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Abstract
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1 Introduction
Consider the following Hamiltonian system with an obstacle, that is,

ẍ = f (t, x), t ∈ R \ W , (1.1)

associated with the conditions

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t–) = –ẋ(t+), t ∈ W ,

x(t) ≥ a, ∀t ∈ R,

x(t) = x(t + T), ∀t ∈ R,

(1.2)

where a is a constant, W = {t ∈ R | x(t) = a}, and f : R × [a, +∞) → R is continuous and
T-periodic in t.

Definition 1.1 (see [11]) Let x : R → R be continuous map. Then x is a nonrivial T-
periodic bouncing solution of system (1.1) with collision axis at x = a if it satisfies (1.1)–
(1.2) and

(1) the set W is nonempty and discrete,
(2) there exists at least one t0 ∈ W such that ẋ(t–

0 ) �= 0.

We call systems, having solutions as in Definition 1.1, impact Hamiltonian systems.
When a = 0, the bouncing periodic solutions of (1.1) have been discussed by some schol-
ars in recent years. To the best of the authors’ knowledge, Jiang (see [7]) first proposed
a variational method to consider the bouncing periodic solutions of equation (1.1), and
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obtained the existence of bouncing solutions for impact Hamiltonian systems under a
classical superquadratic condition. Then Ding (see [3]) considered the existence of sub-
harmonic bouncing solutions for system (1.1) with sublinear conditions. In 2017, Nie (see
[9]) first proved a Generalized Nonsmooth Saddle Point Theorem, which is applied to im-
pact Hamiltonian systems, then obtained nontrivial kT-periodic bouncing solutions for
system (1.1) with another sublinear condition.

Different from the papers [3, 7] and [9], we focus on the nontrivial kT-periodic bouncing
solutions for system (1.1) with a new condition separating whether or not a is equal to 0.
The idea comes from the papers [7] and [9].

In this paper, we suppose that ẋ(t–
i ) ≤ 0, furthermore, ẋ(t–

i ) < 0 if ti is a real impact time.
To ensure that there exists at least one real impact time, paper [9] tells us that we must
give the following condition:

(B) The inequality f (t, x) ≤ 0 holds for every t ∈ [0, T] and x ≥ a; moreover,
limx→+∞ f (t, x) = –∞ or lim supx→+∞ f (t, x) < 0 holds for every t ∈ [0, T].

Now, we list our main result of periodic bouncing solution as follows:
Set Γ = {h ∈ C([0, +∞); [0, +∞)) | h satisfies (h1)–(h4)}, where
(h1) h(s) ≤ h(t) + C, for a certain constant C > 0 and s, t ∈ [0, +∞) with s ≤ t,
(h2) h(s + t) ≤ C∗(h(s) + h(t)), for a certain constant C∗ ≥ 0 and ∀s, t ∈ [0, +∞),
(h3) th(t) – 2H(t) → –∞, as t → +∞,
(h4) H(t)

t2 → 0, as t → +∞,
and H(t) :=

∫ t
0 h(s) ds. Since h(t) =

√
t can be in Γ , we get Γ �= ∅.

We suppose that function f satisfies the following conditions:
(f ) There exist T-periodic functions γ , g ∈ L1([0, T]; (0, +∞)) and function h ∈ Γ such

that

∣
∣f

(
t, |x| + a

)∣
∣ ≤ γ (t)h

(|x|) + g(t), ∀x ∈ R and t ∈ [0, T]. (1.3)

(F1) Function h ∈ Γ in condition (f ) satisfies

lim sup
|x|→+∞

1
H(|x|)

∫ T

0
F
(
t, |x| + a

)
dt < 0,

where F(t, x) =
∫ x

a f (t, s) ds (x ≥ a).
(F2) Function f (t, x) is differentiable for a.e. t ∈ [0, T] and there exists a constant σ > 0

such that
∣
∣
∣
∣
∂F(t, x)

∂t

∣
∣
∣
∣ ≤ –σF(t, x), a.e. t ∈ [0, T] and x ∈ [a, +∞).

Theorem 1.1 Suppose function f satisfies conditions (B), (f), (F1) and (F2). Then system
(1.1) possesses nontrivial kT-periodic bouncing solutions uk for any sufficiently large inte-
ger k. Furthermore, ‖uk‖L∞ → +∞ as k → +∞.

In this paper, we generalize the collision axis from x = 0 to the axis x = a, so our con-
ditions generalize those in [9]. The main difficulty of this paper is checking whether the
corresponding functional is locally Lipschitz and finding the range of the generalized gra-
dients of the above functional. Therefore, we first prove Lemma 2.1 in Sect. 2.
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System (1.1) with condition (1.2) is equivalent to the system

ẍ = f (t, x + a), t ∈ R \ W 1, (1.4)

associated with the conditions

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t–) = –ẋ(t+), t ∈ W 1,

x(t) ≥ 0, ∀t ∈ R,

x(t) = x(t + T), ∀t ∈ R,

(1.5)

where W 1 = {t ∈ R | x(t) = 0}.
Based on similar proofs in paper [7], we can conclude that if x : R → R is a T-periodic

solution with isolated zeros of

ẍ = f
(
t, |x| + a

)
sgn(x), t ∈ R \ W 1, (1.6)

then |x| is a nontrivial T-periodic bouncing solution of system (1.4) with collision axis
x = 0, and vice versa.

