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Abstract
We investigate the multiplicity of solutions for one-dimensional p-Laplacian Dirichlet
boundary value problem with jumping nonlinearities. We obtain three theorems: The
first states that there exists exactly one solution when nonlinearities cross no
eigenvalue. The second guarantees that there exist exactly two solutions, exactly one
solution and no solution, depending on the source term, when nonlinearities cross
just the first eigenvalue. The third claims that there exist at least three solutions,
exactly one solution and no solution, depending on the source term, when
nonlinearities cross the first and second eigenvalues. We obtain the first and second
theorem by considering the eigenvalues and the corresponding normalized
eigenfunctions of the p-Laplacian eigenvalue problem, and the contraction mapping
principle in the p-Lebesgue space (when p≥ 2). We obtain the third result by
Leray–Schauder degree theory.
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1 Introduction
The p-Laplacian boundary value problems with p-growth conditions arise in applications
of nonlinear elasticity theory, electro-rheological fluids, and in non-Newtonian fluid the-
ory of a porous medium (cf. [6, 7, 13]). A typical model of elliptic equation with p-growth
conditions is

– div
((

α + |∇u|)p–2∇u
)

= f (x, u).

In particular, when α = 0, the operator

–�p = – div
((|∇u|)p–2∇u

)

is called the p-Laplacian. In general, when p = p(x), the p(x)-Laplacian problems are inho-
mogeneous, so they may have singular phenomena like infΛ = 0, where Λ is the set of the
eigenvalues of the p(x)-Laplacian eigenvalue problem

– div
((

α + |∇u|)p(x)–2∇u
)

= λ|u|p(x)–2u in Ω ,

u = 0 on ∂Ω ,
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where Ω is a bounded domain in RN , N ≥ 1, with a smooth boundary ∂Ω . But the eigen-
value problem when α = 0, p(x) = p constant and 1 < p < ∞ has no singular phenomena,
i.e., infΛ > 0. It was proved in [9] that the eigenvalue problem when α = 0, p(x) = p con-
stant and 1 < p < ∞ has a nondecreasing sequence of nonnegative eigenvalues λj, obtained
by the Ljusternik–Schnirelman principle, tending to ∞ as j → ∞, and the corresponding
orthonomalized eigenfunctions φj, j = 1, 2, . . . , where the first eigenvalue λ1 is positive and
simple and only eigenfunctions associated with λ1 do not change sign, the set of eigenval-
ues is closed, the first eigenvalue λ1 is isolated. Thus there are two sequences of eigenfunc-
tions (φj)j and (μj)j corresponding to the eigenvalues λj such that the first eigenfunction
φ1 > 0 in the sequence (φj)j and the first eigenfunction μ1 < 0 in the sequence (μj)j.

Now in this paper, let φ1 be the first positive orthonormalized eigenfunction corre-
sponding to λ1.

In this paper we consider the multiplicity of solutions u ∈ W 1,p(Ω) for the following p-
Laplacian Dirichlet boundary value problem with jumping nonlinearities when N = 1 and
p(x) = p;

–
(∣∣u′∣∣p–2u′)′ = b|u|p–2u+ – a|u|p–2u– + sφp–1

1 in Ω ,

u = 0 on ∂Ω ,
(1.1)

where Ω = (c, d) ⊂ R, c < d, is an open interval, 2 ≤ p < ∞ and p′ is given by 1
p + 1

p′ = 1,
u+ = max{u, 0}, u– = – min{u, 0}, s ∈ R, Lp(Ω) is the p-Lebesgue space, with its dual space
Lp′ (Ω), and W 1,p(Ω) is the Lebesgue–Sobolev space.

Our problems are characterized as a jumping problem, which was first suggested in the
suspension bridge equation as a model of the nonlinear oscillations in a differential equa-
tion

utt + K1uxxxx + K2u+ = W (x) + εf (x, t),

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0.
(1.2)

This equation represents a bending beam supported by cables under a load f . The constant
b represents the restoring force if the cables stretch. The nonlinearity u+ models the fact
that cables resist expansion but do not resist compression. Choi and Jung (cf. [2–4]) and
McKenna and Walter (cf. [12]) investigated the existence and multiplicity of solutions for
the single nonlinear suspension bridge equation with a Dirichlet boundary condition. In
[1], the authors investigated the multiplicity of solutions of a semilinear equation

Au + bu+ – au– = f (x) in Ω ,

u = 0 on Ω ,

where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary ∂Ω , and A is a second-
order linear partial differential operator when the forcing term is a multiple sφ1, s ∈ R, of
the positive eigenfunction and the nonlinearity crosses eigenvalues.

