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Abstract
In this paper, we study the obstacle problem governed by nonlinear noncoercive
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1 Introduction
Let Ω ⊂ R

N (N ≥ 2) be a bounded domain, p > 1, θ ≥ 0, f ∈ L1(Ω), and g,ψ ∈ W 1,p(Ω) ∩
L∞(Ω). We consider the obstacle problem governed by the noncoercive operator

Au = div
a(x,∇u)

(1 + b(x)|u|)θ (p–1) (1)

associated with (f ,ψ , g), where a : Ω ×R
N →R

N is a Carathéodory function satisfying:

a(x, ξ ) · ξ ≥ α|ξ |p, (2)
∣
∣a(x, ξ )

∣
∣ ≤ β

(

j(x) + |ξ |p–1), (3)
(

a(x, ζ ) – a(x,η)
)

(ζ – η) > 0, (4)

∣
∣a(x, ξ ) – a(x,η)

∣
∣ ≤ γ

⎧

⎨

⎩

|ξ – η|p–1 if 1 < p < 2,

(1 + |ξ | + |η|)p–2|ξ – η| if p ≥ 2,
(5)

for almost every x ∈ Ω and every ξ , ζ ,η ∈ R
N with ζ 
= η, where α, β , γ are positive con-

stants, j is a nonnegative function in L
p

p–1 (Ω), and b is an L∞-function satisfying, with
some B ≥ 0,

0 ≤ b(x) ≤ B (6)

for almost every x ∈ Ω .
If f ∈ W –1,p′ (Ω), then the obstacle problem associated with (f ,ψ , g) is formulated in

terms of the inequality
∫

Ω

a(x,∇u)
(1 + b(x)|u|)θ (p–1) · ∇(v – u) dx +

∫

Ω

f (v – u) dx ≥ 0 ∀v ∈ Kg,ψ ∩ L∞(Ω) (7)
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whenever Kg,ψ = {v ∈ W 1,p(Ω); v – g ∈ W 1,p
0 (Ω), v ≥ ψ a.e. in Ω} 
= ∅. However, the second

integration in (7) is not well defined for f ∈ L1(Ω). Following [1, 3, 5], and so on, we are
led to a more general definition of a solution to the obstacle problem with data f ∈ L1(Ω),
using the truncation function

Ts(r) = max
{

–s, min{s, r}}, s, r ∈R.

Definition 1 An entropy solution to the obstacle problem associated with (f ,ψ , g) is a
measurable function u such that u ≥ ψ a.e. in Ω , Ts(u) – Ts(g) ∈ W 1,p

0 (Ω) for every s > 0,
and

∫

Ω

a(x,∇u)
(1 + b(x)|u|)θ (p–1) · ∇Ts(v – u) dx +

∫

Ω

fTs(v – u) dx ≥ 0 ∀v ∈ Kg,ψ ∩ L∞(Ω). (8)

Observe that in the definition a global integrability condition is required neither on u
nor on its gradient. As pointed out in [8], if Ts(u) ∈ W 1,p(Ω) for all s > 0, then there exists
a unique measurable vector field U : Ω → R

N such that ∇(Ts(u)) = χ{|u|<s}U a.e. in Ω ,
s > 0, which, in fact, coincides with the standard distributional gradient of ∇u whenever
u ∈ W 1,1(Ω).

The motivation of this paper comes from the study on the Dirichlet boundary value
problem

⎧

⎨

⎩

div |∇u|p–2∇u
(1+|u|)θ (p–1) = f in Ω ,

u = 0 on ∂Ω .
(9)

Indeed, for the p-Laplacian equation, that is, θ = 0 in (9), the existence and regularity
of solutions when f has a fine regularity have been well studied. However, under weaker
summability assumptions on f , for example, f ∈ L1(Ω), the gradient of u (and even u itself )
may not be in L1(Ω). In this case, it is possible to give a meaning to solutions of problem (9)
by using the concept of entropy solutions. The works on the theory of entropy solutions
for p-Laplacian equations have been applied to unilateral problems in [5, 7, 17], and so
on and have been extended in [8, 20] to the obstacle problems with L1-data in Sobolev
spaces with variable exponents and Orlicz–Sobolev spaces, respectively. We remark that
the classical obstacle problem for elliptic operators with nonlinear variational energies was
considered in [12] and linear elliptic systems involving Radon measures were considered
in [19]. Parabolic problems with irregular obstacles and nonstandard p(x, t)-growth were
considered in [10] and references therein.

