8
)

– au
(
μn–2

8
))

ξn–2∇Qn, τ
n–1∑

i=1

∇θ i

)

K

+
∑

K

au
(
μn–2

8
)|K

(

ξn–2∇Qn, τ
n–1∑

i=1

∇θ i

)

K

.

Since Qn ∈ H2, we cannot use the mean-value of ∇Qn directly as before, thus with the first
equation of (36), we try to tackle it as follows:

∑

K

au
(
μn–2

8
)|K

(

ξn–2∇Qn, τ
n–1∑

i=1

∇θ i

)

K

=
∑

K

au
(
μn–2

8
)|K

(

∇Qnτ

n–1∑

i=1

∇θ i – ∇Qnτ

n–1∑

i=1

∇θ i, ξn–2

)

K

–
∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, ∂̄tη

i)

K

–
∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, θ i)

K

–
∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, ri)

K .

Because �θ i|K = 0, with the help of Theorem 1, we have

∑

K

au
(
μn–2

8
)|K

(

∇Qnτ

n–1∑

i=1

∇θ i – ∇Qnτ

n–1∑

i=1

∇θ i, ξn–2

)

K

≤ Ch

∥
∥
∥
∥
∥
∇Qnτ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

1

∥
∥ξn–2∥∥

0 ≤ Ch
∥
∥Qn∥∥

2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,∞

∥
∥ξn–2∥∥

0

≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ C
∥
∥ξn–2∥∥2

0. (42)

Further,

∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, ∂̄tη

i)

K

=
∑

K

au
(
μn–2

8
) 1
|K |

∫

K
∇δnτ

n–1∑

i=1

∇θ i dx dyτ
n–2∑

i=1

∫

K
∂̄tη

i dx dy

+
∑

K

au
(
μn–2

8
) 1
|K |

∫

K
∇qnτ

n–1∑

i=1

∇θ i dx dyτ
n–2∑

i=1

∫

K
∂̄tη

i dx dy
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≤ C
∑

K

1
|K |

∥
∥∇δn∥∥

0,4

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,4

|K | 1
2 τ

n–2∑

i=1

(∫

K

∣
∣∂̄tη

i∣∣2 dx dy
) 1

2 |K | 1
2

+ C
∑

K

1
|K |

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

|K | 1
2 τ

n–2∑

i=1

(∫

K

∣
∣∂̄tη

i∣∣2 dx dy
) 1

2 |K | 1
2

≤ C
∑

K

∥
∥δn∥∥

2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0,4

τ

n–2∑

i=1

∥
∥∂̄tη

i∥∥
0 + C

∑

K

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

τ

n–2∑

i=1

∥
∥∂̄tη

i∥∥
0

≤ Ch
3
2
∥
∥δn∥∥

2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

+ Ch2

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

≤ Ch4 + Ch3∥∥δn∥∥2
2 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

.

Similarly, we have

∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, ri)

K ≤ Ch4 + Ch3∥∥δn∥∥2
2 + C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

,

∑

K

(

au
(
μn–2

8
)∇Qnτ

n–1∑

i=1

∇θ i

)∣
∣
∣
∣
∣
K

τ

n–2∑

i=1

(
1, θ i)

K

≤ C
∑

K

1
|K |

∥
∥∇Qn∥∥

0,4

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

|K | 1
4 τ

n–2∑

i=1

(∫

K

∣
∣θ i∣∣4 dx dy

) 1
4 |K | 3

4

≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

0

τ

n–2∑

i=1

∥
∥θ i∥∥

0,4 ≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ Cτ

n–2∑

i=1

∥
∥∇θ i∥∥2

0.

Thus we have

D1 ≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ C
∥
∥ξn–2∥∥2

0 + Ch4 + Ch3∥∥δn∥∥2
2 + Cτ

n–2∑

i=1

∥
∥∇θ i∥∥2

0.

By a similar method we have

D2 + D3 ≤ C

∥
∥
∥
∥
∥
τ

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ C
∥
∥∂̄tξ

n–1∥∥2
0 + C

∥
∥ξn–1∥∥2

0

+ Ch4 + Ch3∥∥δn∥∥2
2 + Cτ

n–2∑

i=1

∥
∥∇θ i∥∥2

0.