Our main theorems are as follows:
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Theorem 1.1
(i) If 2 ≤ p < ∞, a < b, –∞ < a, b < λ1, then (1.1) has exactly one nontrivial solution for

all s in a bounded interval. In particular, we have that if 2 ≤ p < ∞, a < b,
–∞ < a, b < λ1 and s > 0, then u = ( s

λ1–b )
1

p–1 φ1 > 0 is a solution and if –∞ < a, b < λ1

and s < 0, then u = ( s
λ1–a )

1
p–1 φ1 < 0 is a solution.

(ii) If 2 ≤ p < ∞, a < b, λj < a, b < λj+1, s ∈ R is bounded, j = 1, 2, . . . , (1.1) has exactly one
nontrivial solution for all s in a bounded interval.

Theorem 1.2
(i) If 1 < p < ∞, a < b, –∞ < a < λ1 < b < λ2, s ∈ R and s > 0, then (1.1) has no solution,

(ii) If 1 < p < ∞, a < b, –∞ < a < λ1 < b < λ2, s ∈ R and s = 0, then (1.1) has exactly one
solution u = 0.

(iii) If 2 ≤ p < ∞, a < b, –∞ < a < λ1 < b < λ2, s ∈ R, then there exists s1 < 0 such that for
any s with s1 ≤ s < 0, (1.1) has exactly two solutions.

Theorem 1.3
(i) If 1 < p < ∞, a < b, –∞ < a < λ1, λ2 < b < λ3, s ∈ R and s > 0, then (1.1) has no

solution,
(ii) If 1 < p < ∞, a < b, –∞ < a < λ1, λ2 < b < λ3, s ∈ R and s = 0, then (1.1) has exactly

one solution u = 0.
(iii) If 2 ≤ p < ∞, a < b, –∞ < a < λ1, λ2 < b < λ3, s ∈ R, then there exists s1 < 0 such that

for any s with s1 ≤ s < 0, (1.1) has at least three solutions.

For the proofs of (i) and (ii) of Theorem 1.1, (iii) of Theorem 1.2 and (iii) of Theorem 1.3,
we use the contraction mapping principle under the condition p ≥ 2 and direct compu-
tations. The outline of the proofs of Theorems 1.1, 1.2 and 1.3 is as follows: In Sect. 2,
we introduce some preliminaries and prove Theorem 1.1 by direct computations using
the first eigenfunction and the contraction mapping principle. In Sect. 3, we prove The-
orem 1.2 by a similar method to that of Theorem 1.1. In Sect. 4, we prove Theorem 1.3
by direct computations using the first eigenfunction, contraction mapping principle and
Leray–Schauder degree theory under the condition p ≥ 2.

2 Preliminaries and proof of Theorem 1.1
Let Lp(Ω) be the Lebesgue space defined by

Lp(Ω) =
{

u|u : Ω → R is measurable,
∫ d

c
|u|p dx < ∞

}

and W 1,p(Ω) be the Lebesgue–Sobolev space defined by

W 1,p(Ω) =
{

u ∈ Lp(Ω)|u′(x) ∈ Lp(Ω)
}

.

We introduce norms on Lp(Ω) and W 1,p(Ω), respectively, by

‖u‖Lp(Ω) = inf

{
λ > 0

∣
∣∣
∣

∫ d

c

∣
∣∣
∣
u(x)
λ

∣
∣∣
∣

p

≤ 1
}

,

‖u‖W 1,p(Ω) =
[∫ d

c

∣
∣u′(x)

∣
∣p dx

] 1
p

+
[∫ d

c

∣
∣u(x)

∣
∣p dx

] 1
p

.
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Let us define the operator –Lp by

–Lpu = –
(∣∣u′∣∣p–2u′)′.

We first consider the problem:

–
(∣∣u′∣∣p–2u′)′ = f (x) in Ω ,

u = 0 ∂Ω ,
(2.1)

where 1 < p < ∞ and f ∈ Lr(Ω), r > 1. Then (2.1) has a unique solution u ∈ C1(Ω̄) which
is of the form

u(x) =
∫ x

c
g–1

p

(
cf –

∫ y

a
f (τ ) dτ

)
dy,

where gp(t) = |t|p–2t for t �= 0, gp(0) = 0 and its inverse g–1
p is g–1

p (t) = t
1

p–1 if t > 0 and g–1
p (t) =

–|t| 1
p–1 if t < 0, and cf is the unique constant such that u(d) = 0. By [10, Lemma 2.1] or [11,

Lemma 4.2], the solution operator S is such that S : Lp(Ω) → C1(Ω̄) is continuous and, by
[5, Corollary 2.3], the embedding S : Lp(Ω) → C(Ω̄) is continuous and compact. By [8],
we also have a Poincaré-type inequality.

Lemma 2.1 Let 1 < p < ∞. Then the embedding

H1,p(Ω) ↪→ Lp(Ω)

is continuous and compact, and for every u ∈ C∞
0 (Ω) we have

‖u‖Lp(Ω̄) ≤ C‖u‖W 1,p(Ω̄),

for a positive constant C independent of u.

