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Abstract
By a change of variables with cut-off functions, we study the existence and the
asymptotic behavior of positive solutions for a general quasilinear Schrödinger
equation which arises from plasma physics. We extend the results of (Adv. Nonlinear
Stud. 18(1):131-150, 2017) from α = 1 to α > 1

2 . Especially, we can consider the
exponent p in (2, 2∗) for all N ≥ 3.
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1 Introduction
In this paper, we study the existence and asymptotic behavior of positive solutions for the
following general quasilinear elliptic equation:

–�u + V (x)u – αγ
(
�

(|u|2α
))|u|2α–2u = |u|p–2u, x ∈R

N , (1)

where α > 1
2 is a positive constant, γ > 0 is a parameter, p > 2 and N ≥ 3.

Equation (1) is derived from a superfluid film equation in plasma physics [11]; see [7–9,
15] and the references therein for more physical backgrounds. When α = 1, the existence
of solutions for Eq. (1) was extensively considered in recent years [2, 3, 9, 14–16, 19–21]
since the change in [9, 14] was introduced. Furthermore, using the change of variables,
for general α > 1

2 , the existence of solutions of (1) have been studied; see [1, 4, 12] and
the references therein. Comparing with the semilinear elliptic equations, it is much more
challenging and interesting because of the existence of the term (�(|u|2α))|u|2α–2u. It is
worth mentioning that the authors in [20] considered problem (1) with α = 1. Using the
change of variables introduced in [19] and the cut-off function technique in [5], the authors
reduced Eq. (1) to a semilinear elliptic equation. Then the existence and boundedness of
solution was obtained by the critical point theory when p ∈ (2, 2∗) for N ≥ 4 or p ∈ (2, 4)
for N = 3. Moreover, they got the asymptotic properties of the solution of (1) by using the
arguments in [1, 3]. But in [20], what will happen when p ∈ [4, 6) for N = 3?

In this paper, we want to address the existence of Eq. (1) with α > 1
2 by using the tech-

nique of [5, 19, 20]. Furthermore, we can discuss the exponent p from 2 to 2∗ for any
N ≥ 3 by introducing different cut-off functions when p < 4α and p ≥ 4α. We also can get
the asymptotic properties of the solution of (1) with the use of techniques in [1, 3, 20].
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We assume that the potential function V satisfies (V1) 0 < V0 ≤ V (x) ≤ lim|x|→+∞ V (x) =
V∞ < +∞.

Define the space X = {u ∈ H1(RN ) :
∫
RN |u|2(2α–1)|∇u|2 dx < ∞}. Then, for u ∈ X, the

energy functional Iγ (u) associated with (1) is

Iγ (u) =
1
2

∫

RN

(|∇u|2 + V (x)|u|2)dx + α2γ

∫

RN
|u|2(2α–1)|∇u|2 dx –

1
p

∫

RN
|u|p dx. (2)

Theorem 1.1 Assume V (x) = μ > 0, then Eq. (1) has a positive solution uγ satisfying: (i) uγ

is spherically symmetric and uγ decreases with respect to |x|; (ii) uγ ∈ C2(RN ); (iii) uγ to-
gether with its derivatives up to order 2 have exponential decay at infinity |Dαuγ | ≤ Ce–δ|x|,
x ∈R

N , for some C, δ > 0 and |α| ≤ 2. Passing to a subsequence if necessary, it follows that

uγ → u0 in H2(
R

N) ∩ C2(
R

N)
as γ → 0+,

where u0 is the ground state of equation –�u + μu = |u|p–2u, x ∈R
N .

Theorem 1.2 Assume that (V1) holds and p ∈ (2, 2∗). Then there exists a γ0 such that,
for γ ∈ (0,γ0), Eq. (1) has a positive solution uγ satisfying maxx∈RN |γ μuγ (x)| → 0 as γ →
0+ for any μ > 1

2(2α–1) .