2 Preliminaries
Some concepts and conclusions about the Clarke generalized gradient can be found in [2]
and [1], so we omit them.

Definition 2.1 (see [5]) Function ϕ satisfies the nonsmooth (PS) condition if every se-
quence {xn} ⊂ E, such that {ϕ(xn)} is bounded and λ(xn) → 0 for n → ∞, has a strongly
convergent subsequence, where λ(x) = infx∗∈∂ϕ(x) ‖x∗‖E∗ , E∗ is the dual space of E, and
∂ϕ(x) denotes the Clarke generalized gradient of ϕ.

Theorem 2.1 (Generalized Nonsmooth Saddle Point Theorem, see [9]) Let E be a
real Banach space, and E = V ⊕ X with V �= {0} and dim V < +∞. Suppose that func-
tional ϕ satisfies the nonsmooth (PS) condition, and for some x0 ∈ X, there exists a
constant r > 0 such that maxv∈V∩∂Br ϕ(v + x0) < infx∈X ϕ(x). If c can be characterized
as c = infχ∈Γ1 maxv∈V∩B̄r ϕ(χ (v + x0)), then c is a critical value of ϕ, where Γ1 = {χ ∈
C(V ∩ B̄r + x0, E) | χ (v + x0) = v + x0, if v ∈ V ∩ ∂Br} and Br = {x ∈ E | ‖x‖ < r}. Further-
more, we have c ≥ infx∈X ϕ(x).

Set

H1
kT =

⎧
⎨

⎩
x : [0, kT] → R

∣
∣
∣
∣
∣

x(t) is absolutely continuous,

x(0) = x(kT), ẋ ∈ L2([0, kT], R
)

⎫
⎬

⎭
,

in which k ∈ N∗, then H1
kT is a Hilbert space with the norm defined by ‖x‖ = [

∫ kT
0 (|ẋ(t)|2 +

|x(t)|2) dt] 1
2 . For x ∈ H1

kT , let x̄ = 1
kT

∫ kT
0 x(t) dt and x̃(t) = x(t) – x̄. The book [8] tells us the

following Wirtinger’s inequality:

∫ kT

0

∣
∣x̃(t)

∣
∣2 dt ≤ k2T2

4π2

∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt (2.1)
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and Sobolev’s inequality

‖x̃‖2
L∞ ≤ kT

12

∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt. (2.2)

Set ‖x‖0 = (|x̄|2 +
∫ kT

0 |ẋ(t)|2 dt) 1
2 , then the norm ‖ ·‖0 is equivalent to ‖ ·‖ (see [8]). Indeed,

H1
kT has the decomposition H1

kT = R ⊕ H̃1
kT , where H̃1

kT = {x ∈ H1
kT | x̄ = 0}. Let Jk(x) =

∫ kT
0 F(t, |x(t)| + a) dt, ∀x ∈ H1

kT , and let ϕk(x) = 1
2
∫ kT

0 |ẋ(t)|2 dt + Jk(x), ∀x ∈ H1
kT .

Lemma 2.1 If f satisfies condition (f), then functional Jk is locally Lipschitz on H1
kT and

∂Jk(x) ⊆ [
f –(

t,
∣
∣x(t)

∣
∣ + a

)
, f +(

t,
∣
∣x(t)

∣
∣ + a

)]
a.e. t ∈ [0, kT], (2.3)

where

f –(
t, |s| + a

)
= min

{
lim

u→s– f
(
t, |s| + a

)
sgn(u), lim

u→s+
f
(
t, |s| + a

)
sgn(u)

}
,

f +(
t, |s| + a

)
= max

{
lim

u→s– f
(
t, |s| + a

)
sgn(u), lim

u→s+
f
(
t, |s| + a

)
sgn(u)

}
.