By Lemma 2.1, we obtain the following:

Lemma 2.2 Assume that 1 < p < ∞, f (x, u) ∈ Lp(Ω). Then the solutions of the problem

–
(∣∣u′∣∣p–2u′)′ = f (x, u) in Lp(Ω),

u = 0 ∂Ω

belong to W 1,p(Ω).

For given v(u) ∈ Lp(Ω) and h(x) ∈ Lp(Ω), the equation

–Lpu = v(u) + h(x) in Lp(Ω)

is equivalent to the equation

u = (–Lp)–1(v(u) + h(x)
)
.
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We observe that

∥
∥(–Lp)–1(v(u) + h(x)

)∥∥
W 1,p(Ω) ≤ 1

λ1

∥
∥g–1

p
(
v(u) + h(x)

)∥∥
W 1,p(Ω)

≤ 1
λ1

∥∥(
v(u) + h(x)

) 1
p–1

∥∥
Lp(Ω). (2.2)

Proof of Theorem 1.1 (i) We assume that –∞ < a, b < λ1. Let us choose μ > 0 and ε > 0 so
that –μ + ε < a, b < λ1 – ε, and choose τ = a+b

2 . Then problem (1.1) can be rewritten as

–Lp – τ |u|p–2u = (b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1 ,

or equivalently,

u = (–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1

)
. (2.3)

We have that

∥∥(–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1

)∥∥
Lp(Ω)

≤
∥∥
∥∥

1
λ1 – τ

g–1
p

(
(b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1

1
)
∥∥
∥∥

Lp(Ω)
.

Let us set the right-hand side of (2.3) as

T(u) = (–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1

)
.

Then T(u) satisfies

∥
∥T(u) – T(v)

∥
∥

Lp(Ω)

=
∥∥(–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1

1
)

– (–Lp – τgp)–1((b – τ )|v|p–2v+ – (a – τ )|v|p–2v– + sφp–1
1

)∥∥
Lp(Ω)

≤ 1
λ1 – τ

∥
∥g–1

p
(
(b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1

1
)

– g–1
p

(
(b – τ )|v|p–2v+ – (a – τ )|v|p–2v– + sφp–1

1
)∥∥

Lp(Ω)

=
1

λ1 – τ

∥∥∥
∥g–1

p

(
b – a

2
|u|p–1 + sφp–1

1

)
– g–1

p

(
b – a

2
|v|p–1 + sφp–1

1

)∥∥∥
∥

Lp(Ω)
.

Since | · |p–1 is continuous, for given u ∈ W 1,p(Ω), there exists v ∈ W 1,p(Ω) in a small
neighborhood of u such that b–a

2 |u|p–1 + sφp–1
1 and b–a

2 |v|p–1 + sφp–1
1 have the same sign.

We can also check that for any 2 ≤ p < ∞, s < 0 and for any u and v, where v is in a small
neighborhood of u such that b–a

2 |u|p–1 + sφp–1
1 and b–a

2 |v|p–1 + sφp–1
1 have the same sign, we

have
∥∥∥
∥g–1

p

(
b – a

2
|u|p–1 + sφp–1

1

)
– g–1

p

(
b – a

2
|v|p–1 + sφp–1

1

)∥∥∥
∥

Lp(Ω)

≤
∥
∥∥
∥g–1

p

(
b – a

2
|u|p–1

)
– g–1

p

(
b – a

2
|v|p–1

)∥
∥∥
∥

Lp(Ω)
.



Jung and Choi Boundary Value Problems         (2019) 2019:56 Page 6 of 14

Thus for any u and v, where v is in a small neighborhood of u such that b–a
2 |u|p–1 + sφp–1

1
and b–a

2 |v|p–1 + sφp–1
1 have the same sign, we have

∥
∥T(u) – T(v)

∥
∥

Lp(Ω)

≤ 1
λ1 – τ

∥∥
∥∥g–1

p

(
b – a

2
|u|p–1 + sφp–1

1

)
– g–1

p

(
b – a

2
|v|p–1 + sφp–1

1

)∥∥
∥∥

Lp(Ω)

≤ 1
λ1 – τ

(
b – a

2

) 1
p–1 ∥

∥g–1
p

(
u|p–1) – g–1

p
(|v|p–1)∥∥

Lp(Ω)

=
( b–a

2 )
1

p–1

λ1 – τ

∥∥|u| – |v|∥∥Lp(Ω) ≤ ( b–a
2 )p–1

λ1 – τ
‖u – v‖Lp(Ω).

