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Abstract
This paper considers the nonexistence of solutions for the following singular
quasilinear elliptic problem:

{
–div(|x|–ap|∇u|p–2∇u) = f (|x|)|u|r–1u, x ∈R

N
+,

|x|–ap|∇u|p–2 ∂u
∂ν

= g(|x|)|u|q–1u, on ∂RN
+,

(0.1)

where RN
+ = {x = (x′, xN)|x′ ∈R

N–1, xN > 0} and ∂RN
+ = {x = (x′, xN)|x′ ∈R

N–1, xN = 0}.
When the weight functions satisfy some suitable assumptions, we prove that
problem (0.1) has no nontrivial bounded solutions with finite Morse index.

Keywords: Liouville theorem; Morse index; Singular elliptic equation

1 Introduction and main results
In this paper, we consider the following problem:

⎧⎨
⎩– div(|x|–ap|∇u|p–2∇u) = f (|x|)|u|r–1u, x ∈ R

N
+ ,

|x|–ap|∇u|p–2 ∂u
∂ν

= g(|x|)|u|q–1u, on ∂RN
+ ,

(1.1)

where a > 0, r > 1, q > 1, p ≥ 2 and R
N
+ = {x = (x′, xN )|x′ ∈ R

N–1, xN > 0} denotes the upper
half-space in R

N .
Liouville type theorems have been widely applied to research the nonexistence of non-

trivial solutions for elliptic equations. Liouville theorem was first announced in 1844 by
Liouville [1] for the special case of a doubly periodic function. The classical Liouville-type
theorem states that a bounded harmonic (or holomorphic) function defined in the entire
space R

N must be constant. Liouville type theorems for solutions with finite Morse in-
dices have been widely studied in the past few decades. The idea of using Morse index of
a solution to study a semilinear elliptic equation was first explored by Bahri and Lions in
[2], where the following problem was considered on the half-space:

⎧⎨
⎩–�u = |u|p–1u, x ∈R

N
+ ,

u = 0, on ∂RN
+ .

(1.2)
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The authors proved that (1.2) has no nontrivial bounded solution with finite Morse in-
dex when 1 < p < N+2

N–2 . Later, many authors considered the positive solutions of (1.2) by
some delicate methods. In [3], Chen and Li considered the positive solutions of (1.2) by
the moving plane method. The authors first proved that the solution is symmetric and
constant, then deduced that this constant is just zero. Inspired by the idea in [3], many
scholars applied similar methods to research solutions of elliptic equations, see [4–7] and
the references therein. Yu [8] studied (1.2) with a Neumann boundary condition. By using
an energy estimate and Pohozaev identity, the author gave a result on the nonexistence of
a finite Morse index solution.

In [9], Gidas and Spruck considered the elliptic problem

–�u = |x|a|u|p–1u in Ω . (1.3)

If a = 0, the authors proved that (1.3) has no positive solutions if and only if 1 < p < N+2
N–2

(= ∞ if N = 2). If a �= 0, problem (1.3) is complicated and less is known. For a ≤ –2, the
authors in [9] established an important result that (1.3) does not possess positive solutions
in any domain Ω containing the origin. For a > –2, however, problem (1.3) is difficult
and there are fewer results since some classical techniques fail for this case. In [10], Phan
and Souple studied the positive bounded solution of (1.3) for the special case a > 0 and
N = 3. The authors proved that (1.3) has no positive bounded solution in Ω = R

N for
1 < p < ps(a) = (N +2+2a)/(N –2) (= ∞ if N = 2). In [11], Dancer et al. also studied problem
(1.3) with a > –2, and classified the existence and behavior at infinity of positive solutions
with a finite Morse index. In order to get the results on finite Morse index solutions, a
duality method was applied in [11]. It is worth noting that the result on radial solutions of
problem (1.3) is complete, see the following proposition in [9, 12].

Proposition A Let N ≥ 2, a > –2 and p > 1.
(i) If p < ps(a), then (1.3) has no positive radial solution in Ω = R

N .
(ii) If p ≥ ps(a), then (1.3) possesses a bounded, positive radial solution in Ω = R

N .
For other manuscripts on Liouville-type theorems for nonlinear elliptic equations, we refer
the readers to [13–20].

In recent years, a Liouville-type theorem for a higher order equation was also studied.
Hu [21] considered the fourth order elliptic equation

–�2u = |x|a|u|p–1u in Ω . (1.4)

Applying the monotonicity formula and blowing down sequence, the author established a
Liouville-type theorem for finite Morse index solutions. In [22], Dávila et al. studied (1.4)
for the case a = 0 and Ω = R

N . The authors gave a complete classification of finite Morse
index solutions. Theorem 1.3 in [22] generalized a similar result of Farina in [23] for the
classical Lane–Emden equation.