Proof The main idea comes from [1]. Considering the functional

Jk(x) =
∫ kT

0
dt

∫ |x(t)|

0
f (t, s + a) ds,

we have

∣
∣Jk(u) – Jk(v)

∣
∣ ≤

∫ kT

0

∣
∣
∣
∣

∫ |u(t)|

|v(t)|

[
γ (t)h(s) + g(t)

]
ds

∣
∣
∣
∣dt

≤
∫ kT

0

∣
∣γ (t)̃h(t) + g(t)

∣
∣
∣
∣
∣
∣u(t)

∣
∣ –

∣
∣v(t)

∣
∣
∣
∣dt

≤
(∫ kT

0

(
γ (t)̃h(t) + g(t)

)2 dt
) 1

2
(∫ kT

0

(
u(t) – v(t)

)2 dt
) 1

2

= K‖u – v‖L2 ≤ K · C‖u – v‖H1
kT

, (2.4)

where h̃(t) = max{h(s) | s is between |v(t)| and |u(t)|}, K := (
∫ kT

0 (γ (t)̃h(t) + g(t))2 dt) 1
2 > 0,

C is embedding constant, (2.4) means that Jk is locally Lipschitz continuous, so [1] tells us
that the generalized gradients of F at x + a do exist. The generalized gradients of F at x + a
(x > 0) are denoted by ∂F(t, x + a) = ∂vF0(t, x + a; v)|v=0, where ∂vF0(t, x + a; v) denotes the
subdifferential in v of F0(t, x + a; v), and F0(t, x + a; v) = lim suph→0,μ→0+

1
μ

∫ x+h+μv
x+h f (t, s +

a) ds. Then we have

F0(t, x + a; v) ≤
⎧
⎨

⎩

v limσ→0+ mins∈[x–σ ,x+σ ] f (t, s + a) = f –(t, x + a)v, if v ≤ 0,

v limσ→0+ maxs∈[x–σ ,x+σ ] f (t, s + a) = f +(t, x + a)v, if v ≥ 0.
(2.5)
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By (2.5) and results in [1], we have ∂F(t, x + a) ⊆ [f –(t, x + a), f +(t, x + a)]. By definition,
∃hi ∈ H1

kT , hi → 0 (i → +∞) in H1
kT such that

J0
k (x; v) = lim sup

i→+∞,μ→0+

1
μ

∫ kT

0
dt

∫ hi(t)+μv(t)

hi(t)
f
(
t, s +

∣
∣x(t)

∣
∣ + a

)
ds,

so using the results of [1], we have

J0
k (x; v) ≤

∫ kT

0
F0(t,

∣
∣x(t)

∣
∣ + a; v

)
dt

=
∫ kT

0
max

{
ω · v(t) | ω ∈ ∂F

(
t,

∣
∣x(t)

∣
∣ + a

)}
dt

≤
∫

v(t)>0
v(t)f +(

t,
∣
∣x(t)

∣
∣ + a

)
dt

+
∫

v(t)<0
v(t)f –(

t,
∣
∣x(t)

∣
∣ + a

)
dt. (2.6)

If ω0 ∈ ∂Jk(x), we are going to prove

f –(
t,

∣
∣x(t)

∣
∣ + a

) ≤ ω0(t) ≤ f +(
t,

∣
∣x(t)

∣
∣ + a

)
, ∀t ∈ R.

Otherwise, there would be a set E0, for example, on which

f –(
t,

∣
∣x(t)

∣
∣ + a

)
> ω0(t), ∀t ∈ E0. (2.7)

Due to results in [1],

∂ϕ(x0) =
{

w ∈ E∗ | 〈w, v〉 ≤ ϕ0(x0; v),∀v ∈ E
}

. (2.8)

Let v0(t) = –χE0 (t), the characteristic function of E0. Then, from (2.8), we have

J0
k (x; v0) ≥

∫ kT

0
ω0(t) · v0(t) dt = –

∫

E0

ω0(t) dt. (2.9)

From the definition of v0(t), we have

–
∫

E0

f –(
t,

∣
∣x(t)

∣
∣ + a

)
dt

=
∫

v0(t)>0
v0(t) · f +(

t,
∣
∣x(t)

∣
∣ + a

)
dt +

∫

v0(t)<0
v0(t) · f –(

t,
∣
∣x(t)

∣
∣ + a

)
dt. (2.10)

Equations (2.10), (2.6) and (2.9) imply that

–
∫

E0

f –(
t,

∣
∣x(t)

∣
∣ + a

)
dt ≥ –

∫

E0

ω0(t) dt,

which contradicts (2.7). Similarly, we can get ω0(t) ≤ f +(t, |x(t)| + a). �
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Remark 2.1 For w ∈ ∂Jk(x), there is a function � with � (t) ∈ [f –(t, |x(t)| + a), f +(t, |x(t)| +
a)] a.e. t ∈ [0, kT] such that 〈w, v〉 =

∫ kT
0 � (t)v(t) dt holds for all v ∈ H1

kT .

Remark 2.2 When s �= 0, we have f –(t, |s|+a) = f +(t, |s|+a) = f (t, |s|+a) sgn(s). If s = 0 and f
satisfies condition (B), then we have f –(t, |s|+a) = f (t, |s|+a) and f +(t, |s|+a) = –f (t, |s|+a).

Lemma 2.2 If xk ∈ H1
kT is a critical point of ϕk on H1

kT , then xk is a periodic solution of
equation (1.6), and vice versa.

