
Guo et al. Boundary Value Problems         (2019) 2019:59 
https://doi.org/10.1186/s13661-019-1172-6

R E S E A R C H Open Access

The existence and Hyers–Ulam stability of
solution for an impulsive Riemann–Liouville
fractional neutral functional stochastic
differential equation with infinite delay of
order 1 < β < 2
Yuchen Guo1, Xiao-Bao Shu1*, Yongjin Li2 and Fei Xu3

*Correspondence:
sxb0221@163.com
1Department of Mathematics and
Econometrics, Hunan University,
Changsha, China
Full list of author information is
available at the end of the article

Abstract
This paper deals with the existence of solution for an impulsive Riemann–Liouville
fractional neutral functional stochastic differential equation with infinite delay of
order 1 < β < 2 and its Hyers–Ulam stability. We prove the mild solutions for the
equation using basic theorems of fractional differential equation. The existence result
of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the
Hyers–Ulam stability of the solution.
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1 Introduction
Fractional differential equation [1], due to its applications in describing memory and
hereditary properties of various materials and processes in natural sciences and engineer-
ing, has been widely investigated. However, because of disturbance, the behaviors of many
real-word systems are not a settled process. Thus, it is crucial to study stochastic differ-
ential functions with impulse [2]. A variety of results on the theory of Caputo fractional
functional stochastic equations and the Hyers–Ulam stability [3–8] of such function have
been obtained. Cui and Yan [9] studied the existence of mild solutions for neutral fractional
stochastic integral differential equations with infinite delay using Sadovekii’s fixed point
theorem. Sakthivel [10] studied the existence of solution to nonlinear fractional stochas-
tic differential equations. Riemann–Liouville fractional derivatives or integrals are strong
tools for resolving some fractional differential problems in the real world. However, only a
few results on such derivatives or integrals have been reported in the literature. It is possi-
ble to attribute physical meaning to the initial conditions expressed in terms of Riemann–
Liouville fractional derivatives or integrals which have been verified by Heymans and Pod-
lubny [11]. Such initial conditions are more appropriate in modeling a real-word system.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-019-1172-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-019-1172-6&domain=pdf
mailto:sxb0221@163.com


Guo et al. Boundary Value Problems         (2019) 2019:59 Page 2 of 18

Due to the lack of results on the existence and stability of solutions to Riemann–Liouville
fractional stochastic differential equations in the literature, it is of great significance to per-
form some investigations in this field. Weera Yukunthorn et al. [12] studied the existence
and uniqueness of solutions to the impulsive multiorder Riemann–Liouville fractional dif-
ferential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dαk
tk x(t) = f (t, x(t)), t ∈ J , t �= tk ,

�̃x(tk) = ϕk(x(tk)), �∗x(tk) = ϕ∗
k (x(tk)), k = 1, 2, . . . , m,

x(0) = 0, Dα0–1x(0) = β ,

where β ∈ R, 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , f : J × R → R is a continuous
function, ϕk , ϕ∗

k ∈ C(R, R) for k = 1, 2, . . . , m, and Dαk
tk is the Riemann–Liouville fractional

derivative of order 1 < αk < 2 on intervals Jk for k = 0, 1, 2, . . . , m. The notation �̃x(tk) is
defined by

�̃x(tk) = I1–αk
tk x

(
t+
k
)

– I1–αk–1
tk–1 x(tk), k = 1, 2, . . . , m,

and �∗x(tk) is defined by

�∗x(tk) = I2–αk
tk x

(
t+
k
)

– I2–αk–1
tk–1 x(tk), k = 1, 2, . . . , m,

where I2–αk
tk is the Riemann–Liouville fractional integral of order 2 – αk > 0 on Jk . By us-

ing Banach’s fixed point theorem, the authors developed the existence theorem for such
equations.

Motivated by this work, we design the following impulsive Riemann–Liouville fractional
neutral functional stochastic differential equation with infinite delay:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ [x(t) – g(t, xt)] = f (t, xt) + σ (t, xt) dω(s)
dt , t ∈ [0, T], t �= tk ,

�I2–β

0+ x(tk) = Ik(x(t–
k )), �I1–β

0+ x(tk) = Jk(x(t–
k )),

I2–β

0+ [x(0) – g(0, x0)] = ϕ1 ∈ Bv, I1–β

0+ [x(0) – g(0, x0)] = ϕ2 ∈ Bv,

(1.1)

where k = 1, 2, . . . , m and Dβ

0+ is the Riemann–Liouville fractional derivative of order 1 <
β < 2. We have 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T . Let Tk = (tk , tk+1], k = 1, 2, . . . , m,
T0 = [0, t1]. Here, ω(t) : t ∈ J is a standard Wiener process, f : J ×Bv, g : J ×Bv and σ : J ×Bv

are given functions, where Bv is the phase space defined in Sect. 2. The impulsive func-
tions Ik , Jk : H → H (k = 1, 2, . . . , m) are appropriate functions. The notations �I2–β

0+ x(tk),
�I1–β

0+ x(tk) are defined by

�I2–β

0+ x(tk) = I2–β

0+ x
(
t+
k
)

– I2–β

0+ x
(
t–
k
)
,

�I1–β

0+ x(tk) = I1–β

0+ x
(
t+
k
)

– I1–β

0+ x
(
t–
k
)
, k = 1, 2, . . . , m,

where I2–β

0+ , I1–β

0+ is the Riemann–Liouville fractional integral of order 2 – β , 1 – β , re-
spectively. The histories xt : (– ∝, 0] → H defined by xt(s) = x(t + s), s ≤ 0, belong to some
abstract phase space Bv. By using Mönch’s fixed point theorem via the measure of noncom-
pactness as well as the basic theory of Hyers–Ulam stability, we investigate the existence
and stability of the solution to the equation.
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The rest of the paper is organized as follows. In Sect. 2, some basic definitions, notations,
and preliminary facts that are used throughout the paper are presented. In Sect. 3 we prove
the solution of the equation and present the main results for problem (1.1).

2 Preliminaries
In this section, we introduce some notations, definitions, lemmas, and preliminary facts
that will be used to establish our main results.