Remark 1.1 If α = 1, the above theorem is essentially Theorem 1.1 of [20]. When N = 3,
p < 4 is necessary in [20]. But in here, we extend this result to p < 2∗. Moreover, for general
α > 1

2 , [2, 15] obtain the existence of solutions of (1) for p ≥ 4α. But we can obtain the
existence of solutions for the case p < 4α.

In this paper, we use the following notations: C denotes constant, ‖u‖2 =
∫
RN (|∇u|2 +

u2) dx for u ∈ H1(RN ), ‖u‖p denotes the norm of the space Lp(RN ).

2 The cut-off technique and some lemmas

We introduce the cut-off function ζ (t) : R → R such that ζ (t) = 0 if t ≤ 0, ζ (t) = e– 1
t

e– 1
t +e– 1

1–t
if 0 < t < 1 and ζ (t) = 1 if t ≥ 1. The basic property of the function was already used in
[17, 18, 20]. It is easy to see that ζ (t) ∈ C∞(R, [0, 1]), 0 ≤ ζ (t) ≤ 1 for all t ∈ R. Moreover,

ζ ′(t) = (2t2–2t+1)e
1–2t

t(1–t)

t2(1–t)2[1+e
1–2t

t(1–t) ]2
if 0 < t < 1 and ζ ′(t) = 0 if t < 0 or t > 1. Let ζ ′(0) = ζ ′(1) = 0, then

ζ ′(t) ≥ 0 is uniformly bounded in [0, 1]. This means there exists some C0 > 0 such that
|ζ ′(t)| ≤ C0 for any t ∈R.

Case I: 4α > p. In this case, we assume that

ρ(t) = ζ 2
[

2 1
2α–1

2 1
2α–1 – 1

(
1 –

(
8α2γ (4α – p)

p – 2

) 1
2(2α–1)

t
)]

.

Then ρ(t) ∈ C∞(R+, [0, 1]) and

ρ(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= 1 if 0 ≤ t < ( p–2
32α2γ (4α–p) )

1
2(2α–1) ,

∈ (0, 1) if ( p–2
32α2γ (4α–p) )

1
2(2α–1) ≤ t < ( p–2

8α2γ (4α–p) )
1

2(2α–1) ,

= 0 if t ≥ ( p–2
8α2γ (4α–p) )

1
2(2α–1) .
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Moreover, for any t ∈ R
+, we have 0 ≥ ρ ′(t) ≥ – 2

2α
2α–1

2
1

2α–1 –1
( 8α2γ (4α–p)

p–2 )
1

2(2α–1) C0
√

ρ(t). Nextly,
we assume that η(t) = ρ(–t) if t ≤ 0 and η(t) = ρ(t) if t ≥ 0. It means that

η(t)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

= η(–t) if t ≤ 0,

= 1 if 0 ≤ t < ( p–2
32α2γ (4α–p) )

1
2(2α–1) ,

∈ (0, 1) if ( p–2
32α2γ (4α–p) )

1
2(2α–1) ≤ t < ( p–2

8α2γ (4α–p) )
1

2(2α–1) ,

= 0 if t ≥ ( p–2
8α2γ (4α–p) )

1
2(2α–1) ,

(3)

η(t) ∈ C∞
0 (R, [0, 1]) and η′(t)t ≤ 0 for t ∈ R

+. Furthermore, for t ∈R
+, we have

tη′(t) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

– 1

2
1

2α–1 –1
C0 if 0 ≤ t < ( p–2

32α2γ (4α–p) )
1

2(2α–1) ,

– 2
1

2α–1

2
1

2α–1 –1
C0

√
η(t) if ( p–2

32α2γ (4α–p) )
1

2(2α–1) ≤ t < ( p–2
8α2γ (4α–p) )

1
2(2α–1) ,

0 if t ≥ ( p–2
8α2γ (4α–p) )

1
2(2α–1) .