If 0 < θ ≤ 1, then due to the lack of coercivity, the standard Leray–Lions surjectivity
theorem cannot be used for the establishment of existence of solutions even in the case
f ∈ W –1,p′ (Ω). To overcome this difficulty, “cutting” the nonlinearity and using the tech-
nique of approximation, a pseudomonotone coercive differential operator on W 1,p

0 (Ω) can
be applied to establish a priori estimates on approximating solutions. Then by the almost
everywhere convergence for the gradients of the approximating solutions, the existence
and regularity of solutions (or entropy solutions) to problems of the form (9) can be ob-
tained by taking limitation (see, e.g., [1]). For different summability of the data f , Alvino,
Boccardo, Ferone, Orsina, Trombetti, et al. have done a lot of work on the existence and
regularity of solutions (or entropy solutions) to problems of the form (9) (see [1, 2, 6, 13, 18]
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and references therein). Particularly, a whole range of existence results have been proven
in [6] for p = 2 and f regular enough, showing that solutions are in some Sobolev space
W 1,q

0 (Ω) (1 < q ≤ 2) (see also [13, 14, 18]). Nevertheless, little literature has considered the
obstacle problem for noncoercive elliptic equations, particularly, for noncoercive elliptic
equations with L1-data.

Motivated by this, we study the obstacle problem governed by (1) and (f ,ψ , g) with L1-
data. The main ideas in this paper originate from [1, 8], which can be also applied to the
study on a large class of elliptic/parabolic equations [9, 15, 21], potential theory [22], and
Schrödinger equations [11, 16]. Throughout this paper, without special statements, we
always assume that

2 –
1
N

< p < N , 0 ≤ θ (p – 1) <
N(p – 1)

N – 1
– 1, (10)

f ∈ L1(Ω), ψ , g ∈ W 1,p(Ω) ∩ L∞(Ω) satisfy (ψ – g)+ ∈ W 1,p
0 (Ω), and Kg,ψ 
= ∅.

Note that (10) implies that

0 ≤ θ <
N

N – 1
–

1
p – 1

, and
N(p – 1)(1 – θ )
N – 1 – θ (p – 1)

> 1.

The main result in this paper is the following:

Theorem 1 There exists at least one entropy solution u to the obstacle problem associated
with (f ,ψ , g). In addition, u depends continuously on f , that is, if fn → f in L1(Ω) and un

is a solution to the obstacle problem associated with (fn,ψ , g), then

un → u in W 1,q(Ω) for all q ∈
(

1,
N(p – 1)(1 – θ )
N – 1 – θ (p – 1)

)

.

Notations
‖u‖p = ‖u‖Lp(Ω) is the norm of Lp(Ω), where 1 ≤ p ≤ ∞.
‖u‖1,p = ‖u‖W 1,p(Ω) is the norm of W 1,p(Ω), where 1 < p < ∞.
p′ = p

p–1 with 1 < p < ∞.
u+ = max{u, 0}, u– = (–u)+ for a real-valued function u.
C is a constant, which may be different from line to line.
{u > s} = {x ∈ Ω ; u(x) > s}.
{u ≤ s} = Ω \ {u > s}.
{u < s} = {x ∈ Ω ; u(x) < s}.
{u ≥ s} = Ω \ {u < s}.
{u = s} = {x ∈ Ω ; u(x) = s}.
{t ≤ u < s} = {u ≥ t} ∩ {u < s}.
LN is the Lebesgue measure in R

N .
|E| = LN (E) for a measurable set E.

2 Preliminaries on entropy solutions
It is worth noting that, for any function fn smooth enough, there exists at least one solution
to the obstacle problem (7). Indeed, we can proceed exactly as in Theorem 1.1 of [1] to
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obtain W 1,p-solutions due to assumptions (2)–(6), which, particularly, are also entropy so-
lutions. In this section, we establish several auxiliary results on convergence of sequences
of entropy solutions as fn → f in L1(Ω). The main techniques used in this section come
from [1, 8]. We start with a priori estimate.

Lemma 2 Let v0 ∈ Kg,ψ ∩ L∞(Ω), and let u be an entropy solution to the obstacle problem
associated with (f ,ψ , g). Then, we have

∫

{|u|<t}
|∇u|p

(1 + b(x)|u|)θ (p–1) dx ≤ C
(‖j‖p′

p′ + ‖∇v0‖p
p + ‖f ‖1

(

t + ‖v0‖∞
)) ∀t > 0,

where C is a positive constant depending only on α, β , and p.

Proof For t > 0, taking v0 as a test function in (8), we compute

∫

{|v0–u|<t}
a(x,∇u) · ∇u

(1 + b(x)|u|)θ (p–1) dx ≤
∫

{|v0–u|<t}
a(x,∇u) · ∇v0

(1 + b(x)|u|)θ (p–1) dx

+
∫

Ω

f
(

Tt(v0 – u)
)

dx.

It follows from (2), (3), and Young’s inequality with ε > 0 that

∫

{|v0–u|<t}
α|∇u|p

(1 + b(x)|u|)θ (p–1) dx ≤
∫

{|v0–u|<t}
β(|j| + |∇u|p–1) · |∇v0|

(1 + b(x)|u|)θ (p–1) dx + t‖f ‖1

≤
∫

{|v0–u|<t}
βε(|j|p′ + |∇u|p)
(1 + b(x)|u|)θ (p–1) dx

+
∫

{|v0–u|<t}
βC(ε)|∇v0|p

(1 + b(x)|u|)θ (p–1) dx + t‖f ‖1

≤ ε

∫

{|v0–u|<t}
|∇u|p

(1 + b(x)|u|)θ (p–1) dx

+ C
(‖j‖p′

p′ + ‖∇v0‖p
p
)

+ t‖f ‖1.