Since λ1 – τ > b–a
2 and 2 ≤ p < ∞, we have ( b–a

2 )
1

p–1

λ1–τ
< 1. Thus T is a contraction mapping

on Lp(Ω). Thus T has a unique solution in Lp(Ω). Thus (1.1) has a unique solution.
(ii) We assume that λj < a, b < λj+1, j = 1, 2, . . . Let us choose ε > 0 so that λj + ε < a, b <

λj+1 – ε. Let us set τ = a+b
2 . Then (1.1) can be rewritten as

u = (–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1

)
.

We observe that

∥
∥(–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u–)∥∥

LP(Ω)

≤
∥
∥∥
∥

(
2

λj+1 – λj

)–1

g–1
p

(
(b – τ )|u|p–2u+ – (a – τ )|u|p–2u–)

∥
∥∥
∥

LP(Ω)
.

By the same process as that of the proof of Theorem 1.1(i), the mapping on Lp(Ω) given
by

N(u) = (–Lp – τgp)–1((b – τ )|u|p–2u+ – (a – τ )|u|p–2u– + sφp–1
1

)

satisfies

∥∥N(u) – N(v)
∥∥

Lp(Ω)

=
∥∥(–Lp – τgp)–1((b – τ )(|u|p–2u+ – (a – τ )

(|u|p–2u– + sφp–1
1

)

– (–Lp – τgp)–1((b – τ )(|v|p–2v+ – (a – τ )
(|v|p–2v– + sφp–1

1
)∥∥

Lp(Ω)

=
2

λj+1 – λj

∥
∥∥
∥g–1

p (
b – a

2
(|u|p–1 + sφp–1

1
)

– g–1
p (

b – a
2

(|v|p–1 + sφp–1
1

)
∥
∥∥
∥

Lp(Ω)

≤ 2
λj+1 – λj

∥∥
∥∥g–1

p (
b – a

2
(|u|p–1) – g–1

p (
b – a

2
(|v|p–1)

∥∥
∥∥

Lp(Ω)

≤ 2
λj+1 – λj

(
b – a

2

) 1
p–1 ∥

∥|u| – |v|∥∥Lp(Ω) ≤ 2
λj+1 – λj

(
b – a

2

) 1
p–1 ‖u – v‖Lp(Ω)

for any u and v, where v is in a small neighborhood of u such that b–a
2 |u|p–1 + sφp–1

1 and
b–a

2 |v|p–1 + sφp–1
1 have the same sign, and 2 ≤ p < ∞. Since λj+1–λj

2 > b–a
2 and 2 ≤ p < ∞, we
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have 2
λj+1–λj

( b–a
2 )

1
p–1 < 1. It follows that N is a contraction mapping on Lp(Ω). Therefore N

has a unique solution in Lp(Ω). Thus (1.1) has a unique solution. �

3 Proof of Theorem 1.2
(i) (For the case s > 0) We assume that 1 < p < ∞, a < b, –∞ < a < λ1 < b < λ2 and s > 0.
Then (3.1) can be rewritten as

–
(∣∣u′∣∣p–2u′)′ – λ1|u|p–2u = (b – λ1)|u|p–2u+ – (a – λ1)|u|p–2u– + sφp–1

1 . (3.1)

Taking the inner product with φ1, we have

〈
–
(∣∣u′∣∣p–2u′)′ – λ1|u|p–2u,φ1

〉
=

〈
(b – λ1)|u|p–2u+ – (a – λ1)|u|p–2u– + sφp–1

1 ,φ1
〉
. (3.2)

The left-hand side of (3.1) is equal to 0. On the other hand, the right-hand side of (3.1) is
positive because b – λ1 > 0, –(a – λ1) > 0 and sφp–1

1 > 0 for s > 0. Thus if s > 0, then there is
no solution for (1.1).

(ii) (For the case s = 0) If s = 0, then (3.2) is reduced to the equation

〈
–
(∣∣u′∣∣p–2u′)′ – λ1|u|p–2u,φ1

〉
=

〈
(b – λ1)|u|p–2u+ – (a – λ1)|u|p–2u–,φ1

〉
,

i.e.,

∫ d

c

[(
–
(∣∣u′∣∣p–2u′)′ – λ1|u|p–2u

)
φ1

]
dx

= 0 =
∫ d

c

[(
(b – λ1)|u|p–2u+ – (a – λ1)|u|p–2u–)

φ1
]

dx. (3.3)

Since b – λ1 > 0 and –(a – λ1) > 0, the only possibility for (3.3) to hold is that u = 0.
(iii) (For the case s < 0) We assume that 2 ≤ p < ∞, a < b, –∞ < a < λ1 < b < λ2 and s < 0.

Let V be a subspace of Lp(Ω) spanned by φ1 and W be the orthogonal complement of V
in Lp(Ω). Then

Lp(Ω) = V ⊕ W .

Let P be a orthogonal projection in Lp(Ω) onto V and I – P be the orthogonal projection
onto W . Then

Pu =
(∫ d

c
uφ1

)
φ1 for all u ∈ LP(Ω).