We consider two separable Hilbert spaces K and H . Thus, L(K , H) is a space of bounded
linear operators from K into H . In this passage, we use the same notation ‖·‖ to denote the
norms in K and H and L(K , H), and we use (·, ·) to denote the inner product of H and K .
We denote (Ω , F , P) to be a complete filtered probability space satisfying that F0 contains
all P-null sets of F . Let W = (Wt)t≥0 be a Q-Winner process defined on (Ω , F , P) with
the covariance operator Q such that Tr Q < ∞. We suppose that there exists a complete
orthonormal system {ek}k≤1 in K , a bounded sequence of nonnegative real numbers λk

such that Qek = λkek , where k = 1, 2, . . . , and a sequence of independent Brownian motions
{βk}k≥1 such that

(
ω(t), e

)

K =
∞∑

k=1

√
λk(ek , e)Kβk(t).

Let J = [0, T], J0 = [0, t1], Jk = (tk , tk+1] for k = 1, 2, . . . , m. Let

PC(J , H) :=
{

x : J → H , is continuous everywhere except for some tk at which

x
(
t+
k
)

and x
(
t–
k
)

exist, and x
(
t–
k
)

= x(tk), k = 1, 2, . . . , m
}

.

We introduce the space C2–β ,k(Jk , H) := {x : Jk → H : t2–βx(t) ∈ C(Jk , H)} with the norm
‖x‖C2–β ,k = supt∈Jk

E|t2–β‖x(t)‖| and PC2–β = {x : J → H : for each t ∈ Jk and t2–βx(t) ∈
C(Jk , H), k = 0, 1, 2, . . . , m} with the norm

‖x‖PC2–β
= sup

t∈Jk

E
∣
∣t2–β

∥
∥x(t)

∥
∥
∣
∣ : k = 0, 1, 2, . . . , m.

Before introducing the fractional-order functional differential equation with infinite de-
lay, we define the abstract phase space Bv. Let v : (∞, 0] → (0,∞) be a continuous function
that satisfies l =

∫ 0
–∞ v(t) dt < +∞. The Hilbert space (Bv,‖ · ‖Bv ) induced by v is then given

by

Bv :=
{

ϕ : (–∞, 0) → H : for any c > 0,ϕ(θ ) is a bounded and measurable

function on [–c, 0], and
∫ 0

–∞
v(s) sup

s≤θ≤0

(
E
∣
∣ϕ(θ )

∣
∣2) 1

2 ds < +∞
}

,

endowed with the norm ‖ϕ‖Bv :=
∫ 0

–∞ v(s) sups≤θ≤0(E|ϕ(θ )|2) 1
2 ds.

Define the following space:

B′
v :=

{
ϕ : (–∞, T] → X : ϕk ∈ C1(Jk , X), k = 0, 1, 2, . . . , m, and there exist

ϕ
(
t–
k
)

and ϕ
(
t+
k
)

with ϕ(tk) = ϕ
(
t–
k
)
,ϕ0 = φ ∈ Bv

}
,

where ϕk is the restriction of ϕ to Jk , J0 = [0, t1], Jk = (tk , tk+1], k = 1, 2, . . . , m.
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We use ‖ · ‖B′
v to denote a seminorm in the space B′

v defined by

‖ϕ‖B′
v := ‖φ‖Bv + max

{‖ϕk‖Jk (2–β), k = 0, 1, . . . , m
}

,

where

φ = ϕ0, ‖ϕk‖Jk (2–β) = sup
s∈Jk

(
E
∣
∣s2–β

∥
∥ϕ(s)

∥
∥
∣
∣2) 1

2 .

Now we consider some definitions about fractional differential equations.

Definition 2.1 The Riemann–Liouville fractional derivative of order α > 0 of a continu-
ous function f ; (a, b) → H is defined by

Dα
a+ f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1f (s) ds, n – 1 < α < n, t ∈ (a, b),

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right-hand
side is pointwise defined on (a, b), Γ is the gamma function.

Definition 2.2 The Riemann–Liouville fractional integral of order α > 0 of a continuous
function f : (a, b) → H is defined by

Iα
a+ f (t) =

1
Γ (α)

∫ t

a
(t – s)α–1f (s) ds, t ∈ (a, b),

provided that the right-hand side is pointwise defined on (a, b).

Lemma 2.1 (see [13]) Let α > 0. Then, for x ∈ C(a, b) ∩ L(a, b), we have

Dα
a+ Iα

a+ x(t) = x(t),

Iα
a Dα

a x(t) = x(t) –
n∑

j=1

(In–α
a )(n–j)x(a)
Γ (α – j + 1)

(t – a)α–j,

where n – 1 < α < n.

Lemma 2.2 (see [13]) If α ≥ 0 and β > 0, then

Iα
a+ (t – s)β–1 =

Γ (β)
Γ (β + α)

(t – a)β+α–1,

Dα
a+ (t – s)β–1 =

Γ (β)
Γ (β – α)

(t – a)β–α–1.

Before investigating the solutions to Eq. (1.1), we consider a simplified version of (1.1),
given by

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ x(t) = f (t), t ∈ [0, T], t �= tk ,

�I2–β

0+ x(tk) = yk , �I1–β

0+ x(tk) = yk ,

I2–β

0+ x(0+) = x0, I1–β

0+ x(0+) = x1,

(2.1)
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where k = 1, 2, . . . , m, x0, x1, yk , yk ∈ H and Dβ

0+ is the Riemann–Liouville fractional deriva-
tive of order 1 < β < 2.

Theorem 2.1 Let 1 < β < 2 and f : J → H be continuous. Then x ∈ PC2–β (J , H) is a solution
of (2.1) if and only if x is a solution of the following fractional integral equation:

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ (β)

∫ t
0 (t – s)β–1f (s) ds + x1

tβ–1

Γ (β) + x0
tβ–2

Γ (β–1) , t ∈ [0, t1],
1

Γ (β)
∫ t

0 (t – s)β–1f (s) ds + x1
tβ–1

Γ (β) + x0
tβ–2

Γ (β–1)

+
∑k

i=1 yi
tβ–2

Γ (β–1) ( t
β–1 – ti) +

∑k
i=1 yi

tβ–2

Γ (β–1) , t ∈ (tk , tk+1],

(2.2)

where k = 1, 2, . . . , m.