Case II: p ≥ 4α. In this case, we let

ρ(t) = ζ 2
[

2 1
2α–1

2 1
2α–1 – 1

(
1 –

(
8α2γ (6 – p)

p – 2

) 1
2(2α–1)

t
)]

.

Similar to the case I, we assume that η(t) = ρ(–t) if t ≤ 0 and η(t) = ρ(t) if t ≥ 0. Then

0 ≥ ρ ′(t) ≥ –2 2
1

2α–1

2
1

2α–1 –1
( 8α2γ (6–p)

p–2 )
1

2(2α–1) C0
√

ρ(t) and

η(t)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

= η(–t) if t ≤ 0,

= 1 if 0 ≤ t < ( p–2
32α2γ (6–p) )

1
2(2α–1) ,

∈ (0, 1) if ( p–2
32α2γ (6–p) )

1
2(2α–1) ≤ t < ( p–2

8α2γ (6–p) )
1

2(2α–1) ,

= 0 if t ≥ ( p–2
8α2γ (6–p) )

1
2(2α–1) .

(4)

For p ∈ (2, 2∗), we construct an auxiliary function gγ (t): R →R
+ just like:

gγ (t) =

√(
1
2

+ 2α2γ |t|2(2α–1)
)

η(t) +
1
2

,

where η(t) take the form (3) if p < 4α and the form (4) if p ≥ 4α. Then we know that
gγ (0) = 1,

√
2

2 ≤ gγ (t) ≤
√

14–3p
4(4–p) if p ≤ 4α,

√
2

2 ≤ gγ (t) ≤
√

22–3p
4(6–p) if p ≥ 4α,

g ′
γ (t)t =

( 1
2 + 2α2γ |t|2(2α–1))η′(t)t + 4(2α – 1)γ |t|2(2α–1)η(t)

2[( 1
2 + 2α2γ |t|2(2α–1))η(t) + 1

2 ] 1
2

(5)

and g ′
γ (t)t = –g ′

γ (–t)t. Define Gγ (t) =
∫ t

0 gγ (s) ds. Then the inverse function G–1
γ (t) exists

and is an odd function. Furthermore, Gγ , G–1
γ ∈ C∞(R,R).

Lemma 2.1 The following properties hold:

lim
t→0

G–1
γ (t)
t

= 1; lim
t→∞

G–1
γ (t)
t

=
√

2; (6)
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√
4(4α – p)

16α – 2 – 3p
|t| ≤ ∣∣G–1

γ (t)
∣∣ ≤ √

2|t|, for all t ∈R and p ≤ 4α; (7)

√
4(6 – p)
22 – 3p

|t| ≤ ∣∣G–1
γ (t)

∣∣ ≤ √
2|t|, for all t ∈ R and p ≥ 4α; (8)

–C ≤ g ′
γ (t)t

gγ (t)
≤ (8α – 2 – p)(p – 2)

16α – 2 – 3p
, for all t ∈R and p ≤ 4α; (9)

–C ≤ g ′
γ (t)t

gγ (t)
≤ (6 – p)(p – 2)

14 – 3p
, for all t ∈R and p ≥ 4α. (10)

Proof The proofs of (6)–(8) are similar to those of Lemma 2.1 in [20], so we omit them.
For the case (9), By the definition of gγ and (3), we obtain

g ′
γ (t)t

gγ (t)
≥ –C( 1

2 + 2α2γ t2(2α–1))
√

η(t)
(1 + 4α2γ t2(2α–1))η(t) + 1

≥
⎧
⎨

⎩
–C if 0 ≤ t < ( p–2

8α2γ (4α–p) )
1

2(2α–1) ,

0 if t ≥ ( p–2
8α2γ (4α–p) )

1
2(2α–1) .