Let u ∈ Lp(Ω). Then u can be written as

u = v + w, v = Pu, w = (I – P)w.

We note that P commutes with D = d
dx . Thus (1.1) is equivalent to a pair of equations

(I – P)
(
–
(∣∣(v + w)′

∣∣p–2(v + w)′
)′)

= (I – P)
(
b|v + w|p–2(v + w)+ – a|v + w|p–2(v + w)–)

, (3.4)
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P
(
–
(∣∣(v + w)′

∣
∣p–2(v + w)′

)′)

= P
(
b|v + w|p–2(v + w)+ – a|v + w|p–2(v + w)– + sφp–1

1
)
. (3.5)

We claim that for fixed v ∈ V , (3.4) has a unique solution w(v) when 2 ≤ p ≤ ∞. In fact,
we suppose that (3.4) has two solutions w1, w2 for fixed v ∈ V . Let us set αv(w) = b|v +
w|p–2(v + w)+ – a|v + w|p–2(v + w)–. Then we have

(I – P)
[(

–
(∣∣(v + w1)′

∣
∣p–2(v + w1)′

)′) –
(
–
(∣∣(v + w2)′

∣
∣p–2(v + w2)′

)′)]

= (I – P)
[(

b|v + w1|p–2(v + w1)+ – a|v + w1|p–2(v + w1)–)

–
(
b|v + w2|p–2(v + w2)+ – a|v + w2|p–2(v + w2)–)]

. (3.6)

Taking the inner product of (3.6) with w1 – w2, we have

〈
(I – P)

[(
–
(∣∣(v + w1)′

∣∣p–2(v + w1)′
)′) –

(
–
(∣∣(v + w2)′

∣∣p–2(v + w2)′
)′)], w1 – w2

〉

=
〈
(I – P)

[(
b|v + w1|p–2(v + w1)+ – a|v + w1|p–2(v + w1)–)

–
(
b|v + w2|p–2(v + w2)+ – a|v + w2|p–2(v + w2)–)]

, w1 – w2
〉
. (3.7)

The right-hand side of (3.7) is equal to

〈
(I – P)

[(
b|v + w1|p–2(v + w1)+ – a|v + w1|p–2(v + w1)–)

–
(
b|v + w2|p–2(v + w2)+ – a|v + w2|p–2(v + w2)–)]

, w1 – w2
〉

≤ (p – 1)b
∫ d

c

[
[I – P]

∣∣v + w1 + θ (w2 – w1)
∣∣p–2(w1 – w2)2]dx (3.8)

for 0 < θ < 1. On the other hand, the left-hand side of (3.6) is equal to

〈
(I – P)

[(
–
(∣∣(v + w1)′

∣∣p–2(v + w1)′
)′) –

(
–
(∣∣(v + w2)′

∣∣p–2(v + w2)′
)′)], w1 – w2

〉

= (p – 1)
∫ d

c

[
(I – P)

(∣∣(v + w1)′ + θ (w2 – w1)′
∣
∣p–2((w1 – w2)′

)2)]dx

≥ (p – 1)λ2

∫ d

c

[
(I – P)

(∣∣(v + w1) + θ (w2 – w1)
∣∣p–2(w1 – w2)2)]dx, (3.9)

by mean value theorem. On the other hand, by (3.8) and (3.9), we have

(p – 1)λ2

∫ d

c

[
(I – P)

(∣∣(v + w1) + θ (w2 – w1)
∣
∣p–2(w1 – w2)2)]dx

≤ (p – 1)b
∫ d

c

[
[I – P]

∣∣v + w1 + θ (w2 – w1)
∣∣p–2(w1 – w2)2]dx,

which is a contradiction because b < λ2. Thus w1 = w2. Thus for fixed v ∈ V , every solution
of (3.4) is unique. We note that w = 0 is a solution of (3.4) for every v ∈ V = PH , v > 0 or
v < 0 everywhere in Ω . If v > 0, then

(I – P)
(
–
(∣∣(v + w)′

∣∣p–2(v + w)′
)′) = (I – P)

(
b|v|p–2v+ – a|v|p–2v– + sφp–1

1
)
. (3.10)
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If v > 0, then (I – P)(b|v|p–2v+ – a|v|p–2v– + sφp–1
1 ) = (I – P)b|v|p–2v = 0. If v < 0, then (I –

P)(b|v|p–2v+ – a|v|p–2v– + sφp–1
1 ) = (I – P)(a|v|p–2v + sφp–1

1 ) = 0. Thus (1.1) is reduced to

P
(
–
(∣∣v′∣∣p–2v′)′) = P

(
b|v|p–2v+ – a|v|p–2v– + sφp–1

1
)
,

where v = cφ1, c ∈ R.
If c > 0, then

λcp–1 = bcp–1 + s, cp–1 =
s

λ1 – b
.