Proof For t ∈ (0, t1], by Lemmas 2.1 and 2.2, we obtain

Iβ
0 Dβ

0 x(t) = x(t) –
2∑

j=1

(I2–β

0+ )(2–j)x(0+)
Γ (β – j + 1)

(t – 0)β–j

= x(t) –
(I2–β

0+ )(1)x(0+)
Γ (β)

(t – 0)β–1 +
I2–β

0+ x(0+)
Γ (β – 1)

(t – 0)β–2

= x(t) –
I1–β

0+ x(0+)
Γ (β)

tβ–1 +
I2–β

0+ x(0+)
Γ (β – 1)

tβ–2

= x(t) – x1
tβ–1

Γ (β)
– x0

tβ–2

Γ (β – 1)
.

Similarly, for the interval t ∈ (tk , tk+1], we have

x(t) =
1

Γ (β)

∫ t

0
(t – s)β–1f (s) ds + x1

tβ–1

Γ (β)
+ x0

tβ–2

Γ (β – 1)

+
k∑

i=1

yi
tβ–2

Γ (β – 1)

(
t

β – 1
– ti

)

+
k∑

i=1

yi
tβ–2

Γ (β – 1)
.

Hence, (2.2) is a solution to problem (2.1). �

Next, based on the theorem, we consider the solutions of Eq. (1.1).

Definition 2.3 Suppose that function x : (– ∝, T] → H . The solution of the fractional
differential equation, given by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = φ ∈ Bv, t ∈ (– ∝, 0],
1

Γ (β)
∫ t

0 (t – s)β–1f (s, xs) ds + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, xs) dω(s) + g(t, xt)

+ ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) , t ∈ [0, t1],
1

Γ (β)
∫ t

0 (t – s)β–1f (s, xs) ds + g(t, xt) + ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1)

+ 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, xs) dω(s) +

∑k
i=1 Ji(x(t–

i )) tβ–2

Γ (β–1) ( t
β–1 – ti)

+
∑k

i=1 Ii(x(t–
i )) tβ–2

Γ (β–1) , t ∈ (tk , tk+1], k = 1, 2, . . . , m,

will be called a fundamental solution of problem (1.1).
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Lemma 2.3 (see [14]) Assume x ∈ B′
v. Then, for t ∈ J , xt ∈ Bv. Moreover,

l
(
E
∥
∥x(t)

∥
∥2) 1

2 ≤ ‖xt‖Bv ≤ ‖φ‖Bv + l sup
s∈[0,t]

(
E
∥
∥s2–βx(s)

∥
∥2) 1

2 ,

where l =
∫ 0

–∝ v(t) dt < + ∝, φ = x0.

Next, we consider some definitions and properties of the measure of noncompactness.
The Hausdorff measure of noncompactness β(·) defined on each bounded subset Ω of

the Banach space B is given by

β(Ω) = inf{ε > 0;Ω has a finite ε net in B}.

Some basic properties of β(·) are given in the following lemma.

Lemma 2.4 (see [15, 16]) If B is a real Banach space and Ω ,Λ ⊂ B are bounded, then the
following properties are satisfied:

(1) Monotone: if for all bounded subsets Ω , Λ of B, Ω ⊆ Λ implies β(Ω) ≤ β(Λ);
(2) Nonsingular: β({x} ∪ Ω) = β(Ω) for every x ∈ H and every nonempty subset Ω ⊂ H ;
(3) Regular: Ω is precompact if and only if β(Ω) = 0;
(4) β(Ω + Λ) ≤ β(Ω) + β(Λ), where Ω + Λ = {x + y; x ∈ Ω , y ∈ Λ};
(5) β(Ω ∪ Λ) ≤ max{β(Ω),β(Λ)};
(6) β(λΩ) ≤ |λ|β(Ω);
(7) If W ⊂ C(J ; B) is bounded and equicontinuous, then t → β(W (t)) is continuous on J ,

and

β(W ) ≤ max
t∈J

β
(
W (t)

)
,

β

(∫ t

0
W (s) ds

)

≤
∫ t

0
β
(
W (s)

)
ds, for all t ∈ J ,

where
∫ t

0
W (s) ds =

{∫ t

0
u(s) ds : for all u ∈ W , t ∈ J

}

;

(8) If {un}∞1 is a sequence of Bochner integrable functions from J into B with
‖un(t)‖ ≤ m̂(t) for almost all t ∈ J and every n ≥ 1, where m̂(t) ∈ L(J ; R+), then the
function ψ(t) = β({un}∞n=1) belongs to L(J ; R+) and satisfies

β

({∫ t

0
un(s) ds : n ≥ 1

})

≤ 2
∫ t

0
ψ(s) ds;

(9) If W is bounded, then for each ε > 0, there is a sequence {un}∞n=1 ⊂ W such that

β(W ) ≤ 2β
({un}∞n=1

)
+ ε.

The above lemmas about the Hausdorff measure of noncompactness will be used in
proving our main results.
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Lemma 2.5 (see [17]) Let D be a closed convex subset of the Banach space B and 0 ∈ D.
Assume that F : D → B is a continuous map which satisfies Mönch’s condition, that is,
M ⊆ D is countable, M ⊆ co(0 ∪ F(M)) ⇒ M is compact. Then F has a fixed point in D.

Lemma 2.6 (see [18]) If W ⊂ C([0, T]; L0
2(V , Y )), ω is a standard Winer process, then

β

(∫ t

0
W (s) dω(s)

)

≤ √
T · Tr(Q)β

(
W (s)

)
,

where
∫ t

0
W (s) dω(s) =

{∫ t

0
u(s) dω(s) : for all u ∈ W , t ∈ [0, T]

}

.

Next, we consider the Hyers–Ulam stability for the equation.
Consider the following inequality:

E
∥
∥
∥
∥Dβ

0+
[
y(t) – g(t, yt)

]
– f (t, yt) – σ (t, yt)

dω(s)
dt

∥
∥
∥
∥

2

< ε. (2.3)

Definition 2.4 (see [19]) Equation (1.1) is Hyers–Ulam stable if, for any ε > 0, there exists
a solution y(t) which satisfies the above inequality and has the same initial value as x(t),
where x(t) is a solution to (1.1). Then y(t) satisfies

E
∣
∣t2–β

∥
∥y(t) – x(t)

∥
∥
∣
∣2 < Kε,

in which K is a constant.