Moreover, for 0 ≤ t < ( p–2
8α2γ (4α–p) )

1
2(2α–1) , we know that (p – 2) + (4p – 16α)α2γ t2(2α–1) ≥

p–2
2 > 0. Hence

p – 2
2

–
g ′
γ (t)t

gγ (t)

=
[(p – 2) + (4p – 16α)α2γ t2(2α–1)]η(t) – η′(t)t(1 + 4α2γ t2(2α–1)) + p – 2

4g2
γ (t)

≥ p – 2
2[(1 + 4α2γ t2(2α–1))η(t) + 1]

≥ (p – 2)(4α – p)
16α – 2 – 3p

,

which yields the result.
For the case (10), since p ≥ 4α, it is easy to see that (p – 2) + (4p – 16α)α2γ t2(2α–1) > 0.

Then

p – 2
2

–
g ′
γ (t)t

gγ (t)
≥ p – 2

2[(1 + 4α2γ t2(2α–1))η(t) + 1]
≥ (p – 2)(6 – p)

22 – 3p
. �

According to the properties of gγ , we will focus on the existence of positive solutions for
the following general quasilinear Schrödinger equation:

– div
(
g2
γ (u)∇u

)
+ gγ (u)g ′

γ (u)|∇u|2 + V (x)u = |u|p–2u, x ∈R
N . (11)

The energy functional of (11) is

Eγ (u) =
1
2

∫

RN
g2
γ (u)|∇u|2 dx +

1
2

∫

RN
V (x)u2 dx –

1
p

∫

RN
|u|p dx.

Furthermore, we introduce Gγ (t) =
∫ t

0 gγ (s) ds and the change of variables u = G–1
γ (v). Then

that functional Eγ can be rewritten as

Jγ (v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V (x)

∣
∣G–1

γ (v)
∣
∣2 dx –

1
p

∫

RN

∣
∣G–1

γ (v)
∣
∣p dx.
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This means that the function v is the solution of the following equation:

–�v + V (x)
G–1

γ (v)
gγ (G–1

γ (v))
–

|G–1
γ (v)|p–2G–1

γ (v)
gγ (G–1

γ (v))
= 0, x ∈R

N . (12)

From Lemma 2.1, Jγ is well defined in H1(RN ) and of class C1.

Lemma 2.2 Assume that V (x) = μ > 0 and h(v) = |G–1
γ (v)|p–2G–1

γ (v)
gγ (G–1

γ (v)) – μ
G–1

γ (v)
gγ (G–1

γ (v)) . Then

lim
v→0

h(v)
v

= –μ, lim
v→∞

h(v)

v
N+2
N–2

= 0

and there is a ξ > 0 such that H(ξ ) =
∫ ξ

0 h(s) ds > 0.

Proof From Lemma 2.1, we have G–1
γ (v) → 0 and gγ (G–1

γ (v)) → 1 as v → 0. G–1
γ (v) → ∞

and gγ (G–1
γ (v)) → 1√

2 as v → ∞. Hence

lim
v→0

h(v)
v

= lim
v→0

|G–1
γ (v)|p–2G–1

γ (v)
vgγ (G–1

γ (v))
– μ lim

v→0

G–1
γ (v)

vgγ (G–1
γ (v))

= –μ,

lim
v→∞

h(v)

v
N+2
N–2

= lim
v→∞

|G–1
γ (v)|p–2G–1

γ (v)

G–1
γ (v)

N+2
N–2

G–1
γ (v)

N+2
N–2

v
N+2
N–2 gγ (G–1

γ (v))
– 0 = 0.

Moreover,

∫ Gγ (ξ )

0
h(s) ds =

∫ Gγ (ξ )

0

∣∣G–1
γ (s)

∣∣p–2G–1
γ (s) dG–1

γ (s) – μ

∫ Gγ (ξ )

0
G–1

γ (s) dG–1
γ (s)

=
ξp

p
–

μξ

2
.