Proof The main idea comes from [7]. Lemma 2.1 means that ϕk is locally Lipschitz con-
tinuous, so ∂ϕk do exist. Let x be a critical point of ϕk in H1

kT , in other words, 0 ∈ ∂ϕk . By
Remark 2.1, there is a function g with g(t) ∈ [f –(t, |x(t)| + a), f +(t, |x(t)| + a)] such that

∫ kT

0

(
ẋ(t)v̇(t) + g(t)v(t)

)
dt = 0, ∀v ∈ H1

kT ,

which shows that the generalized second order derivative ẍ exists and x satisfies

∫ kT

0

(
–ẍ(t) + g(t)

)
v(t) dt = 0, ∀v ∈ H1

kT ,

that is,

ẍ = g(t) a.e. t ∈ R. (2.11)

We need to prove that g(t) = f (t, |x| + a) sgn(x). Let T0 = {t ∈ [0, kT] | x(t) = 0} and T1 =
{t ∈ [0, kT] | x(t) �= 0}. Remark 2.2 tells us that g(t) = f –(t, |x| + a) = f +(t, |x| + a) = f (t, |x| +
a) sgn(x) for t ∈ T1. Using [6, Lemma 7.7], we obtain ẍ = ẋ = 0 for a.e. t ∈ T0, and draw
a conclusion from (2.11) that g(t) = 0 = f (t, |x| + a) sgn(x) holds for a.e. t ∈ T0. Thus we
complete the proof. �

3 Bouncing solutions for second order Hamiltonian systems
Lemma 3.1 Functional ϕk satisfies the nonsmooth (PS) condition if f satisfies (f) and (F1).

Proof The main idea comes from [9]. Let {xn} ∈ H1
kT be a nonsmooth (PS) sequence, that is,

{ϕ(xn)} is bounded and λ(xn) → 0 as n → ∞. According to Remark 2.1 and the definition of
λ(xn), for each n ∈ N∗, there exist functions �n ∈ ∂Jk(xn) and x∗

n ∈ ∂ϕk(xn) with ‖x∗
n‖E∗ → 0

as n → ∞ such that

〈
x∗

n, v
〉
=

∫ kT

0
ẋn(t)v̇(t) dt +

∫ kT

0
�n(t)v(t) dt, ∀v ∈ H1

kT . (3.1)

For xn ∈ H1
kT = R ⊕ H̃1

kT , we write xn as xn(t) = x̄n + x̃n(t) for all t ∈ [0, kT], where x̄n ∈ R,
x̃n(t) ∈ H̃1

kT . It follows from (2.3), (1.3), (h1), and (h2) that

∣
∣�n(t)

∣
∣ ≤ ∣

∣f
(
t,

∣
∣xn(t)

∣
∣ + a

)∣
∣

≤ γ (t)h
(∣
∣xn(t)

∣
∣
)

+ g(t)
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≤ γ (t)
[
h
(|x̄n| +

∣
∣x̃n(t)

∣
∣
)

+ C
]

+ g(t)

≤ C∗γ (t)h
(|x̄n|

)
+ C∗γ (t)h

(∣
∣x̃n(t)

∣
∣
)

+ Cγ (t) + g(t). (3.2)

Using (3.2), (h1), Young inequality, [9, (1) of Lemma 2.3] and (2.2), we have

∣
∣
∣
∣

∫ kT

0
�n(t)x̃n(t) dt

∣
∣
∣
∣

≤
∫ kT

0

∣
∣�n(t)

∣
∣
∣
∣x̃n(t)

∣
∣dt

≤
∫ kT

0

[
C∗γ (t)h

(|x̄n|
)

+ C∗γ (t)h
(∣
∣x̃n(t)

∣
∣
)

+ Cγ (t) + g(t)
]∣
∣x̃n(t)

∣
∣dt

≤ C∗‖x̃n‖L∞h
(|x̄n|

)
∫ kT

0
γ (t) dt + C∗[h

(‖x̃n‖L∞
)

+ C
]‖x̃n‖L∞

∫ kT

0
γ (t) dt

+ C‖x̃n‖L∞
∫ kT

0
γ (t) dt + ‖x̃n‖L∞

∫ kT

0
g(t) dt

≤ C∗
[

3
C∗kT

‖x̃n‖2
L∞ +

C∗kT
3

h2(|x̄n|
)
(∫ kT

0
γ (t) dt

)2]

+ C∗(ε‖x̃n‖L∞ + Cε + C
)‖x̃n‖L∞

∫ kT

0
γ (t) dt

+ C‖x̃n‖L∞
∫ kT

0
γ (t) dt + ‖x̃n‖L∞

∫ kT

0
g(t) dt

≤ 1
4

∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt +

C∗2 kT
3

h2(|x̄n|
)
(∫ kT

0
γ (t) dt

)2

+
εC∗kT

12

∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

∫ kT

0
γ (t) dt

+
(
C∗Cε + C∗C + C

)
(

kT
12

∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2
∫ kT

0
γ (t) dt

+
(

kT
12

∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2
∫ kT

0
g(t) dt

≤
(

1
4

+ εC1

)∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt + C2,ε

(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2

+ C3h2(|x̄n|
)
, (3.3)

where C1 = C∗kT
12

∫ kT
0 γ (t) dt > 0, C2,ε =

√
kT
12 (C∗Cε +C∗C +C)