Altogether,

1
2τ

(∥
∥θn∥∥2

0 –
∥
∥θn–1∥∥2

0

)
+

1
2
τ
∥
∥a

1
2
(
Un–1)∇θn∥∥2

0

+
1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–1)

n∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

–
1
2
τ

∥
∥
∥
∥
∥

a
1
2
(
Un–2)

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0
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≤ Ch4 + Ch2τ + C
∥
∥ξn–1∥∥2

0 + C
∥
∥ξn–2∥∥2

0 + C
∥
∥θn∥∥2

0 + C
∥
∥∂̄tξ

n–1∥∥2
0

+ Cτ 2

∥
∥
∥
∥
∥

n–1∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+ Chτ
∥
∥∇θn∥∥2

0 + Cτ
(
h

1
4 + τ

1
4
)∥
∥∇θn∥∥2

0

–
1
τ

∫

Ω

∇η0

(

a
(
Un–1

h
)
τ

n∑

i=1

∇θ i – a
(
Un–2

h
)
τ

n–1∑

i=1

∇θ i

)

– ∂̄t

(

a
(
Un–1)τ

n∑

i=1

∇ri, τ
n∑

i=1

∇θ i

)

+ ∂̄t

(
(
a
(
Un–1) – a

(
Un–1

h
))

τ

n∑

i=1

∇ri, τ
n∑

i=1

∇θ i

)

+
1
2

∫

Ω

(
a
(
Un–1) – a

(
Un–1

h
))

τ

( n∑

i=1

∇θ i

)2

–
1
2

∫

Ω

(
a
(
Un–2) – a

(
Un–2

h
))

τ

( n–1∑

i=1

∇θ i

)2

– ∂̄t

(

au
(
μn–1

8
)(

ξn–1 + ηn–1)τ

n∑

i=1

∇Qi, τ
n–1∑

i=1

∇θ i

)

– ∂̄t

(

∇U0au
(
μn–1

8
)(

ξn–1 + ηn–1), τ
n∑

i=1

∇θ i

)

with θ1 estimated earlier. Using the Gronwall lemma, we have

∥
∥θn∥∥2

0 + τ 2

∥
∥
∥
∥
∥

n∑

i=1

∇θ i

∥
∥
∥
∥
∥

2

0

+
n∑

i=2

τ 2∥∥∇θ i∥∥2
0 ≤ Ch4 + Ch2τ . (43)

Again using the first equation of (36) with vh = ∂̄tξ
n, for ξn, we obtain

∥
∥∂̄tξ

n∥∥2
0 = –

(
∂̄tη

n, ∂̄tξ
n) +

(
θn, ∂̄tξ

n) +
(
rn, ∂̄tξ

n)

≤ Ch4∥∥Un∥∥2
2 + Ch4∥∥∂̄tUn∥∥2

2 + C
∥
∥θn∥∥2

0 +
1
2
∥
∥∂̄tξ

n∥∥2
0, (44)

which implies

τ

n∑

i=2

∥
∥∂̄tξ

i∥∥2
0 ≤ Ch4 + Ch4τ

n∑

i=2

∥
∥∂̄tUi∥∥2

2 + τ

n∑

i=2

∥
∥θ i∥∥2

0 ≤ Ch4 + Ch2τ , (45)

or

∥
∥ξn∥∥2

0 = τ 2

∥
∥
∥
∥
∥

n∑

i=2

∂̄tξ
i

∥
∥
∥
∥
∥

2

0

≤ Cτ 2

( n∑

i=2

∥
∥∂̄tξ

i∥∥
0

)2

≤ Ch4 + Ch2τ . (46)
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Then there exist τ ′
4, τ ′

5, h′
4, h′

5, C′
2 such that, for τ ≤ τ ′

4 and h ≤ h′
4, we have

√
τ

( n∑

i=2

∥
∥∂̄tξ

i∥∥2
0

) 1
2

+
∥
∥ξn∥∥

0 +
∥
∥θn∥∥

0 + τ

( n∑

i=1

∥
∥∇θ i∥∥2

0

) 1
2

≤ C′
2h

(
h + τ

1
2
)
, (47)

from which we deduce

∥
∥Un

h
∥
∥

0,∞ +
√

τ

( n∑

i=2

∥
∥∂̄tUn

h
∥
∥2

0,∞

) 1
2

≤ Ch–1

(
∥
∥ξn∥∥

0 +
√

τ

( n∑

i=2

∥
∥∂̄tξ

i∥∥2
0,∞

) 1
2
)

+

(
∥
∥IhUn∥∥

0,∞ +
√

τ

( n∑

i=2

∥
∥∂̄tIhUi∥∥2

0,∞

) 1
2
)