Hence, there is a ξ > 0 such that H(ξ ) =
∫ ξ

0 h(s) ds > 0. �

Lemma 2.3 Assume that (V1) holds. Then any (PS) sequence {vn} of Jγ is bounded.

Proof Let {vn} be a (PS) sequence, we have

Jγ (vn) =
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)

∣
∣G–1

γ (vn)
∣
∣2 dx –

1
p

∫

RN

∣
∣G–1

γ (vn)
∣
∣p dx

= cγ + on(1), (13)

〈
J ′
γ (vn),ψ

〉
=

∫

RN
∇vn∇ψ dx +

∫

RN
V (x)

G–1
γ (vn)

gγ (G–1
γ (vn))

ψ dx

–
∫

RN

|G–1
γ (vn)|p–2G–1

γ (vn)
gγ (G–1

γ (vn))
ψ dx = o

(‖ψ‖)

for all ψ ∈ H1(
R

N)
. (14)
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Taking ψn = G–1
γ (vn)gγ (G–1

γ (vn)). From Lemma 2.1, we can get

|∇ψn| =
∣∣
∣∣

[
1 +

G–1
γ (vn)g ′

γ (G–1
γ (vn))

gγ (G–1
γ (vn))

]
∇vn

∣∣
∣∣ ≤ C0|∇vn|

and |ψn| ≤
√

16α–2–3p
2(4α–p) |vn| if p ≤ 4α, |ψn| ≤

√
22–3p
2(6–p) |vn| if p ≥ 4α.

If p ≤ 4α, combining (13), (14) and (9) of Lemma 2.1, we get

pcγ + o(1) + o(1)‖vn‖ ≥ (p – 2)(4α – p)
16α – 2 – 3p

∫

RN
|∇vn|2 dx +

p – 2
2

∫

RN
V (x)

∣∣G–1
γ (vn)

∣∣2 dx

≥ (p – 2)(4α – p)
16α – 2 – 3p

‖v‖2.

If p ≥ 4α, combining (13), (14) and (10) of Lemma 2.1, we get

pcγ + o(1) + o(1)‖vn‖ ≥ (p – 2)(6 – p)
22 – 3p

∫

RN
|∇vn|2 dx +

p – 2
2

∫

RN
V (x)

∣
∣G–1

γ (vn)
∣
∣2 dx

≥ (p – 2)(6 – p)
22 – 3p

‖v‖2.

This shows the boundedness of {vn} in H1(RN ). �

3 The proof of theorems

Proof of Theorem 1.1 If V (x) = μ > 0, from Lemma 2.2, a standard method similar to the
proof of [6] indicates that there is a solution vγ of Eq. (12) satisfies: (i) vγ > 0 is spherically
symmetric and vγ decrease with respect to |x|; (ii) vγ ∈ C2(RN ); (iii) vγ together with its
derivatives up to order 2 have exponential decay at infinity: |Dαvγ | ≤ Ce–δ|x|, x ∈ R

N , for
some C, δ > 0 and |α| ≤ 2. Then, according the techniques of [2, 10, 20], we can deduce that
uγ = G–1(vγ ) is a solution of problem (1) and ‖∇uγ ‖∞ ≤ C. Moreover, there is a u0, such
that uγ = G–1(vγ ) → u0, where u0 is a nonnegative solution of problem –u+μu = |u|p–2u
inR

N . Furthermore, similar to the proof of Lemma 4.5 in [20], we can deduce that uγ → u0

in H2(RN ).
Similar to the proof of Lemma 5.5 in [3] or Lemma 4.6 in [20], we know that |vγ | ≤

C
|x| ‖vγ ‖ ≤ C

|x| , |x| ≥ 1. Then, for any ε > 0 and q > 2, there exists R > 0 independent of γ ,
such that

∥
∥∥∥–μ

G–1
γ (vγ )

gγ (G–1
γ (vγ ))

+
|G–1

γ (vγ )|p–2G–1
γ (vγ )

gγ (G–1
γ (vγ ))

∥
∥∥∥

Lq(RN \BR(0))
< ε,

‖μu0‖Lq(RN \BR(0)) +
∥∥|u0|p–2u0

∥∥
Lq(RN \BR(0)) < ε.