∫ kT
0 γ (t) dt +

√
kT
12

∫ kT
0 g(t) dt >

0 and C3 = C∗2
kT

3 (
∫ kT

0 γ (t) dt)2 > 0. By (3.1) and (3.3), for n large enough, we have

‖x̃n‖ ≥ 〈
x∗

n, x̃n
〉

=
∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt +

∫ kT

0
�n(t)x̃n(t) dt

≥
(

3
4

– εC1

)∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt – C2,ε

(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2

– C3h2(|x̄n|
)
. (3.4)
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On the other hand, (2.1) implies that

‖x̃n‖ ≤
(

1 +
k2T2

4π2

) 1
2
(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2 ∀n ∈ N∗. (3.5)

Let ε > 0 be small enough such that 3
4 – εC1 > 0. Using the property of the parabola, then

(3.4) and (3.5) mean that there exist two constants C4, C5 > 0 such that

(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2 ≤ C4h

(|x̄n|
)

+ C5 for n large enough. (3.6)

By the mean value theorem for a locally Lipschitz functional (see [5]), there exists zn ∈
{(1 – s)xn + sx̄n | 0 ≤ s ≤ 1} and z∗

n ∈ ∂Jk(zn) such that

∫ kT

0
F
(
t,

∣
∣xn(t)

∣
∣ + a

)
dt –

∫ kT

0
F
(
t, |x̄n| + a

)
dt =

〈
z∗

n, xn – x̄n
〉
. (3.7)

By Lemma 2.1, there exists a function �zn (t) ∈ [f –(t, |zn(t)| + a), f +(t, |zn(t)| + a)] such that

〈
z∗

n, xn – x̄n
〉

=
∫ kT

0

(
�zn (t), xn(t) – x̄n

)
dt. (3.8)

In the same way as in the computation of (3.3) with ε = 1, together with (3.7) and (3.8), we
have

∫ kT

0
F
(
t,

∣
∣xn(t)

∣
∣ + a

)
dt –

∫ kT

0
F
(
t, |x̄n| + a

)
dt

=
∫ kT

0

(
�zn (t), xn(t) – x̄n

)
dt

≤
∫ kT

0

∣
∣f

(
t,

∣
∣zn(t)

∣
∣ + a

)∣
∣
∣
∣xn(t) – x̄n

∣
∣dt

=
∫ kT

0

∣
∣f

(
t,

∣
∣x̄n + (1 – s)x̃n(t)

∣
∣ + a

)∣
∣
∣
∣x̃n(t)

∣
∣dt

≤
∫ kT

0

[
C∗γ (t)h

(|x̄n|
)

+ C∗γ (t)h
(∣
∣x̃n(t)

∣
∣
)

+ Cγ (t) + g(t)
]∣
∣x̃n(t)

∣
∣dt,

which is similar to (3.3), and we have

∫ kT

0
F
(
t,

∣
∣xn(t)

∣
∣ + a

)
dt –

∫ kT

0
F
(
t, |x̄n| + a

)
dt

≤
(

1
4

+ C1

)∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt + C2

(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2

+ C3h2(|x̄n|
)
. (3.9)

By (3.9), (3.6), [9, Lemma 2.3] and (F1), one has

ϕk(xn) =
1
2

∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt +

∫ kT

0

[
F
(
t,

∣
∣xn(t)

∣
∣ + a

)
– F

(
t, |x̄n| + a

)]
dt

+
∫ kT

0
F
(
t, |x̄n| + a

)
dt
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≤
(

3
4

+ C1

)∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt + C2

(∫ kT

0

∣
∣ẋn(t)

∣
∣2 dt

) 1
2

+ C3h2(|x̄n|
)

+
∫ kT

0
F
(
t, |x̄n| + a

)
dt

≤
(

3
4

+ C1

)
[
C4h

(|x̄n|
)

+ C5
]2 + C2

[
C4h

(|x̄n|
)

+ C5
]

+ C3h2(|x̄n|
)

+
∫ kT

0
F
(
t, |x̄n| + a

)
dt

≤ C6h2(|x̄n|
)

+ C7h
(|x̄n|

)
+

∫ kT

0
F
(
t, |x̄n| + a

)
dt + C8

= H
(|x̄n|

)
[

C6
h2(|x̄n|)
H(|x̄n|) + C7

h(|x̄n|)
H(|x̄n|) +

∫ kT
0 F(t, |x̄n| + a) dt

H(|x̄n|)
]

+ C8

→ –∞, as |x̄n| → +∞

(where constants C6 > 0, C7 > 0, C8 > 0) which contradicts the boundedness of {ϕk(xn)},
thus {x̄n} is bounded and, together with (3.6), one has that {‖xn‖0} is bounded. Then, by
the equivalence of the two norms, {‖xn‖} is bounded.