3 Main result
In this section, we list the following basic assumptions of this paper and prove our main
results.

3.1 Existence
(H1): The function f : J × Bv → H satisfies the following conditions:

(i) f (·,φ) is measurable for all φ ∈ Bv and f (t, ·) is continuous for a.e. t ∈ J .
(ii) There exist a constant α1 ∈ (0,α), m1 ∈ L

1
α1 (J , R+), and a positive integrable

function Ω : R+ → R+ such that

E
∥
∥f (t,φ)

∥
∥2 ≤ m1(t)Ω

(‖φ‖Bv

)
,

for all (t,φ) ∈ J × Bv, where Ω satisfies

lim inf
n→∝

Ω(n)
n

= 0.

(iii) There exist a constant α2 ∈ (0,α) and a function η ∈ L
1
α2 (J , R+) such that,

for any bounded subset F1 ⊂ Bv,

β
(
f (t, F1)

) ≤ η1(t)
[

sup
θ∈(–∝,0]

β
(
F1(θ )

)]
,

for a.e. t ∈ J , where F1(θ ) = {v(θ ) : v ∈ F1} and β is the Hausdorff MNC.
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(H2): The function g : J × Bv → H satisfies the following conditions:
(i) g is continuous, there exist a constant H1 > 0 and

(
E
∥
∥t2–βg(t, x)

∥
∥2) ≤ H1

(
1 + ‖x‖2

Bv

)
.

(ii) There exist a constant α3 ∈ (0,α) and g∗ ∈ L
1
α3 (J , R+) such that, for any

bounded subset F2 ⊂ Bv,

β
(
g(t, F2)

) ≤ g∗(t) sup
θ∈(–∝,0]

β
(
F2(θ )

)
, G = sup

t∈J
g∗(t).

(H3): Ik , Jk : H → H , k = 1, 2, . . . , m, are continuous functions and they satisfy

∥
∥Ik(x)

∥
∥

H ≤ ck‖x‖B′
v ,

∥
∥Jk(x)

∥
∥

H ≤ fk‖x‖B′
v ,

β
(
tβ–2Ik(F3)

) ≤ Kk sup
θ∈(–∝,T]

β
(
F3(θ )

)
,

β
(
tβ–2Jk(F4)

) ≤ Mk sup
θ∈(–∝,T]

β
(
F4(θ )

)
,

where ck , fk , Kk , Mk > 0. F3, F4 ⊂ B′
v.

(H4): The function σ (t, xt) satisfies the following conditions:
(i) There exist a constant α4 ∈ (0,α), m2 ∈ L

1
α4 (J , R+), and a positive integrable

function Ψ : R+ → R+ such that

E
∥
∥σ (t,φ)

∥
∥2 ≤ m2(t)Ψ

(‖φ‖Bv

)

for all (t,φ) ∈ J × Bv, where Ψ satisfies

lim inf
n→∝

Ψ (n)
n

= 0.

(ii) There exists a constant v1 > 0 such that E‖σ (t, x) – σ (t, y)‖2 ≤ v1E‖x – y‖2.
(iii) There exist a constant α5 ∈ (0,α) and a function η2 ∈ L

1
α5 (J , R+) such that,

for any bounded subset F5 ⊂ Bv,

β
(
σ (t, F5)

) ≤ η2(t)
[

sup
θ∈(–∝,0]

β
(
F5(θ )

)]

for a.e. t ∈ J , where F5(θ ) = {v(θ ) : v ∈ F5} and β is the Hausdorff MNC.
(H5):

H1l2 +
(T∗)2

(Γ ∗)2

m∑

i=1

(
f 2
i + c2

i
)

< 1,

M∗ =
2Tβ

Γ (β + 1)
‖η‖

L
1
α2 (J ,R+)

+ G +
T∗

Γ ∗

m∑

i=1

(Mi + Ki)

+
2Tβ+ 1

2
√

Tr(Q)
Γ (β + 1)

‖η2‖
L

1
α4 (J ,R+)

< 1,

where T∗ = max {1, T , T2}, Γ ∗ = min {Γ (β + 1),Γ (β),Γ (β – 1)}.



Guo et al. Boundary Value Problems         (2019) 2019:59 Page 9 of 18

Theorem 3.1 Suppose that conditions (H1)–(H5) are satisfied. Then system (1.1) has at
least one solution on J .

Proof We define the operator Γ : B′
v → B′

v by

Γ x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = φ ∈ Bv, t ∈ (– ∝, 0]
1

Γ (β)
∫ t

0 (t – s)β–1f (s, xs) ds + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, xs) dω(s)

+ g(t, xt) + ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) , t ∈ [0, t1],
1

Γ (β)
∫ t

0 (t – s)β–1f (s, xs) ds + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, xs) dω(s)

+ ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) +
∑k

i=1 Ji(x(t–
i )) tβ–2

Γ (β–1) ( t
β–1 – ti)

+ g(t, xt) +
∑k

i=1 Ii(x(t–
i )) tβ–2

Γ (β–1) , t ∈ (tk , tk+1], k = 1, 2, . . . , m.

The operator Γ has a fixed point if and only if system (1.1) has a solution. For φ ∈ Bv,
denote

φ̂(t) =

⎧
⎨

⎩

φ(t), t ∈ (– ∝, 0],

0, t ∈ J .

Then φ̂(t) ∈ B′
v.