From ‖uγ ‖∞ = ‖G–1
γ (vγ )‖∞ ≤ C, we get G–1

γ (vγ ) → u0, a.e. in R
N and

–μ
G–1

γ (vγ )
√

1 + 2α2γ |G–1
γ (vγ )|2(2α–1)

→ –μu0, a.e. in R
N .
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Using the Lebesgue dominated convergence theorem, we have

∥
∥∥∥–μ

G–1
γ (vγ )

√
1 + 2α2γ |G–1

γ (vγ )|2(2α–1)
– μu0

∥
∥∥∥

Lq(BR(0))
+

∥∥|uγ |p–2uγ – |u0|p–2u0
∥∥

Lq(BR(0)) → 0.

Hence lim supγ→0+ ‖�(vγ – u0)‖Lq ≤ 2ε. From the arbitrariness of ε, we have vγ → u0

in W 2,q(RN ) for any q > 2 as γ → 0+. From the Sobolev embedding, we get vγ → u0 in
C1,α(RN ). Moreover, the bootstrap arguments indicate that vγ → u0 in C2(RN ).

From the definition of vγ , we have

|vγ – uγ | =
∣
∣∣∣

∫ uγ

0

(√
1 + 2α2γ |t|2(2α–1) – 1

)
dt

∣
∣∣∣ ≤ α2γ u4α–1

γ

4α – 1
.

Hence supx∈RN |vγ (x) – uγ (x)| ≤ Cγ ‖uγ ‖3∞ → 0 as γ → 0.
Furthermore, from the definition of vγ , we know that ∇vγ = gγ (uγ )∇uγ and

sup
x∈RN

∣∣∇vγ (x) – ∇uγ (x)
∣∣ = sup

x∈RN

∣∣(gγ (uγ ) – 1
)∇uγ

∣∣ = sup
x∈RN

∣∣∣
∣

2α2γ u2(2α–1)
γ ∇uγ

√
1 + 2α2γ u2(2α–1)

γ + 1

∣∣∣
∣

≤ sup
x∈RN

∣∣α2γ u2(2α–1)
γ ∇uγ

∣∣ ≤ α2γ
∣∣|uγ |∣∣2(2α–1)

∞
∣∣|∇uγ |∣∣∞ → 0,

sup
x∈RN

∣∣
∣∣–μ

G–1
γ (vγ )

gγ (G–1
γ (vγ ))

+
|G–1

γ (vγ )|p–2G–1
γ (vγ )

gγ (G–1
γ (vγ ))

– μuγ – |uγ |p–2uγ

∣∣
∣∣ → 0

as γ → 0. On the other hand,

|�uγ | =
∣∣
∣∣

1
1 + 2α2γ |uγ |2(2α–1)

[
2(2α – 1)α2γ |uγ |4α–4uγ |∇uγ |2 –μuγ + |uγ |p–2uγ

]
∣∣
∣∣ ≤ C.

It indicates that

sup
x∈RN

∣
∣�(vγ – uγ )

∣
∣

≤ sup
x∈RN

∣∣2α2γ u2(2α–1)
γ �uγ

∣∣ + sup
x∈RN

∣∣2(2α – 1)α2γ u4α–3
γ |∇uγ |2∣∣

+ sup
x∈RN

∣
∣∣∣–μ

G–1
γ (vγ )

gγ (G–1
γ (vγ ))

+
|G–1

γ (vγ )|p–2G–1
γ (vγ )

gγ (G–1
γ (vγ ))

– μuγ – |uγ |p–2uγ

∣
∣∣∣ → 0. (15)

As in [3] Lemma 5.5, or [20] Lemma 4.6, (15) together with the Sobolev interpolation
inequality yields

sup
x∈RN

∣∣Dj(vγ – uγ )
∣∣ → 0, |j| ≤ 2.