Next, we verify that {xn} has a strongly convergent subsequence. The main idea comes
from [9] and [10].

Suppose xn ⇀ x in H1
kT , then xn → x in C([0, kT]; R). The results in [1] imply that ∂ϕk(xn)

is weak∗-compact, and the set-valued mapping x → ∂ϕk(x) is upper semicontinuous, so,
according to [9], we get xn → x in H1

kT , and hence ϕk satisfies the nonsmooth (PS) condi-
tion. �

Lemma 3.2 For every k ∈ N∗, functional ϕk(x) → +∞ as ‖x‖ → +∞ in H̃1
kT , if f satisfies

condition (f).

Proof The main idea comes from [9].
For every x ∈ H̃1

kT , by (f ), (h1), of [9, (1) of Lemma 2.3] and (2.2), we have

∣
∣
∣
∣

∫ kT

0
F
(
t, |x(t)| + a

)
dt

∣
∣
∣
∣ ≤

∫ kT

0
dt

∫ |x(t)|

0

∣
∣f (t, s + a)

∣
∣ds

≤
∫ kT

0
dt

∫ |x(t)|

0

[
γ (t)h(s) + g(t)

]
ds

≤
∫ kT

0

[
γ (t)h

(‖x‖L∞
)

+ Cγ (t) + g(t)
](∣

∣x(t)
∣
∣
)

dt

≤ εC9‖x‖2
L∞ + C10,ε‖x‖L∞

≤ εC11

∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt + C12,ε

(∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt

) 1
2

, (3.10)

where C10,ε , C12,ε , C13,ε > 0 hold for any ε > 0, and C9, C11 > 0. Then (3.10) implies

ϕk(x) ≥
(

1
2

– εC11

)∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt – C12,ε

(∫ kT

0

∣
∣ẋ(t)

∣
∣2 dt

) 1
2 ∀x ∈ H̃1

kT . (3.11)
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Choose ε > 0 small enough such that 1
2 – εC11 > 0. In H̃1

kT , ‖x‖ → +∞ if and only if
(
∫ kT

0 |ẋ(t)|2 dt) 1
2 → +∞, and then (3.11) implies that ϕk(x) → +∞ as ‖x‖ → +∞. �

Lemma 3.3 For every k ∈ N∗, we have ϕk(x + ek) → –∞ as |x| → +∞ in R ⊆ H1
kT , where

ek(t) = k cos( 2π t
kT ) ∈ H̃1

kT , if f satisfies conditions (f) and (F1).

Proof The main idea comes from [9]. Using (3.9), (F1) and [9, Lemma 2.3], we have

ϕk(x + ek) =
2kπ2

T
+

∫ kT

0

[
F
(
t,

∣
∣x + ek(t)

∣
∣ + a

)
– F

(
t, |x| + a

)]
dt

+
∫ kT

0
F
(
t, |x| + a

)
dt

≤ 2kπ2

T
+

(
1
4

+ C1

)∫ kT

0

∣
∣ėk(t)

∣
∣2 dt + C2

(∫ kT

0

∣
∣ėk(t)

∣
∣2 dt

) 1
2

+ C3h2(|x|) +
∫ kT

0
F
(
t, |x| + a

)
dt

=
2kπ2

T
+

(
1
4

+ C1

)
2kπ2

T
+ C2π

√
2k
T

+ H
(|x|)

[

C3
h2(|x|)
H(|x|) +

∫ kT
0 F(t, |x| + a) dt

H(|x|)
]

→ –∞, as |x| → +∞, x ∈ R. �

Proposition 3.1 If conditions (f) and (F1) hold, then there exists a constant r0 > 0 large
enough such that functional ϕk has at least one critical value ck characterized by

ck = inf
χ∈Γ2

max
x∈[–r0,r0]

ϕk
(
χ (x + ek)

)
,

where Γ2 = {χ ∈ C([–r0, r0] + ek , E) | χ (ek ± r0) = ek ± r0}. Furthermore, for ∀k ∈ N∗, then

–∞ < inf
H̃1

kT

ϕk ≤ ck ≤ sup
x∈R

ϕk(x + ek). (3.12)

Proof Set V = R and X = H̃1
kT , Lemmas 3.2 and 3.3 tell us that there exists a constant r0 > 0

large enough such that

max
x∈V∩∂Br0

ϕk(x + ek) < inf
x∈X

ϕk(x). (3.13)

Due to Lemma 3.1 and inequality (3.13), Theorem 2.1 tells us that ck is a critical value of
ϕk and ck ≥ infH̃1

kT
ϕk .