≤ 2CC′
2h + 2CC′

2
√

τ +

(
∥
∥IhUn∥∥

0,∞ +
√

τ

( n∑

i=2

∥
∥∂̄tIhUi∥∥2

0,∞

) 1
2
)

≤ K ′
0, (48)

where h ≤ h′
5 ≤ 1/2CC′

2 and τ ≤ τ ′
5 ≤ 1/4(CC′

2)2. Clearly, C′
2 has nothing to do with C′

0, and
thus (29) holds for m = n if we take C′

0 ≥ ∑2
i=1 C′

i , τ ′
0 ≤ min1≤τ≤5 τ ′

i , and h′
0 ≤ min1≤τ≤5 h′

i.
Then the induction is closed.

The desired estimate for un and qn in (27) and (28) are thus consequences of (29) com-
bined with the triangle inequality. The proof is completed. �

Remark 2 It is precious to point out that to avoid the restriction involved by the regulari-
ties of Qn, we try to use the new mean-value technique in the proof of D1 ∼ D3.

Remark 3 It can be seen that (27) and (28) do not hold for the elements dissatisfying (42),
such as the biquadratic finite element.

5 Numerical results
In this section, we consider the hyperbolic equation

⎧
⎪⎪⎨

⎪⎪⎩

utt – ∇ · (a(u)∇u) – f (u) = g(X, t), (X, t) ∈ Ω × (0, T],

u = 0, (X, t) ∈ ∂Ω × (0, T],

u(X, 0) = u0(X), ut(X, 0) = u1(X), X ∈ Ω ,

(49)

with Ω = [0, 1] × [0, 1], a(u) = sin u + 0.1, f (u) = u2, and g(X, t) chosen corresponding to
the exact solution u = etxy(1 – x)(1 – y). Setting q = ut , (49) is changed into a parabolic
system. A uniform rectangular partition with m + 1 nodes in each direction is used in
our computation. We solve the system by the linearized Galerkin method with bilinear
element.

To confirm our error analysis for (27) and (28), we choose τ = 5h2 for the backward Eu-
ler FEM with bilinear FE. Therefore, from our theoretical analysis, the L2-norm errors for
u and q are O(h2 + τ ) ∼ O(h2), and the H1-norm errors for u and q are O(h + τ ) ∼ O(h).
We present the numerical results with respect to time t = 0.25, 0.5, 0.75, 1.0 in Tables 1–4,
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Table 1 Results for Unh and Qn
h when t = 0.25 (τ = 5h2)

m×m ‖un – Un
h‖0 Order ‖un – Un

h‖1 Order ‖qn – Qn
h‖0 Order ‖qn – Qn

h‖1 Order

5× 5 2.9760× 10–3 – 3.9028× 10–2 – 2.9757× 10–3 – 3.9028× 10–2 –
10× 10 7.3473× 10–4 2.0181 1.9230× 10–2 1.0211 7.3473× 10–4 2.0179 1.9230× 10–2 1.0211
20× 20 1.8429× 10–4 1.9952 9.5818× 10–3 1.0050 1.8429× 10–4 1.9953 9.5818× 10–3 1.0050
40× 40 4.6110× 10–5 1.9988 4.7867× 10–3 1.0013 4.6110× 10–5 1.9988 4.7867× 10–3 1.0013

Table 2 Results for Unh and Qn
h when t = 0.5 (τ = 5h2)

m×m ‖un – Un
h‖0 Order ‖un – Un

h‖1 Order ‖qn – Qn
h‖0 Order ‖qn – Qn

h‖1 Order

5× 5 3.8700× 10–3 – 5.0155× 10–2 – 3.8696× 10–3 – 5.0155× 10–2 –
10× 10 9.3055× 10–4 2.0562 2.4686× 10–2 1.0227 9.3055× 10–4 2.0560 2.4686× 10–2 1.0227
20× 20 2.3338× 10–4 1.9954 1.2303× 10–2 1.0048 2.3338× 10–4 1.9954 1.2303× 10–2 1.0048
40× 40 5.8391× 10–5 1.9989 6.1461× 10–3 1.0012 5.8391× 10–5 1.9989 6.1461× 10–3 1.0012