Thus we have
∫

{|v0–u|<t}
|∇u|p

(1 + b(x)|u|)θ (p–1) dx ≤ C
(‖j‖p′

p′ + ‖∇v0‖p
p + t‖f ‖1

)

. (11)

Replacing t with t + ‖v0‖∞ in (11) and noting that {|u| < t} ⊂ {|v0 – u| < t + ‖v0‖∞}, we
obtain the desired result. �

In the rest of this section, let {un} be a sequence of entropy solutions to the obstacle
problem associated with (fn,ψ , g) and assume that

fn → f in L1(Ω) and ‖fn‖1 ≤ ‖f ‖1 + 1.

Lemma 3 For k > 0 large enough, there exists a measurable function u such that un → u in
measure and Tk(un) ⇀ Tk(u) weakly in W 1,p(Ω). Thus Tk(un) → Tk(u) strongly in Lp(Ω),
and up to a subsequence, Tk(un) → Tk(u) a.e. in Ω .
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Proof Let s, t, ε > 0. We can verify that, for all m, n ≥ 1,

LN({|un – um| > s
}) ≤LN({|un| > t

})

+ LN({|um| > t
})

+ LN({∣
∣Tt(un) – Tt(um)

∣
∣ > s

})

(12)

and

LN({|un| > t
})

=
1
tp

∫

{|un|>t}
tp dx ≤ 1

tp

∫

Ω

∣
∣Tt(un)

∣
∣
p dx. (13)

Since v0 = g + (ψ – g)+ ∈ Kg,ψ ∩ L∞(Ω), by Lemma 2 we have

∫

Ω

∣
∣∇Tt(un)

∣
∣
p dx =

∫

{|un|<t}
|∇un|p dx

≤ C(1 + Bt)θ (p–1)(‖j‖p′
p′ + ‖∇v0‖p

p + ‖f ‖1
(

t + ‖v0‖∞
))

. (14)

Note that Tt(un) – Tt(g) ∈ W 1,p
0 (Ω). By (13), (14), and Poincaré’s inequality, for every t >

‖g‖∞ and for some positive constant C independent of n and t, we have

LN({|un| > t
}) ≤ 1

tp

∫

Ω

∣
∣Tt(un)

∣
∣
p dx

≤ 2p–1

tp

∫

Ω

∣
∣Tt(un) – Tt(g)

∣
∣
p dx +

2p–1

tp ‖g‖p
p

≤ C
tp

∫

Ω

∣
∣∇Tt(un) – ∇Tt(g)

∣
∣
p dx +

2p–1

tp ‖g‖p
p

≤ C
tp

∫

Ω

∣
∣∇Tt(un)

∣
∣
p dx +

C
tp ‖g‖p

1,p

≤ C(1 + t)1+θ (p–1)

tp .

Since 0 ≤ θ < 1, there exists tε > 0 such that

LN({|un| > t
})

<
ε

3
∀t ≥ tε ,∀n ≥ 1. (15)

Now, as in (13), we have

LN({∣
∣Ttε (un) – Ttε (um)

∣
∣ > s

})

=
1
sp

∫

{|Ttε (un)–Ttε (um)|>s}
sp dx

≤ 1
sp

∫

Ω

∣
∣Ttε (un) – Ttε (um)

∣
∣
p dx. (16)

Using (14) and the fact that Tt(un)–Tt(g) ∈ W 1,p
0 (Ω)∩L∞(Ω) again, we see that {Ttε (un)} is

a bounded sequence in W 1,p(Ω). Thus, up to a subsequence, {Ttε (un)} converges strongly
in Lp(Ω). By (16) there exists n0 = n0(tε , s) ≥ 1 such that

LN({∣
∣Ttε (un) – Ttε (um)

∣
∣ > s

})

<
ε

3
∀n, m ≥ n0. (17)
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Combining (12), (15), and (17), we obtain

LN({|un – um| > s
})

< ε, ∀n, m ≥ n0.

Hence {un} is a Cauchy sequence in measure, and therefore there exists a measurable
function u such that un → u in measure. Note that Tk(un) – Tk(g) ∈ W 1,p

0 (Ω). By (14)
and Poincaré’s inequality we conclude that, for fixed k, {Tk(un)} is a bounded sequence
in W 1,p(Ω). Therefore, Tk(un) → Tk(u) strongly in Lp(Ω), and, up to a subsequence,
Tk(un) → Tk(u) a.e. in Ω . �

Proposition 4 There exist a subsequence of {un} and a measurable function u such that,
for each q ∈ (1, N(p–1)(1–θ )

N–1–θ (p–1) ), we have

un → u strongly in W 1,q(Ω).

Furthermore, if 0 ≤ θ < min{ 1
N–p+1 , N

N–1 – 1
p–1 }, then

a(x,∇un)
(1 + b(x)|un|)θ (p–1) → a(x,∇u)

(1 + b(x)|u|)θ (p–1) strongly in
(

L1(Ω)
)N .