Let x(t) = y(t) + φ̂(t), – ∝< t ≤ T . It is easy to see that y satisfies y0 = 0, t ∈ (– ∝, 0] and

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (β)

∫ t
0 (t – s)β–1f (s, ys + φ̂s) ds + φ̂t) + ϕ2

tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1)

+ g(t, yt) + 1
Γ (β)

∫ t
0 (t – s)β–1σ (x, xs) dω(s), t ∈ [0, t1],

1
Γ (β)

∫ t
0 (t – s)β–1f (s, ys + φ̂s) ds + 1

Γ (β)
∫ t

0 (t – s)β–1σ (s, xs) dω(s)

+ φ̂t) +
∑k

i=1 Ji(y(t–
i ) + ˆφ(t–

i )) tβ–2

Γ (β–1) ( t
β–1 – ti)

+ g(t, yt) + ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1)

+
∑k

i=1 Ii(y(t–
i ) + ˆφ(t–

i )) tβ–2

Γ (β–1) , t ∈ (tk , tk+1], k = 1, 2, . . . , m,

if and only if x(t) satisfies x(t) = φ(t), t ∈ (– ∝, 0], and

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (β)

∫ t
0 (t – s)β–1f (s, xs) ds + 1

Γ (β)
∫ t

0 (t – s)β–1σ (s, xs) dω(s)

+ g(t, xt) + ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) , t ∈ [0, t1],
1

Γ (β)
∫ t

0 (t – s)β–1f (s, xs) ds + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, xs) dω(s)

+ ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) +
∑k

i=1 Ji(x(t–
i )) tβ–2

Γ (β–1) ( t
β–1 – ti)

+ g(t, xt) +
∑k

i=1 Ii(x(t–
i )) tβ–2

Γ (β–1) , t ∈ (tk , tk+1], k = 1, 2, . . . , m.

Define the space (B′′
v ,‖ · ‖B′′

v ) induced by B′
v

B′′
v =

{
y : y ∈ B′

v, y0 = 0
}

,

with the norm

∥
∥y(t)

∥
∥

B′′
v

= sup
{(

E
∣
∣s2–β

∥
∥y(s)

∥
∥
∣
∣2) 1

2 , s ∈ [0, T]
}

.
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Let Br = {y ∈ B′′
v : ‖y‖B′

v ≤ r}. Then, for each r, Br is a bounded, close, and convex subset.
For any y ∈ Br , it follows from Lemma 2.3 that

‖yt + φ̂t‖Bv ≤ ‖yt‖Bv + ‖φ̂t‖Bv

≤ l sup
s∈[0,t]

(
E
∣
∣s2–β

∥
∥x(s)

∥
∥
∣
∣2) 1

2 + ‖φ‖Bv

≤ lr + ‖φ‖Bv = r′.

We define the operator N : B′′
v → B′′

v by

Ny(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (β)

∫ t
0 (t – s)β–1f (s, ys + φ̂s) ds + g(t, yt + φ̂t) + ϕ1

tβ–2

Γ (β–1)

+ ϕ2
tβ–1

Γ (β) + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, ys + φ̂s) dω(s), t ∈ [0, t1],

1
Γ (β)

∫ t
0 (t – s)β–1f (s, ys + φ̂s) ds + g(t, yt + φ̂t)

+ ϕ2
tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1) +
∑k

i=1 Ii(y(t–
i ) + ˆφ(t–

i )) tβ–2

Γ (β–1)

+ 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, ys + φ̂s) dω(s)

+
∑k

i=1 Ji(y(t–
i ) + ˆφ(t–

i )) tβ–2

Γ (β–1) ( t
β–1 – ti), t ∈ (tk , tk+1],

in which k = 1, 2, . . . , m.
Step 1: We prove that there exists some r > 0 such that N(Br) ⊂ Br . If this is not true, then,

for each positive integer r, there exist yr ∈ Br and tr ∈ (– ∝, T] such that ‖(Nyr)(tr)‖2
B′′

v
> r2.

On the other hand, it follows from the assumption that

E
(∣
∣t2–β

r
∥
∥N

(
yr(tr)

)∥
∥
∣
∣2)

≤ 7E
∥
∥
∥
∥

1
Γ (β)

∫ tr

0
(tr – s)β–1t2–β

r f
(
s, (yr)s + φ̂s

)
ds

∥
∥
∥
∥

2

+ 7E
∥
∥t2–β

r g
(
tr , (yr)tr + φ̂tr

)∥
∥2

+ 7E
∥
∥
∥
∥ϕ2

t2–β+β–1
r

Γ (β)

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥ϕ1

t2–β+β–2
r

Γ (β – 1)

∥
∥
∥
∥

2

+ 7E

∥
∥
∥
∥
∥

k∑

i=1

Ji
(
yr

(
t–
i
)

+ ˆφ
(
t–
i
)) t2–β+β–2

r

Γ (β – 1)

(
tr

β – 1
– ti

)∥
∥
∥
∥
∥

2

+ 7E

∥
∥
∥
∥
∥

k∑

i=1

Ii
(
yr

(
t–
i
)

+ ˆφ
(
t–
i
)) t2–β+β–2

r

Γ (β – 1)

∥
∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

1
Γ (β)

∫ tr

0
(tr – s)β–1t2–β

r σ
(
s, (yr)s + φ̂s

)
dω(s)

∥
∥
∥
∥

2

= 7
7∑

i=1

Ii.

From I1 to I7, it follows from (H1)–(H5) that

I1 ≤
∥
∥
∥
∥

T2–β

Γ (β)

∫ tr

0
(tr – s)β–1f

(
s, (yr)s + φ̂s

)
ds

∥
∥
∥
∥

2

≤ T4–2β

Γ 2(β)

∫ tr

0
(tr – s)β–1 ds

∫ tr

0
(tr – s)β–1E

∥
∥f

(
s, (yr)s + φ̂s

)∥
∥2 ds
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≤ T4

Γ 2(β + 1)
m1(t)Ω

(
r′),

I2 ≤ H1
(
1 +

∥
∥(yr)tr + φ̂t

∥
∥

Bv

)

≤ H1 + H1
(
r′)2,

I3 ≤ T2

Γ 2(β)
‖ϕ2‖2

≤ (T∗)2

(Γ ∗)2 ‖ϕ2‖2,

I4 ≤ 1
Γ 2(β – 1)

‖ϕ1‖2

≤ (T∗)2

(Γ ∗)2 ‖ϕ1‖2,

I5 + I6 ≤ T2

Γ 2(β)

∥
∥
∥
∥
∥

k∑

i=1

Ji
(
yr

(
t–
i
)

+ ˆφ
(
t–
i
))

∥
∥
∥
∥
∥

+
1

Γ 2(β – 1)

∥
∥
∥
∥
∥

k∑

i=1

Ii
(
yr

(
t–
i
)

+ ˆφ
(
t–
i
))

∥
∥
∥
∥
∥

2

≤ (T∗)2

(Γ ∗)2

m∑

i=1

(
f 2
i + c2

i
)
r2,

I7 ≤
∥
∥
∥
∥

T2–β

Γ (β)

∫ tr

0
(tr – s)β–1σ

(
s, (yr)s + φ̂s

)
dω

∥
∥
∥
∥

2

≤ T4–2β · Tr(Q)
Γ 2(β)

∫ tr

0
(tr – s)2β–2E

∥
∥σ

(
s, (yr)s + φ̂s

)∥
∥2 ds

≤ T4 · Tr(Q)
Γ 2(β + 1)

m2(t)Ψ
(
r′).