Table 3 Results for Unh and Qn
h when t = 0.75 (τ = 5h2)

m×m ‖un – Un
h‖0 Order ‖un – Un

h‖1 Order ‖qn – Qn
h‖0 Order ‖qn – Qn

h‖1 Order

5× 5 5.0318× 10–3 – 6.4456× 10–2 – 5.0313× 10–3 – 6.4456× 10–2 –
10× 10 1.1784× 10–3 2.0943 3.1692× 10–2 1.0242 1.1784× 10–3 2.0941 3.1692× 10–2 1.0242
20× 20 2.9550× 10–4 1.9956 1.5796× 10–2 1.0045 2.9549× 10–4 1.9956 1.5796× 10–2 1.0045
40× 40 7.3929× 10–5 1.9989 7.8917× 10–3 1.0012 7.3929× 10–5 1.9989 7.8917× 10–3 1.0011

Table 4 Results for Unh and Qn
h when t = 1.0 (τ = 5h2)

m×m ‖un – Un
h‖0 Order ‖un – Un

h‖1 Order ‖qn – Qn
h‖0 Order ‖qn – Qn

h‖1 Order

5× 5 5.8966× 10–3 – 8.2298× 10–2 – 5.8959× 10–3 – 8.2297× 10–2 –
10× 10 1.4919× 10–3 1.9827 4.0685× 10–2 1.0164 1.4919× 10–3 1.9826 4.0685× 10–2 1.0164
20× 20 3.7407× 10–4 1.9958 2.0281× 10–2 1.0043 3.7407× 10–4 1.9958 2.0281× 10–2 1.0043
40× 40 9.3585× 10–5 1.9989 1.0133× 10–2 1.0011 9.3585× 10–5 1.9989 1.0133× 10–2 1.0011

Table 5 Results for ‖un – Unh‖1 (h = 1
160 , τ = kh)

t k = 1 k = 5 k = 10 k = 20 k = 40

0.25 2.396051× 10–3 2.509776× 10–3 2.868899× 10–3 4.142662× 10–3 7.852834× 10–3

0.50 3.093389× 10–3 3.652433× 10–3 5.078443× 10–3 8.767703× 10–3 1.632563× 10–2

0.75 4.009582× 10–3 5.496080× 10–3 8.725847× 10–3 1.598647× 10–2 2.828099× 10–2

1.00 5.216721× 10–3 8.300234× 10–3 1.426017× 10–2 2.670072× 10–2 4.519938× 10–2

Table 6 Results for ‖qn – Qn
h‖1 (h = 1

160 , τ = kh)

t k = 1 k = 5 k = 10 k = 20 k = 40

0.25 2.396041× 10–3 2.502978× 10–3 2.774917× 10–3 3.325243× 10–3 7.807021× 10–3

0.50 3.093358× 10–3 3.634416× 10–3 4.873726× 10–3 7.011551× 10–3 6.395837× 10–3

0.75 4.009512× 10–3 5.462226× 10–3 8.391812× 10–3 1.334560× 10–2 1.239224× 10–2

1.00 5.216582× 10–3 8.244615× 10–3 1.376092× 10–2 2.292862× 10–2 2.288225× 10–2

respectively. It can be seen that ‖un –Un
h ‖0 and ‖qn –Qn

h‖0 are convergent at rate O(h2) and
‖un – Un

h ‖1 and ‖qn – Qn
h‖1 are convergent at rate O(h), which indicate the optimal conver-

gence rates of the methods. Further, to show the unconditional convergence results, we
test the FEM with h = 1/160 and the large time steps τ = h, 5h, 10h, 20h, 40h, respectively.
We present the numerical results in Tables 5–6, which suggest that the scheme is stable
for large time steps. All these results are in good agreement with our theoretical analysis.
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6 Conclusion
In this paper, we have established unconditional error estimates for a nonlinear hyperbolic
equation. A striking feature of our analysis is that we transform the nonlinear hyperbolic
equation into a parabolic system. Then a linearized backward Euler FEM is constructed
for the nonlinear parabolic equation. It is shown in this paper that such an idea avoids the
difficulty in constructing a linearized first-order scheme for a nonlinear hyperbolic equa-
tion, and we can also give the error analysis for u and q = ut at the same time. Splitting skill
is exploited to derive the final unconditional convergent results. Some special methods are
utilized to derive the boundedness of the solutions about the time-discrete system in H2-
norm, which may play a crucial role for getting rid of the restriction on the ratio between
h and τ . Since the new parabolic system caused lots of problems for our the spatial errors
analysis, several new techniques, such as rewriting the error equations, are introduced. It
should be noted that the results in this paper also hold for linear conforming triangular
elements but not hold for some other particular elements, such as the biquadratic finite
element.
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