To prove Proposition 4, we need two preliminary lemmas.

Lemma 5 There exists a subsequence of {un} and a measurable function u such that for
each q ∈ (1, N(p–1)(1–θ )

N–1–θ (p–1) ), we have that un ⇀ u weakly in W 1,q(Ω) and un → u strongly in
Lq(Ω).

Proof Let k > 0 and n ≥ 1. Define Dk = {|un| ≤ k} and Bk = {k ≤ |un| < k + 1}. Using
Lemma 2 with v0 = g + (ψ – g)+, we get

∫

Dk

|∇un|p
(1 + b(x)|un|)θ (p–1) dx ≤ C(1 + k), (18)

where C is a positive constant depending only on α, β , p, ‖j‖p′ , ‖f ‖1, ‖∇v0‖p, and ‖v0‖∞.
Taking the function Tk(un) with k > {‖g‖∞,‖ψ‖∞} as a test function for the problem

associated with (fn,ψ , g), we obtain

∫

Ω

a(x,∇un) · ∇T1(un – Tk(un))
(1 + b(x)|un|)θ (p–1) dx ≤

∫

Ω

–fnT1
(

un – Tk(un)
)

dx,

which, together with (2), gives

∫

Bk

α|∇un|p
(1 + b(x)|un|)θ (p–1) dx ≤ ‖fn‖1 ≤ ‖f ‖1 + 1. (19)

Let q ∈ (1, N(p–1)(1–θ )
N–1–θ (p–1) ) and r = qθ (p–1)

p . Noting that N(p–1)(1–θ )
N–1–θ (p–1) < p, it follows q < p. Let

Θ = θ (p – 1). Since B–1
A–1 ≤ B

A for all A ≥ B > 1, we have p–Θ–1
N–Θ–1 ≤ p–Θ

N–Θ
, which implies

q < N(p–1)(1–θ )
N–1–θ (p–1) = N(p–1)–NΘ

N–1–Θ
< N(p–Θ)

N–Θ
. So we get Θ

p–q < N
N–q . It follows that pr

p–q = qθ (p–1)
p–q =
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qΘ

p–q < Nq
N–q := q∗. For all k > 0, we estimate

∫

Bk
|∇un|q dx:

∫

Bk

|∇un|q dx =
∫

Bk

|∇un|q
(1 + b(x)|un|)r · (1 + b(x)|un|

)r dx

≤
(∫

Bk

|∇un|p
(1 + b(x)|un|)θ (p–1) dx

) q
p
(∫

Bk

(

1 + b(x)|un|
) pr

p–q dx
) p–q

p

≤ C|Bk|
p–q

p + C
(∫

Bk

|un|
pr

p–q dx
) p–q

p
by (19) and (6)

≤ C|Bk|
p–q

p + C
(∫

Bk

|un|q∗
dx

) r
q∗

· |Bk|
p–q

p – r
q∗ .

Since |Bk| ≤ 1
kq∗

∫

Bk
|un|q∗ dx, for k ≥ k0 ≥ 1, we have

∫

Bk

|∇un|q dx ≤ C
(

1
kq∗

∫

Bk

|un|q∗
dx

) p–q
p

+ C
1

kq∗( p–q
p – r

q∗ )

(∫

Bk

|un|q∗
dx

) p–q
p

≤ 2C

kq∗( p–q
p – r

q∗ )

(∫

Bk

|un|q∗
dx

) p–q
p

.

Summing up from k = k0 to k = K and using Hölder’s inequality, we have

K
∑

k=k0

∫

Bk

|∇un|q dx ≤ C

( K
∑

k=k0

1

kq∗( p–q
p – r

q∗ ) p
q

) q
p

·
( K

∑

k=k0

∫

Bk

|un|q∗
dx

) p–q
p

. (20)

Note that

∫

{|un|≤K}
|∇un|q dx =

∫

Dk0

|∇un|q dx +
K

∑

k=k0

∫

Bk

|∇un|q dx. (21)

To estimate the first integral in the right-hand side of (21), using Hölder’s inequality, (18),
and (6), we obtain

∫

Dk0

|∇un|q dx ≤
(∫

Dk0

|∇un|p
(1 + b(x)|un|)θ (p–1) dx

) q
p
(∫

Dk0

(

1 + b(x)|un|
) pr

p–q dx
) p–q

p

≤ C, (22)

where C depends only on α, β , B, p, θ , ‖j‖p′ , ‖f ‖1, ‖∇v0‖p, ‖v0‖∞, and k0.
Note that

∑K
k=k0

1

k
q∗( p–q

p – r
q∗ ) p

q
converges since q∗( p–q

p – r
q∗ ) p

q > 1. Combining (20)–(22),

we get, for k0 large enough,

∫

{|un|≤K}
|∇un|q dx ≤ C + C

(∫

{|un|≤K}
|un|q∗

dx
) p–q

p
. (23)