Inequality (3.11) tells us that infH̃1
kT

ϕk > –∞. Moreover, the definition of ck implies that
ck ≤ supx∈R ϕk(x + ek). So, (3.12) holds. �

Lemma 3.4 Under condition (B), we have

lim|x|→+∞ F
(
t, |x| + a

)
= –∞ ∀t ∈ [0, T]. (3.14)
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Proof The main idea comes from [9]. For |x| > 0, employing the mean value theorem for

integrals, we have F(t, |x| + a) =
∫ |x|

0 f (t, s + a) ds =
∫ |x|

2
0 f (t, s + a) ds +

∫ |x|
|x|
2

f (t, s + a) ds ≤
∫ |x|

|x|
2

f (t, s + a) ds = f (t, ξ + a) |x|
2 , ξ ∈ ( |x|

2 , |x|). Then

lim sup
|x|→+∞

F
(
t, |x| + a

) ≤ lim sup
|x|→+∞

f (t, ξ + a)
|x|
2

= –∞ ∀t ∈ [0, T],

which implies that (3.14) holds. �

Lemma 3.5 If (3.14) holds, then for any constant δ > 0 there is a measurable subset Aδ ⊂
[0, T] with meas([0, T] \ Aδ) < δ such that

F
(
t, |x| + a

) → –∞, uniformly in t ∈ Aδ , as |x| → +∞.

Proof Set fn(t) = inf|x|>n –F(t, |x| + a). Then (3.14) implies that fn(t) → +∞, as n → ∞,
∀t ∈ [0, T]. By the continuity of F(t, x) in x and the measurability of F(t, x) in t, for any
δ > 0, by [12, Lemma 1], there exists a measurable subset Aδ ⊂ [0, T] with meas([0, T] \
Aδ) < δ such that fn(t) → +∞ as n → ∞ uniformly for every t ∈ Aδ . Then we obtain that
F(t, |x| + a) → –∞, uniformly in t ∈ Aδ , as |x| → +∞. �

Lemma 3.6 For every k ∈ N∗, let xk be a critical point of functional ϕk , then ‖xk‖L∞ → +∞
as k → +∞, if condition (f) holds.

Proof From conditions (f ), (h1) and [9, (1) of Lemma 2.3], we have

ck

k
=

ϕk(xk)
k

≥ 1
k

∫ kT

0
F
(
t,

∣
∣xk(t)

∣
∣ + a

)
dt

=
1
k

∫ kT

0
dt

∫ |xk (t)|

0
f (t, s + a) ds

≥ –
1
k

∫ kT

0
dt

∫ |xk (t)|

0

[
γ (t)h(s) + g(t)

]
ds

≥ –
1
k

∫ kT

0

[
γ (t)h

(‖xk‖L∞
)

+ Cγ (t) + g(t)
](‖xk‖L∞

)
dt

≥ –
[
ε‖γ ‖L1‖xk‖2

L∞ + (Cε + C)‖γ ‖L1‖xk‖L∞ + ‖g‖L1‖xk‖L∞
]

≥ –
[
εC2

13‖γ ‖L1 + C13(Cε + C)‖γ ‖L1 + C13‖g‖L1
]

:= L. (3.15)

By (3.12), (3.15) and Lemma 3.5, the results in [9] and [12] imply that ‖xk‖L∞ → +∞ as
k → +∞. �

Proposition 3.2 Suppose f satisfies conditions (B), (F2) and xk is a kT-periodic solution of
(1.6), where k ∈ N∗ is large enough, then W 1

k = {t ∈ R | xk(t) = 0} is nonempty and its points
are isolated. Moreover, there exists at least one t0 ∈ W 1

k such that ẋk(t–
0 ) �= 0.
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Proof The idea comes from [7, 9] and [11].
For every k ∈ N∗, let Gk(t) = 1

2 |ẋk(t)|2 – F(t, |xk(t)| + a), then Gk(t) is well-defined for
all t ∈ R via (1.5), Gk(t) ≥ 0 holds for all t ∈ R via the nonpositivity of F and G(t) is kT-
periodic, continuous, differentiable for t ∈ R \ W 1

k . By the definition of Gk , we get

G′
k(t) = ẋk(t)

[
ẍk(t) – f

(
t,

∣
∣xk(t)

∣
∣ + a

)
sgn

(
xk(t)

)]
–

∂F(t, |xk(t)| + a)
∂t

= –
∂F(t, |xk(t)| + a)

∂t
, t ∈ R \ W 1

k ,

then by (F2) we have

∣
∣G′

k(t)
∣
∣ ≤ –σF

(
t,

∣
∣xk(t)

∣
∣ + a

) ≤ σGk(t), t ∈ R \ W 1
k . (3.16)

If Gk(0) = 0, then by Gronwall’s inequality in [4], we have Gk(t) ≡ 0 on R. Then ẋk(t) ≡ 0
and F(t, |xk(t)| + a) ≡ 0 on R, which means that xk(t) ≡ ak ∈ R and f (t, |ak| + a) = ẍk(t) ≡ 0,
and so we get limk→+∞ f (t, |ak| + a) = 0. Lemma 3.6 implies that limk→+∞ |ak| = +∞, so
we have lim|ak |→+∞ f (t, |ak| + a) = 0, which contradicts condition (B). Therefore we have
Gk(0) > 0.