Hence, we have

r <
∥
∥Nyr(tr)

∥
∥

B′′
v

≤ T4

Γ 2(β + 1)
(
m1(t)Ω

(
r′) + Tr(Q)m2(t)Ψ

(
r′)) + H1 + H1

(
r′)2

+
(T∗)2

(Γ ∗)2 ‖ϕ2‖2 +
(T∗)2

(Γ ∗)2 ‖ϕ1‖2 +
(T∗)2

(Γ ∗)2

m∑

i=1

(
f 2
i + c2

i
)
r2.

Dividing both sides by r2 and taking r → + ∝ from

lim
r→∝

r′

r
= lim

r→∝
lr + ‖φ‖Bv

r
= l, lim

n→∝ inf
Ω(n)

n
= 0, and lim

n→∝ inf
Ψ (n)

n
= 0

yield

H1l2 +
(T∗)2

(Γ ∗)2

m∑

i=1

(
f 2
i + c2

i
)

< 1.

This contradicts (H5). Thus, for some number r, N(Br) ⊂ Br .



Guo et al. Boundary Value Problems         (2019) 2019:59 Page 12 of 18

Step 2: N is continuous on Br .
Let {yn}+∝

n=1 ⊂ Br with yn → y in Br as n → + ∝. Then, by using hypotheses (H1), (H2),
and (H3), we have

(i) f
(
s, yn

s + φ̂s
) → f (s, ys + φ̂s), n →∝ .

(ii) g
(
t, yn

t + φ̂t
) → g(t, yt + φ̂t), n →∝ .

(iii)
∥
∥Ii

(
yn(t–

i
)

+ φ̂
(
t–
i
))

– Ii
(
y
(
t–
i
)

+ φ̂
(
t–
i
))∥

∥ → 0,
∥
∥Ji

(
yn(t–

i
)

+ φ̂
(
t–
i
))

– Ji
(
y
(
t–
i
)

+ φ̂
(
t–
i
))∥

∥ → 0,

n →∝, i = 1, 2, . . . , m.

Now, for every t ∈ [0, t1], we have

E
(∣
∣t2–β

∥
∥N

(
yn(t)

)∥
∥ – t2–β

∥
∥N

(
y(t)

)∥
∥
∣
∣2)

≤ 3E
∥
∥
∥
∥

1
Γ (β)

∫ t

0
(t – s)β–1t2–β

[
f
(
s, yn

s + φ̂s
)

– f (s, ys + φ̂s)
]

ds
∥
∥
∥
∥

2

+ 3E
∥
∥t2–β

[
g
(
t, yn

t + φ̂t
)

– g(t, yt + φ̂t)
]∥
∥2

+ 3E
∥
∥
∥
∥

1
Γ (β)

∫ t

0
(t – s)β–1t2–β

[
σ
(
s, yn

s + φ̂s
)

– σ (s, ys + φ̂s)
]

dω

∥
∥
∥
∥

2

≤ 3
T4–2β

Γ 2(β)

∫ t

0
(t – s)β–1 ds

∫ t

0
(t – s)β–1E

∥
∥f

(
s, yn

s + φ̂s
)

– f (s, ys + φ̂s)
∥
∥2 ds

+ 3T2–βE
∥
∥g

(
t, yn

t + φ̂t
)

– g(t, yt + φ̂t)
∥
∥2

+ 3
T4–2β · Tr(Q)

Γ 2(β)

∫ t

0
(t – s)2β–2v1E

∥
∥yn

s + φ̂s – ys – φ̂s
∥
∥2 ds

→ 0 (n →∝).

Moreover, for all t ∈ (tk , tk+1], k = 1, 2, . . . , m, we have

E
(∣
∣t2–β

∥
∥N

(
yn(t)

)∥
∥ – t2–β

∥
∥N

(
y(t)

)∥
∥
∣
∣2)

≤ 5
T4–2β

Γ 2(β)

∫ t

0
(t – s)β–1 ds

∫ t

0
(t – s)β–1E

∥
∥f

(
s, yn

s + φ̂s
)

– f (s, ys + φ̂s)
∥
∥2 ds

+ 5E
∥
∥t2–β

[
g
(
t, yn

t + φ̂t
)

– g(t, yt + φ̂t)
]∥
∥2

+ 5E

∥
∥
∥
∥
∥

k∑

i=1

[
Ji
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

– Ji
(
y
(
t–
i
)

+ ˆφ
(
t–
i
))] 1

Γ (β – 1)

(
t

β – 1
– ti

)∥
∥
∥
∥
∥

2

+ 5E

∥
∥
∥
∥
∥

k∑

i=1

[
Ii
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

– Ii
(
y
(
t–
i
)

+ ˆφ
(
t–
i
))] 1

Γ (β – 1)

∥
∥
∥
∥
∥

2

+ 5
T4–2β · Tr(Q)

Γ 2(β)

∫ t

0
(t – s)2β–2v1E

∥
∥yn

s + φ̂s – ys – φ̂s)
∥
∥2 ds

→ 0 (n →∝).
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Thus, we obtain

∥
∥Nyn – Ny

∥
∥

B′′
v
→ 0 as n →∝,

implying that N is continuous on Br .
Step 3: The map N(Br) is equicontinuous on J .
The functions {Ny : y ∈ Br} are equicontinuous at t = 0. For t1, t2 ∈ Jk , t1 < t2, k =

0, 1, 2, . . . , m, and y ∈ Br , we have

E
∣
∣t2–β

∥
∥Ny(t1) – Ny(t2)

∥
∥
∣
∣2 ≤ C2

1(t1)E
∣
∣t2–β

2
∥
∥Ny(t1) – Ny(t2)