Since p > q, TK (un) ∈ W 1,q(Ω) and TK (g) = g ∈ W 1,q(Ω) for K > ‖g‖∞. Hence TK (un) – g ∈
W 1,q

0 (Ω). Using the Sobolev embedding W 1,q
0 (Ω) ⊂ Lq∗ (Ω) and Poincaré’s inequality, we
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obtain

∥
∥TK (un)

∥
∥

q
q∗ ≤ 2q–1(∥∥TK (un) – g

∥
∥

q
q∗ + ‖g‖q

q∗
)

≤ C
(∥
∥∇(

TK (un) – g
)∥
∥

q
q + ‖g‖q

q∗
)

≤ C
(∥
∥∇TK (un)

∥
∥

q
q + ‖∇g‖q

q + ‖g‖q
q∗

)

≤ C
(

1 +
∫

{|un|≤K}
|∇un|q dx

)

. (24)

Using the fact that

∫

{|un|≤K}
|un|q∗

dx ≤
∫

{|un|≤K}

∣
∣TK (un)

∣
∣
q∗

dx ≤ ∥
∥TK (un)

∥
∥

q∗
q∗ , (25)

from (23)–(24) we obtain

∫

{|un|≤K}
|∇un|q dx ≤ C + C

(

1 +
∫

{|un|≤K}
|∇un|q dx

) q∗
q

p–q
p

. (26)

Note that p < N ⇔ q∗
q

p–q
p < 1. It follows from (26) that, for k0 large enough,

∫

{|un|≤K} |∇un|q dx is bounded independently of n and K . Using (24) and (25), we de-
duce that

∫

{|un|≤K} |un|q∗ dx is also bounded independently of n and K . Letting K → ∞,
we deduce that ‖∇un‖q and ‖un‖q∗ are uniformly bounded independently of n. Partic-
ularly, un is bounded in W 1,q(Ω). Therefore, there exist a subsequence of {un} and a
function v ∈ W 1,q(Ω) such that un ⇀ v weakly in W 1,q(Ω) and un → v strongly in Lq(Ω)
and a.e. in Ω . By Lemma 3, un → u in measure in Ω , and we conclude that u = v and
u ∈ W 1,q(Ω). �

Lemma 6 There exist a subsequence of {un} and a measurable function u such that ∇un

converges to ∇u almost everywhere in Ω .

Proof The proof is similar to that of [1, Thm. 4.1] and can be also found in [4]. Here we
sketch only the main steps due to slight modifications. For r2 > 1, let λ = q

pr2
< 1, where

q is the same as in Lemma 5. Define A(x, u, ξ ) = a(x,ξ )
(1+b(x)|u|)θ (p–1) (for simplicity, we omit the

dependence of A(x, u, ξ ) on x) and

I(n) =
∫

Ω

((

A(un,∇un) – A(un,∇u)
) · ∇(un – u)

)λ dx.

We fix k > 0 and split the integral in I(n) on the sets {|u| > k} and {|u| ≤ k}, obtaining

I1(n, k) =
∫

{|u|>k}

((

A(un,∇un) – A(un,∇u)
) · ∇(un – u)

)λ dx

and

I2(n, k) =
∫

{|u|≤k}

((

A(un,∇un) – A(un,∇u)
) · ∇(un – u)

)λ dx.
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For I2(n, k), we have

I2(n, k) ≤ I3(n, k) =
∫

Ω

((

An(un,∇un) – An
(

un,∇Tk(u)
)) · ∇(

un – Tk(u)
))λdx.

Fix h > 0 and split I3(n, k) on the sets {|un – Tk(u)| > h} and {|un – Tk(u)| ≤ h}, obtaining

I4(n, k, h) =
∫

{|un–Tk (u)|>h}

((

An(un,∇un) – An
(

un,∇Tk(u)
)) · ∇(

un – Tk(u)
))λ dx

and

I5(n, k, h) =
∫

{|un–Tk (u)|≤h}

((

An(un,∇un) – An
(

un,∇Tk(u)
)) · ∇(

un – Tk(u)
))λ dx

=
∫

Ω

((

An(un,∇un) – An
(

un,∇Tk(u)
)) · ∇Th

(

un – Tk(u)
))λ dx

≤ |Ω|1–λ

(∫

Ω

(

An(un,∇un) – An
(

un,∇Tk(u)
)) · ∇Th

(

un – Tk(u)
)

dx
)λ

= |Ω|1–λ
(

I6(n, k, h)
)λ.

For I6(n, k, h), we can split it as the difference I7(n, k, h) – I8(n, k, h), where

I7(n, k, h) =
∫

Ω

A(un,∇un) · ∇Th
(

un – Tk(u)
)

dx

and

I8(n, k, h) =
∫

Ω

A
(

un,∇Tk(u)
) · ∇Th

(

un – Tk(u)
)

dx.

Note that |∇un| is bounded in Lq(Ω) and λpr2 = q. Due to Lemmas 3 and 5, in the same
way as Theorem 4.1 in [1], we can get that

lim
k→∞

lim sup
n→∞

I1(n, k) = 0, lim
h→∞

lim sup
k→∞

lim sup
n→∞

I4(n, k, h) = 0,

lim
n→∞ I8(n, k, h) = 0.