Multiplying uγ by (1), we have

∫

x∈RN

(
1 + 4α3γ u2

γ

)|∇uγ |2 + μu2
γ – up

γ dx = 0.
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This implies that

∫

x∈RN
μu2

γ – up
γ < 0.

If uγ (0) = ‖uγ ‖L∞ ≤ μ
1

p–2 , one has μu2
γ – up

γ ≥ 0, from which we arrive at a contradic-

tion. Then we get uγ (0) > μ
1

p–2 . Since uγ → u0 in C2, we can obtain u0(0) ≥ μ
1

p–2 . By the
maximum principle, we finally get u0 > 0. �

The proof of Theorem 1.2 From Lemma 2.1, a standard discussion shows that Jγ satis-
fies the mountain pass geometric hypothesis. Hence, there exists a (PS) sequence {vn} ⊂
H1(RN ), such that Jγ (vn) → cγ and J ′

γ (vn) → 0, where cγ = infξ∈Γγ supt∈[0,1] Jγ (ξ (t)), Γγ =
{ξ (t) ∈ C([0, 1], H1(RN )) : ξ (0) = 0, ξ (1) �= 0, Jγ (ξ (1)) < 0}. Then, from Lemma 2.3, we see
that the sequence {vn} is bounded. This indicates that there is a subsequence of {vn},
denoted still by {vn}, there is vγ ∈ H1(RN ) such that vn ⇀ vγ in H1(RN ), vn → vγ in
Lq

loc(RN ), q ∈ [2, 2∗). Hence, using Lebesgue dominated convergence theorem, it is easy
to see that J ′

γ (vγ ) = 0. Furthermore, we can replace vn by |vn|. Hence, we can assume that
vn ≥ 0 in R

N and vγ ≥ 0. If vγ �= 0, then vγ is a positive solution of Eq. (12). By contradic-
tion, we assume that vγ = 0. In this time, consider the functional J∞

γ : H1(RN ) →R by

J∞
γ =

1
2

∫

RN

(|∇vn|2 + V∞
∣
∣G–1

γ (vn)
∣
∣2)dx –

1
p

∫

RN

∣
∣G–1

γ (vn)
∣
∣p dx.

Then we get a contradiction as in a similar proof to [9, 19, 20] by using the compactness
lemma [13]. Hence, vγ is a nontrivial solution of Eq. (12). By using the fact that G–1

γ (t) ∈ C2

together with Lemma 2.1, a direct computation shows that u = G–1
γ (v) ∈ C2(RN )∩H1(RN ).

If vγ is a critical point for Jγ , we know that

∫

RN

[
∇v∇ψ + V (x)

G–1
γ (v)

gγ (G–1
γ (v))

ψ –
|G–1

γ (v)|p–2G–1
γ (v)

gγ (G–1
γ (v))

ψ

]
dx = 0

for all ψ ∈ H1(
R

N)
. (16)

Taking ψ = gγ (u)ϕ ∈ C2
0(RN ) ⊂ H1(RN ) in (16), we have

∫

RN

[
g2
γ (u)∇u∇ϕ + gγ (u)g ′

γ (u)|∇u|2ϕ + V (x)uϕ + |u|p–2uϕ
]

dx = 0.

It means that u is a classical solution of (11). In the next part of this section, we will prove
that u = G–1(vγ ) is the solution of Eq. (1).

If p ≤ 4α, we define the functional P : H1(RN ) →R by

P(v) =
1
2

∫

RN
|∇v|2 dx + 2V∞

∫

RN
|v|2 dx –

1
p

[
4(4α – p)

16 – 2α – 3p

] p
2
∫

RN
|v|p dx.