Using (3.16), we get

[
Gk(t)eσ t]′ =

(
G′

k(t) + σGk(t)
)
eσ t ≥ 0, t ∈ R \ W 1

k . (3.17)

Note that Gk(t)eσ t is continuous and (3.17) implies that Gk(t)eσ t ≥ Gk(0) holds for all t ∈
[0, kT], that is,

Gk(t) ≥ Gk(0)e–σ t > 0, t ∈ [0, kT]. (3.18)

To prove that W 1
k is nonempty and discrete, it is sufficient to prove that Ŵ 1

k = {t ∈
[0, kT] | xk(t) = 0} is nonempty and finite.

First, we consider whether Ŵ 1
k is nonempty. If not, we have xk ∈ C2([0, kT], R), and,

without loss of generality, we suppose that xk(t) > 0 holds for all t ∈ [0, kT]. From (1.6), we
get

ẍk(t) = f
(
t, xk(t) + a

) ∀t ∈ [0, kT],

and xk(t + kT) = xk(t). By integrating the above equation on [0, kT], we get

0 =
∫ kT

0
ẍk(t) dt =

∫ kT

0
f
(
t, xk(t) + a

)
dt,

which implies that ẍk(t) = f (t, xk(t) + a) ≡ 0 holds for any t ∈ [0, kT] due to the nonpos-
itivity of f . Since xk(t) is kT-periodic and continuous on R, we have xk(t) ≡ bk > 0 for
all t ∈ [0, kT]. Lemma 3.6 implies that limk→+∞ bk = +∞. Then limbk→+∞ f (t, bk + a) = 0,
which contradicts condition (B). So Ŵ 1

k is nonempty.
Next, we prove that the set Ŵ 1

k is finite. Otherwise, since Ŵ 1
k is compact, there would

be a sequence {tj}∞1 ⊂ Ŵ 1
k with 0 ≤ t1 < t2 < · · · < tj < · · · ≤ kT , which, passing to a sub-

sequence, still denoted by {tj}, if necessary, we can take to be such that tj → β ∈ Ŵ 1
k as
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j → +∞. Then

ẋk
(
β–)

= lim
j→+∞

xk(tj) – xk(β)
tj – β

= 0. (3.19)

On the other hand, since Ŵ 1
k is nonempty, by (3.18), one has that ẋk(t–) �= 0 holds for all

t ∈ Ŵ 1
k , which contradicts (3.19), so Ŵ 1

k is finite. �

Proof of Theorem 1.1 Proposition 3.1 tells us that ϕk has a critical point xk , and Lemma 2.2
implies that xk is a solution of (1.6) for every k ∈ N∗. Proposition 3.2 implies that uk := |xk|
satisfies Definition 1.1 for k ∈ N∗ large enough, so uk is a nontrivial kT-periodic bouncing
solution of system (1.4). Furthermore, Lemma 3.6 implies that ‖uk‖L∞ → +∞ as k → +∞.
Thus we complete the proof. �

4 Example
In this section, we present an example to demonstrate our Theorem 1.1.

Example 4.1 We define a T-periodic function θ ∈ C(R, (–∞, 0)) with

θ (t) =

⎧
⎨

⎩

–1, t ∈ [0, T
2 ],

sin 2π t
T – 1, t ∈ ( T

2 , T].

Function f : R × [a, +∞) → R is defined as

f (t, x) = θ (t)
2(x – a) ln(100 + (x – a)2) – 2(x–a)3

100+(x–a)2

ln2(100 + (x – a)2)
– 1.

Then f (t, x) is T-periodic in t, continuous for any t and x, differentiable at every t ∈ R
except at t = mT

2 (m ∈ N∗) and

F(t, x) :=
∫ x

a
f (t, s) ds = θ (t)

(x – a)2

ln(100 + (x – a)2)
– (x – a).

The definition of function f implies

∣
∣f

(
t, |x| + a

)∣
∣ ≤ ∣

∣θ (t)
∣
∣

[
2|x|

ln(100 + x2)
+

2|x|
ln2(100 + x2)

]

+ 1

≤ 4
∣
∣θ (t)

∣
∣ |x|
ln(100 + x2)

+ 1, ∀x ∈ R and t ∈ [0, T]. (4.1)

Let h(t) = t
ln(100+t2) , γ (t) = 4|θ (t)| and g(t) ≡ 1. Obviously, h satisfies conditions (h1), (h2)

and (h4). The results of [9] imply that h satisfies condition (h3). So (4.1) implies that as-
sumption (f ) holds.

Note that f (t, x + a) is the same as f (t, x) in [9]. Similarly to paper [9], assumptions (F1),
(F2) and (B) hold.
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