For I7(n, k, h), let k > max{‖g‖∞,‖ψ‖∞} and n ≥ h + k. Take Tk(u) as a test function for (8),
obtaining

I7(n, k, h) ≤
∫

Ω

–fnTh
(

un – Tk(u)
)

dx.

Using the strong convergence of fn in L1(Ω), we have

lim
n→∞ I7(n, k, h) ≤

∫

Ω

–fTh
(

u – Tk(u)
)

dx.

Note that h > 0 and limk→∞ Th(u – Tk(u)) = 0. It follows that

lim
k→∞

lim
n→∞ I7(n, k, h) ≤ 0.
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Putting together all the limitations and noting that I(n) ≥ 0, we have

lim
n→∞ I(n) = 0.

The same arguments as in [1] give that, up to a subsequence, ∇un(x) → ∇u(x) a.e. �

Proof of Proposition 4 We shall prove that ∇un converges strongly to ∇un in Lq(Ω) for
each q ∈ (1, N(p–1)(1–θ )

N–1–θ (p–1) ). To this end, we will apply Vitalli’s theorem, using the fact that by
Lemma 5, ∇un is bounded in Lq(Ω) for each q ∈ (1, N(p–1)(1–θ )

N–1–θ (p–1) ). Let r ∈ (q, N(p–1)(1–θ )
N–1–θ (p–1) ), and

let E ⊂ Ω be a measurable set. We have, by Hölder’s inequality,

∫

E
|∇un|q dx ≤

(∫

E
|∇un|r dx

) q
r
· |E| r–q

r ≤ C|E| r–q
r → 0

uniformly in n as |E| → 0. From this and from Lemma 6 we deduce that ∇un converges
strongly to ∇u in Lq(Ω).

Now assume that 0 ≤ θ < min{ 1
N–p+1 , N

N–1 – 1
p–1 }. Note that since ∇un converges to ∇u

a.e. in Ω , to prove the convergence

a(x,∇un)
(1 + b(x)|un|)θ (p–1) → a(x,∇u)

(1 + b(x)|u|)θ (p–1) strongly in
(

L1(Ω)
)N ,

it suffices, thanks to Vitalli’s theorem, to show that, for every measurable subset E ⊂ Ω ,
∫

E | a(x,∇un)
(1+b(x)|un|)θ (p–1) |dx converges to 0 uniformly in n as |E| → 0. Note that p – 1 < N(p–1)(1–θ )

N–1–θ (p–1)

by the assumptions. For any q ∈ (p – 1, N(p–1)(1–θ )
N–1–θ (p–1) ), we deduce by Hölder’s inequality that

∫

E

∣
∣
∣
∣

a(x,∇un)
(1 + b(x)|un|)θ (p–1)

∣
∣
∣
∣
dx ≤ β

∫

E

(

j + |∇un|p–1)dx

≤ β‖j‖p′ |E| 1
p + β

(∫

E
|∇un|q dx

) p–1
q

|E| q–p+1
q

→ 0 uniformly in n as |E| → 0. �

Lemma 7 There exists a subsequence of {un} such that, for all k > 0,

a(x,∇Tk(un))
(1 + b(x)|Tk(un)|)θ (p–1) → a(x,∇Tk(u))

(1 + b(x)|Tk(u)|)θ (p–1) strongly in
(

L1(Ω)
)N .

Proof Let k be a positive number. It is well known that if a sequence of measurable func-
tions {un} with uniform boundedness in Lp(Ω) (p > 1) converges in measure to u, then
un converges strongly to u in L1(Ω). First note that the sequence { a(x,∇Tk (un))

(1+b(x)|Tk (un)|)θ (p–1) } is

bounded in Lp′ (Ω). Indeed, we have by (3) and Lemma 2,

∫

Ω

∣
∣
∣
∣

a(x,∇Tk(un))
(1 + b(x)|Tk(un)|)θ (p–1)

∣
∣
∣
∣

p′

dx ≤ β‖j‖p′
p′ + β

∫

Ω

|∇Tk(un)|p
(1 + b(x)|Tk(un)|)θp dx

≤ β‖j‖p′
p′ + β

∫

Ω

|∇Tk(un)|p
(1 + b(x)|Tk(un)|)θ (p–1) dx

≤ C.
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Next, it suffices to show that there exists a subsequence of {un} such that

a(x,∇Tk(un))
(1 + b(x)|Tk(un)|)θ (p–1) → a(x,∇Tk(u))

(1 + b(x)|Tk(u)|)θ (p–1) in measure.

Note that un, u ∈ W 1,q(Ω), where q is the same as in Proposition 4. The a.e. convergence
of un to u and the fact that ∇un → ∇u in measure imply that

∇Tk(un) → ∇Tk(u) in measure.