Then the function v satisfies the equation

–�v + 4V∞v =
[

4(4α – p)
16 – 2α – 3p

] p
2 |v|p–2v, x ∈R

N . (17)
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From Jeanjean and Tanaka [10], if we consider the set Γ = {ξ ∈ C([0, 1], H1(RN )) : ξ (0) =
0, ξ (1) �= 0, P(ξ (1)) < 0}. Then m = infξ∈Γ supt∈[0,1] P(ξ (t)) is the least energy level of the
functional P(v).

Since vγ is a critical point of Jγ , one has

pcγ = pJγ (vγ ) –
〈
J ′
γ (vγ ), G–1

γ (vγ )gγ

(
G–1

γ (vγ )
)〉 ≥ (p – 2)(4α – p)

16 – 2α – 3p

∫

RN
|∇vγ |2 dx.

This indicates that

‖∇vγ ‖2
2 ≤ p(16 – 2α – 3p)

(p – 2)(4α – p)
cγ .

Furthermore, from the property (7) of Lemma 2.1, we can deduce that Jγ (v) ≤ P(v) and
Γ ⊂ Γγ . Hence

cγ = inf
ξ∈Γγ

sup
t∈[0,1]

Jγ
(
ξ (t)

) ≤ inf
ξ∈Γ

sup
t∈[0,1]

Jγ
(
ξ (t)

) ≤ inf
ξ∈Γ

sup
t∈[0,1]

P
(
ξ (t)

)
:= m

and

‖∇vγ ‖2
2 ≤ p(16 – 2α – 3p)

(p – 2)(4α – p)
m. (18)

Using the Sobolev inequality, we can get

‖vγ ‖2∗ ≤
√

pm(16 – 2α – 3p)
S(p – 2)(4α – p)

, (19)

where S is the best Sobolev constant.
If p ≥ 4α, we define the function P : H1(RN ) →R by

P(v) =
1
2

∫

RN
|∇v|2 dx + 2V∞

∫

RN
|v|2 dx –

1
p

[
4(6 – p)
22 – 3p

] p
2
∫

RN
|v|p dx,

the set Γ and m are defined like p ≤ 4α. In this time, if vγ is a critical point of Jγ ,

pcγ = pJγ (vγ ) –
〈
J ′
γ (vγ ), G–1

γ (vγ )gγ

(
G–1

γ (vγ )
)〉 ≥ (p – 2)(6 – p)

22 – 3p

∫

RN
|∇vγ |2 dx.

Hence, we can deduce that

‖∇vγ ‖2
2 ≤ p(22 – 3p)

(p – 2)(6 – p)
m (20)

and

‖vγ ‖2∗ ≤ S– 1
2 ‖∇vγ ‖2 ≤

√
pm(22 – 3p)

S(p – 2)(6 – p)
. (21)
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Then, by the same proof as Proposition 3.6 of [20], we can deduce that there exists a con-
stant K > 0 independent of γ such that ‖vγ ‖∞ ≤ K . If p ≤ 4α, let γ0 := p–2

32α2(4α–p)(2K )2(2α–1) ,
we have

‖uγ ‖∞ =
∥∥G–1

γ (vγ )
∥∥ ≤ 2‖vγ ‖∞ ≤ 2K ≤

(
p – 2

32α2γ (4α – p)

) 1
2(2α–1)

for all γ ∈ (0,γ0).

If p ≥ 4α, let γ0 := p–2
32α2(6–p)(2K )2(2α–1) , we get

‖uγ ‖∞ =
∥∥G–1

γ (vγ )
∥∥ ≤ 2‖vγ ‖∞ ≤ 2K ≤

(
p – 2

32α2γ (6 – p)

) 1
2(2α–1)

for all γ ∈ (0,γ0).

Hence, we can deduce that gγ (uγ ) =
√

1 + 2α2γ |uγ |2(2α–1) if γ ∈ (0,γ0) and so uγ = G–1
γ (vγ )

is a positive solution of (1). �
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