∥
∥
∣
∣2

≤ C2
1(t1)E

∥
∥t2–β

1 Ny(t1) – t2–β
2 Ny(t2)

∥
∥2

+ C2
1(t1)E

∥
∥t2–β

2 Ny(t2) – t2–β
1 Ny(t2)

∥
∥2

≤ C2
1(t1)E

∥
∥t2–β

1 Ny(t1) – t2–β
2 Ny(t2)

∥
∥2

+ C2
1(t1)E

∥
∥Ny(t2)

∥
∥2∥∥t2–β

2 – t2–β
1

∥
∥2,

where C1(t1) > 0. The right-hand side of the equation is independent of y ∈ Br and tends
to zero as t1 → t2 since t2–βNy(t) ∈ C(Jk,X) and ‖t2–β

2 – t2–β
1 ‖ → 0 as t1 → t2. Therefore,

‖Ny(t1) – Ny(t2)‖B′′
v → 0 as t1 → t2. Hence, N(Br) is equicontinuous on J .

Step 4: Mönch’s condition holds.
Let N = N1 + N2 + N3 + N4, where

N1y(t) =
1

Γ (β)

∫ t

0
(t – s)β–1f (s, ys + φ̂s) ds,

N2y(t) = g(t, yt + φ̂t) + ϕ2
tβ–1

Γ (β)
+ ϕ1

tβ–2

Γ (β – 1)
,

N3y(t) =
k∑

i=1

Ji
(
y
(
t–
i
)

+ ˆφ
(
t–
i
)) tβ–2

Γ (β – 1)

(
t

β – 1
– ti

)

+
k∑

i=1

Ii
(
y
(
t–
i
)

+ ˆφ
(
t–
i
)) tβ–2

Γ (β – 1)
,

N4y(t) =
1

Γ (β)

∫ t

0
(t – s)β–1σ (s, ys + φ̂s) dω.

Assume that W ⊆ Br is countable and W ⊆ co({0} ∪ N(W )). We show that β(W ) = 0,
where β is the Hausdorff MNC. Without loss of generality, we may suppose that W =
{yn}∝n=1. Since N(W ) is equicontinuous on Jk , W ⊆ co({0} ∪ N(W )) is equicontinuous on
Jk as well.

Using Lemmas 2.4 and 2.6, (H1)(iii), (H2)(ii), (H3), and (H4)(iii), we have

β
({

N1yn(t)
}∝

n=1

) ≤ 2
Γ (β)

∫ t

0
(t – s)β–1η1(s)

[
sup

–∝<θ≤0
β
({

yn
s (θ )

}∝
n=1

)]
ds

≤ 2Tβ

Γ (β + 1)
‖η1‖

L
1
α2 (J ,R+)

sup
–∝<θ≤0

β
({

yn
s (θ )

}∝
n=1

)
,
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β
({

N2yn(t)
}∝

n=1

) ≤ β
(
g
(
t, yn

t + φ̂t
))

≤ G sup
–∝<θ≤0

β
({

yn
t (θ )

}∝
n=1

)
,

β
({

N3yn(t)
}∝

n=1

) ≤ T
Γ (β)

β

({ k∑

i=1

tβ–2Ji
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

}∝

n=1

)

+
1

Γ (β – 1)
β

({ k∑

i=1

tβ–2Ii
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

}∝

n=1

)

≤ T∗

Γ ∗

(

β

({ k∑

i=1

tβ–2Ji
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

}∝

n=1

)

+ β

({ k∑

i=1

tβ–2Ii
(
yn(t–

i
)

+ ˆφ
(
t–
i
))

}∝

n=1

))

≤ T∗

Γ ∗

m∑

i=1

(Mi + Ki) sup
–∝<θ≤0

β
({

yn(θ )
}∝

n=1

)
,

β
({

N4yn(t)
}∝

n=1

) ≤ 2
√

T · Tr(Q)
Γ (β)

∫ t

0
(t – s)β–1η2(s)

[
sup

–∝<θ≤0
β
({

yn
s (θ )

}∝
n=1

)]
ds

≤ 2Tβ+ 1
2
√

Tr(Q)
Γ (β + 1)

‖η2‖
L

1
α4 (J ,R+)

sup
–∝<θ≤0

β
({

yn
s (θ )

}∝
n=1

)
.

Thus, we have

β
({

Nyn(t)
}∝

n=1

)

≤ β
({

N1yn(t)
}∝

n=1

)
+ β

({
N2yn(t)

}∝
n=1

)

+ β
({

N3yn(t)
}∝

n=1

)
+ β

({
N4yn(t)

}∝
n=1

)

≤ 2Tβ

Γ (β + 1)
‖η1‖

L
1
α2 (J ,R+)

sup
–∝<θ≤0

β
({

yn
s (θ )

}∝
n=1

)

+ G sup
–∝<θ≤0

β
({

yn
t (θ )

}∝
n=1

)

+
T∗

Γ ∗

m∑

i=1

(Mi + Ki) sup
–∝<θ≤0

β
({

yn(θ )
}∝

n=1

)

+
2Tβ+ 1

2
√

Tr(Q)
Γ (β + 1)

‖η2‖
L

1
α4 (J ,R+)

sup
–∝<θ≤0

β
({

yn
s (θ )

}∝
n=1

)

≤
(

2Tβ

Γ (β + 1)
‖η1‖

L
1
α2 (J ,R+)

+ G +
T∗

Γ ∗

m∑

i=1

(Mi

+ Ki) +
2Tβ+ 1

2
√

Tr(Q)
Γ (β + 1)

‖η2‖
L

1
α4 (J ,R+)

)

β
({

yn(t)
}∝

n=1

)

= M∗β
({

yn(t)
}∝

n=1

)
,

where M∗ is defined in assumption (H5). Since W and N(W ) are equicontinuous on every
Jk , it follows from Lemma 2.4 that the inequality implies β(NW ) ≤ M∗β(W ).
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Thus, from Mönch’s condition, we have

β(W ) ≤ β
(
co{0} ∪ N(W )

)
= β(NM) ≤ M∗β(W ).