Let s, t be positive numbers and write ∇Au = a(x,∇u)
(1+b(x)|u|)θ (p–1) . Define

En =
{∣
∣∇ATk(un) – ∇ATk(u)

∣
∣ > s

}

,

E1
n =

{∣
∣∇Tk(un)

∣
∣ > t

}

,

E2
n =

{∣
∣∇Tk(u)

∣
∣ > t

}

,

E3
n = En ∩ {∣

∣∇Tk(un)
∣
∣ ≤ t

} ∩ {∣
∣∇Tk(u)

∣
∣ ≤ t

}

.

Note that En ⊂ E1
n ∪ E2

n ∪ E3
n for each n ≥ 1. Since by Lemma 5 the sequence {un} and the

function u are uniformly bounded in W 1,q(Ω), we obtain

LN(

E1
n
) ≤ 1

tq

∫

Ω

∣
∣∇Tk(un)

∣
∣
q dx ≤ 1

tq

∫

Ω

|∇un|q dx ≤ C
tq ,

LN(

E2
n
) ≤ 1

tq

∫

Ω

∣
∣∇Tk(u)

∣
∣
q dx ≤ 1

tq

∫

Ω

|∇u|q dx ≤ C
tq .

We deduce that, for any ε > 0, there exists tε > 0 such that

LN(

E1
n
)

+ LN(

E2
n
)

<
ε

3
∀t ≥ tε ,∀n ≥ 1. (27)

Note that, for a ≥ b ≥ 0 and τ ≥ 0, we have the inequality

∣
∣
∣
∣

1
(1 + a)τ

–
1

(1 + b)τ

∣
∣
∣
∣

=
∣
∣
∣
∣

τ (b – a)
(1 + c)1+τ

∣
∣
∣
∣
≤ τ |b – a| for some c ∈ [b, a].

From (3), (5), and (6) we deduce that, in E3
n,

s <
∣
∣∇ATk(un) – ∇ATk(u)

∣
∣

=
∣
∣
∣
∣

a(x,∇Tk(un)) – a(x,∇Tk(u))
(1 + b(x)|Tk(un)|)θ (p–1)

+
(

1
(1 + b(x)|Tk(un)|)θ (p–1) –

1
(1 + b(x)|Tk(u)|)θ (p–1)

)

a
(

x,∇Tk(u)
)
∣
∣
∣
∣

≤ θ (p – 1)B
∣
∣Tk(un) – Tk(u)

∣
∣ · β(

j +
∣
∣∇Tk(u)

∣
∣
p–1)

+ γ

⎧

⎨

⎩

|∇Tk(un) – ∇Tk(u)|p–1 if 1 < p < 2,

|∇Tk(un) – ∇Tk(u)|(1 + |∇Tk(un)| + |∇Tk(u)|)p–2 if p ≥ 2
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≤ C0j
∣
∣Tk(un) – Tk(u)

∣
∣

+ C0
(

1 + tp–1 + tp–2)(∣∣Tk(un) – Tk(u)
∣
∣ +

∣
∣∇Tk(un) – ∇Tk(u)

∣
∣
)

,

which leads to E3
n ⊂ F1 ∪ F2 with

F1 =
{

j
∣
∣Tk(un) – Tk(u)

∣
∣ >

s
2C0

}

,

F2 =
{
∣
∣Tk(un) – Tk(u)

∣
∣ +

∣
∣∇Tk(un) – ∇Tk(u)

∣
∣ >

s
2C0(1 + tp–1 + tp–2)

}

.

In F1, we have

LN (F1) =
2C0

s

∫

F1

s
2C0

dx <
2C0

s

∫

F1

j
∣
∣Tk(un) – Tk(u)

∣
∣dx.

By Lemma 3 we deduce that there exists n0 = n0(S, C0, ε) such that

LN (F1) ≤ ε

3
∀n ≥ n0. (28)

Note that F2 ⊂ F3 ∪ F4 with

F3 =
{
∣
∣Tk(un) – Tk(u)

∣
∣ >

s
4C0(1 + tp–1 + tp–2)

}

,

F4 =
{
∣
∣∇Tk(un) – ∇Tk(u)

∣
∣ >

s
4C0(1 + tp–1 + tp–2)

}

.

Using the convergence in measure of ∇Tk(un) to ∇Tk(u) and of Tk(un) to Tk(u), for t = tε ,
we obtain the existence of n1 = n1(s, ε) ≥ 1 such that

LN (F2) ≤LN (F3) + LN (F4) <
ε

3
∀n ≥ n1. (29)

Combining (27), (28), and (29), we obtain

LN({∣
∣∇ATk(un) – ∇ATk(u)

∣
∣ > s

})

< ε ∀n ≥ max{n0, n1}.

Hence the sequence {∇ATk(un)} converges in measure to ∇ATk(u), and the lemma fol-
lows. �

3 Proof of the main result
Now we have gathered all the lemmas needed to prove the existence of an entropy solu-
tion to the obstacle problem associated with (f ,ψ , g). In this section, let fn be a sequence
of smooth functions converging strongly to f in L1(Ω) with ‖fn‖1 ≤ ‖f ‖1 + 1. We consider
the sequence of approximated obstacle problems associated with (fn,ψ , g). The proof orig-
inates from [8]. We provide details for readers’ convenience.