If c < 0, then

λ|c|p–2c = a|c|p–2c + s, |c|p–2c =
s

λ1 – a
.

Thus (1.1) has exactly two solutions.

4 Proof of Theorem 1.3
Lemma 4.1 (A priori bound) Assume that 1 < p < ∞, –∞ < a < λ1, λ2 < b < λ3, s ∈ R. Then
there exist s1 < 0, s2 > 0 and a constant C > 0 depending only on a and b such that for any
s with s1 ≤ s ≤ s2, any solution u of (1.1) satisfies ‖u‖W 1,p(Ω) < C.

Proof Let u be any solution of (1.1). Suppose that any solution of (1.1) is not bounded.
Then there exists a sequence (un)n such that ‖un‖W 1,p(Ω) → ∞ so that

–
(∣∣u′

n
∣
∣p–2u′

n
)′ = b|un|p–2u+

n – a|un|p–2u–
n + sφp–1

1 in Ω , (4.1)

or equivalently,

un = (–Lp)–1(b|un|p–2u+
n – a|un|p–2u–

n + sφp–1
1

)
in Ω .

Let us set wn = un
‖un‖W 1,p(Ω)

. Then (wn)n is bounded, so by passing to a subsequence if neces-

sary, which we still denote by (wn)n, we get that (wn)n → w weakly for some w in W 1,p(Ω).
Dividing (4.1) by ‖un‖p–1

W 1,p(Ω), we have

–(|u′
n|p–2u′

n)′

‖un‖p–1
W 1,p(Ω)

= b
|un|p–2u+

n

‖un‖p–1
W 1,p(Ω)

– a
|un|p–2u–

n

‖un‖p–1
W 1,p(Ω)

+
sφp–1

1

‖un‖p–1
W 1,p(Ω)

in Ω , (4.2)

i.e.,

wn = (–Lp)–1
(

b|wn|p–2w+
n – a|wn|p–2w–

n +
sφp–1

1

‖un‖p–1
W 1,p(Ω)

)
in Ω .

Since, by Lemma 2.1, the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact, and (–Lp)–1 is com-
pact operator, (wn)n → w strongly in W 1,p(Ω). Taking the limit of (4.2) as n → ∞, we have

–
(∣∣w′∣∣p–2w′)′ = b|w|p–2w+ – a|w|p–2w–. (4.3)
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By Theorem 1.1(i), (4.3) has only the trivial solution, which is absurd, because
‖w‖W 1,p(Ω) = 1. Thus the lemma is proved. �

We shall consider the Leray–Schauder degree on a large ball.

Lemma 4.2 Assume that 1 < p < ∞, –∞ < a < λ1, λ2 < b < λ3. Then there exist a constant
R > 0 depending on a, b, s, s1 < 0 and s2 > 0 such that for any s with s1 ≤ s ≤ s2, the Leray–
Schauder degree

dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR(0), 0

)
= 0,

where –Lpu = –(|u′|p–2u′)′.

Proof Let us consider the homotopy

F(x, u) = u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1
1

)
.

By Theorem 1.3(ii), for any s > 0, (1.1) has no solution. Thus there exist s2 > 0 and a large
R > 0 such that (4.3) has no zero in BR(0) for any s ≥ s2, and by the a priori bound in
Lemma 4.1, there exists s1 < 0 such that for any s with s1 ≤ s ≤ s2, all solutions of

u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1
1

)
= 0

satisfy ‖u‖W 1,p(Ω) ≤ R and (4.3) has no zero on ∂BR for any s with s1 ≤ s ≤ s2. Since

dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + s2φ

p–1
1

)
, BR(0), 0

)
= 0,

by homotopy arguments, for any any s with s1 ≤ s ≤ s2, we have

dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR(0), 0

)

= dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1 + λ(s2 – s)φp–1
1

)
, BR(0), 0

)

= dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + s2φ

p–1
1

)
, BR(0), 0

)
= 0,

for any 0 ≤ λ ≤ 1. Thus the lemma is proved. �

Lemma 4.3 Let K be a compact set in Lp(Ω). Let ξ > 0 a.e. Then there exists a modulus of
continuity α : R → R depending only on K and ξ such that

∥∥
∥∥|

(
|τ | –

ξ

η

)+∥∥
∥∥

Lp(Ω)
≤ α(η) for all τ ∈ K .