Since M∗ < 1, we get β(W ) = 0. It follows that W is relatively compact. Using Lemma 2.5,
we know that N has a fixed point y in W . The proof is completed. �

3.2 Hyers–Ulam stability
We prove the Ulam stability of the solution using the following hypothesis.

(H6): The function g(t, x) satisfies the condition E‖g(t, x) – g(t, y)‖2 ≤ L‖x – y‖2, where
L is a constant and 0 < (1 – 5Ll)Γ 2(β + 1) – 5v2T2β · Tr(Q).

Theorem 3.2 Suppose that conditions (H1), (H3)–(H6) are satisfied. Then system (1.1) has
at least one solution on J , and this solution is Hyers–Ulam stable.

Proof It is easy to see that the solution satisfies condition (H2) when the solution satisfies
condition (H6). Using Theorem 3.1, we can prove the existence of this solution. Now we
consider the Ulam stability of this solution.

Consider the inequality

E
∥
∥
∥
∥Dβ

0+
[
y(t) – g(t, yt)

]
– f (t, yt) – σ (t, yt)

dω(s)
dt

∥
∥
∥
∥

2

< ε.

Suppose that there exists a function f1(t, yt) such that ‖f (t, xt) – f1(t, yt)‖ < ε.
Consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ [y(t) – g(t, yt)] = f1(t, yt) + σ (t, yt) dω(s)
dt , t ∈ [0, T], t �= tk ,

�I2–β

0+ y(tk) = Ik(y(t–
k )), �I1–β

0+ y(tk) = Jk(y(t–
k )),

I2–β

0+ [y(0) – g(0, y0)] = ϕ1 ∈ Bv, I1–β

0+ [y(0) – g(0, y0)] = ϕ2 ∈ Bv,

(3.1)

in which k = 1, 2, . . . , m. Using the fundamental solution to Eq. (3.1), we get

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = φ ∈ Bv, t ∈ (– ∝, 0]
1

Γ (β)
∫ t

0 (t – s)β–1f1(s, ys) ds + g(t, yt) + ϕ2
tβ–1

Γ (β)

+ ϕ1
tβ–2

Γ (β–1) + 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, ys) dω(s), t ∈ [0, t1],

1
Γ (β)

∫ t
0 (t – s)β–1f1(s, ys) ds + g(t, yt) + ϕ2

tβ–1

Γ (β) + ϕ1
tβ–2

Γ (β–1)

+
∑k

i=1 Ji(y(t–
i )) tβ–2

Γ (β–1) ( t
β–1 – ti) +

∑k
i=1 Ii(y(t–

i )) tβ–2

Γ (β–1)

+ 1
Γ (β)

∫ t
0 (t – s)β–1σ (s, ys) dω(s), t ∈ (tk , tk+1], k = 1, 2, . . . , m.

It is obvious that the solution is Ulam stable in the interval (– ∝, 0]. Now, we consider
the interval t ∈ (0, t1] and suppose ε < 1. We have

E
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

≤ 3E
∥
∥
∥
∥

T2–β

Γ (β)

∫ t

0
(t – s)β–1(f (s, xs) – f1(s, ys)

)
ds

∥
∥
∥
∥

2
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+ 3E
∣
∣t2–β

∥
∥g(t, xt) – g(t, yt)

∥
∥
∣
∣2

+ 3E
∥
∥
∥
∥

t2–β Tr(Q)
Γ (β)

∫ t

0
(t – s)β–1(σ (s, xs) – σ (s, ys)

)
dω(s)

∥
∥
∥
∥

2

≤ 3T4ε

Γ 2(β + 1)
+ 3

(

L +
v2T2β Tr(Q)
Γ 2(β + 1)

)

lE
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2.

Thus,

E
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2 ≤ 3T4

(1 – 3Ll)Γ 2(β + 1) – 3v2T2β l · Tr(Q)
ε.

Here, K0 = T4

(1–3Ll)Γ 2(β+1)–3v2T2β l·Tr(Q) .
Secondly, we consider the interval t ∈ (t1, t2]. We have

E
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

≤ 5T4ε

Γ 2(β + 1)
+ 5

(

L +
v2T2β · Tr(Q)

Γ 2(β + 1)

)

lE
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

+ 5E

∥
∥
∥
∥
∥

k∑

i=1

(
Ji
(
x
(
t–
i
))

– Ji
(
y
(
t–
i
))) 1

Γ (β – 1)

(
t

β – 1
– ti

)∥
∥
∥
∥
∥

2

+ 5E

∥
∥
∥
∥
∥

k∑

i=1

(
Ii
(
x
(
t–
i
))

– Ii
(
y
(
t–
i
))) 1

Γ (β – 1)

∥
∥
∥
∥
∥

2

.

The conclusion |y(t) – x(t)| < K0ε for t ∈ (0, t1] implies that

∣
∣Ii

(
x
(
t–
i
))

– Ii
(
y
(
t–
i
))∣

∣ < R1ε,
∣
∣Ji

(
x
(
t–
i
))

– Ji
(
y
(
t–
i
))∣

∣ < R2ε,

since Ik , Jk are continuous functions.
Therefore,

E
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

≤ 5T4ε

Γ 2(β + 1)
+ 5

(

L +
v2T2β · Tr(Q)

Γ 2(β + 1)

)

lE
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

+
k∑

i=1

5R2
1ε

Γ 2(β – 1)

(
T

β – 1
– t1

)2

+
5R2

2k2ε

Γ 2(β – 1)
.

Thus,

E
∣
∣t2–β

∥
∥x(t) – y(t)

∥
∥
∣
∣2

≤ 5ε

(1 – 5Ll)Γ 2(β + 1) – 5v2T2β l · Tr(Q)

(

T4 +
k∑

i=1

R2
1

(
T

β – 1
– t1

)2

+ R2
2k2

)

.
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Hence, in the interval t ∈ (t1, t2], we have

K1 =
5

(1 – 5Ll)Γ 2(β + 1) – 5v2T2β l · Tr(Q)

(

T4 +
k∑

i=1

R2
1

(
T

β – 1
– t1

)2

+ R2
2k2

)

.

In this way, we can prove for t ∈ (ti, ti+1], i = 1, . . . , m.
Thus, there exists K = max{K0, K1, . . . , Km} that satisfies Definition 2.4. �
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