Proof of Theorem 1 Let v ∈ Kg,ψ ∩L∞(Ω). Taking v as a test function in (8) associated with
(fn,ψ , g), we get

∫

Ω

a(x,∇un)
(1 + b(x)|un|)θ (p–1) · ∇Tt(v – un) dx ≥

∫

Ω

–fnTt(v – un) dx.
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Since {|v – un| < t} ⊂ {|un| < s} with s = t + ‖v‖∞, the previous inequality can be written as

∫

Ω

χn∇ATs(un) · ∇v dx ≥
∫

Ω

–fnTt(v – un) dx +
∫

Ω

χn∇ATs(un) · ∇Ts(un) dx, (30)

where χn = χ{|v–un|<t} and ∇Au = a(x,∇u)
(1+b(x)|u|)θ (p–1) . It is clear that χn ⇀ χ weakly* in L∞(Ω).

Moreover, χn converges a.e. to χ{|v–u|<t} in Ω \ {|v – u| = t}. It follows that

χ =

⎧

⎨

⎩

1 in {|v – u| < t},
0 in {|v – u| > t}.

Note that we have LN ({|v – u| = t}) = 0 for a.e. t ∈ (0,∞). So there exists a measurable
set O ⊂ (0,∞) such that LN ({|v – u| = t}) = 0 for all t ∈ (0,∞) \ O. Assume that t ∈ (0,
∞) \O. Then χn converges weakly* in L∞(Ω) and a.e. in Ω to χ = χ{|v–u|<t}. Since ∇Ts(un)
converges a.e. to ∇Ts(u) in Ω (Proposition 4), by Fatou’s lemma we obtain

lim inf
n→∞

∫

Ω

χn∇ATs(un) · ∇Ts(un) dx ≥
∫

Ω

χ∇ATs(u) · ∇Ts(u) dx. (31)

Using the strong convergence of ∇ATs(un) to ∇ATs(u) in L1(Ω) (Lemma 7) and the weak*
convergence of χn to χ in L∞(Ω), we obtain

lim
n→∞

∫

Ω

χn∇ATs(un) · ∇v dx =
∫

Ω

χ∇ATs(u) · ∇v dx. (32)

Moreover, since fn converges to f in L1(Ω) and Tt(v – un) converges to Tt(v – u) weakly*
in L∞(Ω), by passing to the limit in (30) and taking into account (31)–(32) we obtain

∫

Ω

χ∇ATs(u) · ∇v dx –
∫

Ω

χ∇ATs(u) · ∇Ts(u) dx ≥
∫

Ω

–fTt(v – u) dx,

which can be written as
∫

{|v–u|≤t}
χ∇ATs(u) · (∇v – ∇u) dx ≥

∫

Ω

–fTt(v – u) dx

or, since χ = χ{|v–u|<t} and ∇(Tt(v – u)) = χ{|v–u|<t}∇(v – u),

∫

Ω

∇Au · ∇Tt(v – u) dx ≥
∫

Ω

–fTt(v – u) dx, ∀t ∈ (0,∞) \O.

For t ∈O, we know that there exists a sequence {tk} in (0,∞) \O such that tk → t due to
|O| = 0. Therefore we have

∫

Ω

∇Au · ∇Ttk (v – u) dx ≥
∫

Ω

–fTtk (v – u) dx ∀k ≥ 1. (33)

Since ∇(v – u) = 0 a.e. in {|v – u| = t}, the left-hand side of (33) can be written as

∫

Ω

∇Au · ∇Ttk (v – u) dx =
∫

Ω\{|v–u|=t}
χ{|v–u|<tk}∇Au · ∇(v – u) dx.
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The sequence χ{|v–u|<tk} converges to χ{|v–u|<t} a.e. in Ω \ {|v – u| = t} and therefore con-
verges weakly* in L∞(Ω \ {|v – u| = t}). We obtain

lim
k→∞

∫

Ω

∇Au · ∇Ttk (v – u) dx =
∫

Ω\{|v–u|=t}
χ{|v–u|<t}∇Au · ∇(v – u) dx

=
∫

Ω

χ{|v–u|<t}∇Au · ∇(v – u) dx

=
∫

Ω

∇Au · ∇Tt(v – u) dx. (34)

For the right-hand side of (33), we have

∣
∣
∣
∣

∫

Ω

–fTtk (v – u) dx –
∫

Ω

–fTt(v – u) dx
∣
∣
∣
∣
≤ |tk – t|‖f ‖1 → 0 as k → ∞. (35)

It follows from (33)–(35) that we have the inequality

∫

Ω

∇Au · ∇Tt(v – u) dx ≥
∫

Ω

–fTt(v – u) dx ∀t ∈ (0,∞).

Hence, u is an entropy solution of the obstacle problem associated with (f ,ψ , g). The reg-
ularity of the entropy solution u is guaranteed by Proposition 4. �
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