It follows that

∥
∥|(ητ + ξ )–∥

∥
Lp(Ω) ≤ ηα(η)

and

∥∥|(ητ – ξ )+∥∥
Lp(Ω) ≤ ηα(η) for all τ ∈ K .
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Proof For any τ ∈ K , let τn = (|τ | – ξ

η
)+. Since 0 ≤ τn ≤ |τ | and τn(x) → 0 as η → 0 a.e., it

follows that ‖τn‖Lp(Ω) → 0 for all τ ∈ K . We claim that, for a given ε > 0, there exists δ > 0
such that if τ ∈ K , then ‖τn‖Lp(Ω) ≤ 2ε for all η ∈ [0, δ]. Choose {τi, i = 1, . . . , N} as an ε net
for K . Choose δ so that ‖(τi)δ‖Lp(Ω) < ε for i = 1, . . . , N . Then for any τ ∈ K , there exists τk ,
α, ‖α‖LP(Ω) < ε that τ = τK + α. Since (u + v)+ ≤ u+ + v+, we have ‖τδ‖LP(Ω) ≤ (τK )δ + |α| and
therefore ‖τη‖LP(Ω) ≤ ‖τδ‖LP(Ω) + ‖α‖Lp(Ω) ≤ 2ε. �

Lemma 4.4 Assume that 1 < p < ∞, –∞ < a < λ1,λ2 < b < λ3. Then there exist a constant
R > 0 depending on a, b, s and s1 < 0 such that for s1 ≤ s < 0, the Leray–Schauder degree

dLS
(
u – (–L)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR0 (u0), 0

)
= 1,

where u0 = ( s
λ1–b )

1
p–1 φ1 > 0 is a positive solution of (1.1).

Proof Let us set M = (–Lp – bgp)–1. Then (1.1) can be rewritten as

(–Lp – bgp)(u) = b|u|p–2u+ – a|u|p–2u– – b|u|p–2u + sφp–1
1 ,

or equivalently,

u = M
(

b|u|p–2u+ – a|u|p–2u– – b|u|p–2u + s
φ1

λ1 – b

)
= Tu, (4.4)

where M = (–Lp – bgp)–1. The operator M is compact on Lp(Ω), and the set K = M(B̄),
where B̄ is the closed unit ball in Lp(Ω). Then K is a compact set. Let us set γ = min{b –
λ2,λ3 –b}. We can observe that ‖M(u)‖Lp(Ω) ≤ 1

γ
‖g–1

p (u)‖Lp(Ω). Let α be the modulus conti-

nuity given in Lemma 4.3 corresponding to K and ξ = M(sφp–1
1 ) = ( sφ1

λ1–b )
1

p–1 φ1, and choose
ε > 0 so that

α
((

ε(b – a)
) 1

p–1 + γ
)
) ≤ γ

4(b – a)
1

p–1 ((b – a)
1

p–1 + γ )
. (4.5)

We have

∥∥b|u|p–2u+ – a|u|p–2u– – b|u|p–2u
∥∥

Lp(Ω) ≤ (b – a)
∥∥|u|p–2u–∥∥

Lp(Ω). (4.6)

For u ∈ ( s
λ1–b )

1
p–1 φ1 + (|s|εv)

1
p–1 with v ∈ B̄,

∥
∥u–∥

∥
Lp(Ω) =

∥∥
∥∥

((
s

λ1 – b

) 1
p–1

φ1 +
(|s|εv

) 1
p–1

)–∥∥
∥∥

Lp(Ω)
≤ ∥

∥((|s|εv
) 1

p–1
)–∥

∥
Lp(Ω) ≤ |s|ε

since ( s
λ1–b )

1
p–1 φ1 > 0. Then T(u) = M(b|u|p–2u+ – a|u|p–2u– – b|u|p–2u + s φ1

λ1–b ) can be
rewritten as

T(u) =
(

s
λ1 – b

) 1
p–1

φ1 +
(|s|ε) 1

p–1
(
(b – a)

1
p–1 + γ

)
v, v ∈ K .
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If u is a solution of (4.4), then u = Tu and, by Lemma 4.3,

∥
∥u–∥

∥
Lp(Ω) =

∥∥
∥∥

(
s

λ1 – b

) 1
p–1

φ1 +
(|s|ε) 1

p–1
(
(b – a)

1
p–1 + γ

)
v)–

∥∥
∥∥

Lp(Ω)

≤ (|s|ε) 1
p–1

(
(b – a)

1
p–1 + γ

)
α
(
ε

1
p–1

(
(b – a)

1
p–1 + γ

))

<
γ (|s|ε)

1
p–1

4(b – a)
1

p–1
.

It follows that

∥
∥M

(
b|u|p–2u+ – a|u|p–2u– – b|u|p–2u

)∥∥
Lp(Ω) ≤ (b – a)

1
p–1

∥
∥u–∥

∥
Lp(Ω)

≤ 1
4
(|s|ε) 1

p–1 ≤ 1
4
|s|ε.

Thus we have shown that any solution u ∈ ( s
λ1–b )

1
p–1 φ1 + |s|εB̄ of (4.4) belongs to

( s
λ1–b )

1
p–1 φ1 + 1

4 |s|εB̄. This estimate holds if we replace b|u|p–2u+ – a|u|p–2u– – b|u|p–2u
by λ(b|u|p–2u+ – a|u|p–2u– – b|u|p–2u) with 0 ≤ λ ≤ 1. Thus the equation

u = (–Lp)–1(sφp–1
1 + b|u|p–2u + λ

(
b|u|p–2u+ – a|u|p–2u– – b|u|p–2u

))

has no solution on the boundary of the ball Bε|s|(( s
λ1–b )

1
p–1 φ1) for 0 ≤ λ ≤ 1. By the homo-

topy invariance degree,

dLS(u – (–Lp)–1
(

sφp–1
1 + b|u|p–2u + λ

(
b|u|p–2u+ – a|u|p–2u– – b|u|p–2u

)
,

Bε|s|
((

s
λ1 – b

) 1
p–1

φ1

)
, 0

)

is defined for 0 ≤ λ ≤ 1 and is independent of λ. For λ = 0,

dLS(u – (–L)–1
(

sφp–1
1 + b|u|p–2u, Bε|s|

((
s

λ1 – b

) 1
p–1

φ1

)
, 0

)
= (–1) × (–1) = +1,

since u = ( s
λ1–b )

1
p–1 φ1 is the unique solution of the equation, and, since there are 2 eigen-

values λ1, λ2 of –Lp to the left of b, the operator I – b(–Lp)–1 has two negative eigenvalues,
while all the rest are positive. When λ = 1, we have

dLS((u – (–Lp)–1
(

sφp–1
1 + b|u|p–2u+ + 1

(
b|u|p–2u+ – a|u|p–2u– – b|u|p–2u

)
,

Bε|s|
((

s
λ1 – b

) 1
p–1

φ1

)
, 0

)

= dLS

(
sφp–1

1 + b|u|p–2u+ – a|u|p–2u–, Bε|s|
((

s
λ1 – b

) 1
p–1

φ1

)
, 0

)
.
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Thus by the homotopy invariance of degree, we have

dLS

(
sφp–1

1 + b|u|p–2u+ – a|u|p–2u–, Bε|s|
((

s
λ1 – b

) 1
p–1

φ1

)
, 0

)

= dLS

(
u – (–L)–1

(
sφp–1

1 + b|u|p–2u, Bε|s|
(

s
λ1 – b

) 1
p–1

φ1

)
, 0

)
= 1.

Thus the lemma is proved. �

Lemma 4.5 Assume that 1 < p < ∞, –∞ < a < λ1, λ2 < b < λ3 and s1 < 0. Then there exist
a constant ε > 0 depending on a, b, s such that for s1 ≤ s < 0, the Leray–Schauder degree

dLS
(
u – (–L)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, B|s|ε(u1), 0

)
= 1,

where u1 = –( s
a–λ1

)
1

p–1 φ1 < 0 is a negative solution of (1.1).

Proof We can prove this lemma by an almost identical argument as that of Lemma 4.4.
�

Proof of Theorem 1.3 The proofs of Theorem 1.3(i)–(ii) are the same as those of Theo-
rem 1.2(i)–(ii).

(iii) By Lemmas 4.4 and 4.5, there is a solution ( s
λ1–b )

1
p–1 φ1 > 0 in B|s|ε(( s

λ1–b )
1

p–1 φ1)

and a solution –( s
a–λ1

)
1

p–1 φ1 < 0 in B|s|ε(–( s
a–λ1

)
1

p–1 φ1). We may assume that ε < ( 1
b–λ1

)
1

p–1

and ε < ( 1
λ1–a )

1
p–1 . Then these two balls are disjoint. This gives two solutions for any

n. There is a large ball BR centered at the origin and containing B|s|ε(( s
λ1–b )

1
p–1 φ1) and

B|s|ε(–( s
a–λ1

)
1

p–1 φ1). Since

dLS
(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR(0), 0

)
= 0,

dLS

(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR

((
s

λ1 – b

) 1
p–1

φ1

)
, 0

)

= dLS

(
u – (–Lp)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1

1
)
, BR

(
–
(

s
a – λ1

) 1
p–1

φ1

)
, 0

)
= 1,

we have

dLS(u – (–L)–1(b|u|p–2u+ – a|u|p–2u– + sφp–1
1

)
,

BR(0)
∖ (

B|s|ε
((

s
λ1 – b

) 1
p–1

φ1

)
∪ B|s|ε

(
–
(

s
λ1 – a

) 1
p–1

φ1

)
, 0

)

= –2.

Thus there exists a third solution in BR(0)\(B|s|ε(( s
λ1–b )

1
p–1 φ1) ∪ B|s|ε(–( s

a–λ1
)

1
p–1 φ1). Thus

we have proved Theorem 1.3(iii). �
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