Some scholars applied the Liouville-type theorem for elliptical equations with the p-
Laplace operator. In [24], the authors considered the following p-Laplace elliptic equations
with exponential growth

–�pu = f (x)eu, x ∈R
N . (1.5)
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There are few works on the elliptic equation with the p-Laplace operator and exponential
growth. By choosing a special test function, the authors gave the result on the nonexistence
of positive stable solution for (1.5).

In our paper, we consider solutions of (1.1) in Sobolev space W 1,p(|x|–ap,RN
+ ). The weight

functions f (|x|) and g(|x|) in (1.1) are radial. We are interested in the nonexistence of solu-
tions with a finite Morse index. Our proofs in this paper are partly motivated by [14]. Since
a > 0, problem (1.1) is singular at x = 0, and we need more a delicate energy estimate and
computations. We want to point out that the solutions in our problem (1.1) may change
sign, thus the moving plane method mentioned above does not work.

Denote by J(u) the natural functional to problem (1.1), that is,

J(u) =
1
p

∫
R

N
+

|x|–ap|∇u|p dx –
1

r + 1

∫
R

N
+

f
(|x|)|u|r+1 dx

–
1

q + 1

∫
∂RN

+

g
(∣∣x′∣∣)|u|q+1 dx′. (1.6)

We define the function

Qu(ϕ) =
∫
R

N
+

|x|–ap|∇u|p dx + (p – 2)
∫
R

N
+

|x|–ap|∇u|p–4(∇u · ∇ϕ)2 dx. (1.7)

It is well known that the Morse index i(u) is defined as the maximal dimension of all sub-
spaces X ∈ C1

0(RN ) such that Qu(ϕ) < 0.
In order to get our result, we make the following assumptions:
(A1) There exist b0 > 0, d0 > 0, b > N(2–p)–2p(a+1)

p and d > (2–p)N
p – 2a – 1 such that

f (|x|)|x|–b → b0 and g(|x|)|x|–d → d0 as |x| → ∞.
(A2) f (|x|) ∈ C1(RN

+ \{0}) is radial and nonnegative in R
N
+ , and g(|x|) ∈ C1(∂RN

+ \{0}) is
radial and nonnegative in ∂RN

+ .
(A3) The functions f (τ ) and g(τ ) satisfy

(
τμf (τ )

)′ > 0, ∀τ = |x| ∈R
N
+ \{0}, (

τωg(τ )
)′ > 0, ∀τ = |x| ∈ ∂RN

+ \{0},

where μ = [Np – (r + 1)(1 + a – N)]/p and ω = [(N – 1)p – (q + 1)(N – p – pa)]/p.
Our main result on (1.1) is listed below.

Theorem 1 Assume N ≥ 2 and suppose functions f (τ ) and g(τ ) satisfy assumptions (A1)–
(A3). Let u ∈ W 1,p(|x|–ap,RN

+ ) be a bounded solution of (1.1). If i(u) < ∞, then u ≡ 0 in R
N
+ .

This paper is organized as follows. In Sect. 2, we establish several lemmas and estimates.
In Sect. 3, we give a Pohozaev identity and then complete the proof of Theorem 1.

2 Preliminary results
In order to study the solutions with a finite Morse index, we will establish several lemmas.
We first define a cut-off function ϕτ ,s ∈ [0, 1] as

ϕτ ,s
(|x|) =

⎧⎨
⎩0, |x| < τ or |x| > 2s,

1, 2τ ≤ |x| ≤ s.
(2.1)

Furthermore, |∇ϕτ ,s(|x|)| ≤ 2
τ

for τ < |x| ≤ 2τ and |∇ϕτ ,s(|x|)| ≤ 2
s for s < |x| < 2s.
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Lemma 2.1 Assume u(x) is a solution of (1.1) with a finite Morse index, then there exists
τ0 > 0 such that Qu(uϕτ0,s(|x|)) ≥ 0.

Proof Let i(u) = k and g(τ , s) = Qu(uϕτ ,s(|x|)), where s > 2τ > 2τ0 > 0. Assume on the con-
trary that there exist sm → ∞, τm → ∞ such that sm+1 > 2τm+1 > τm+1 > 2sm and

g(rm, sm) = Qu(uϕτm ,sm ) < 0 for m = 1, 2, . . . . (2.2)

Then, one gets from (2.2) that uϕτm ,sm �≡ 0 for ∀1 ≤ m ≤ k + 1. Note that {uϕτm ,sm}k+1
m=1 have

disjoint support, which implies that {uϕτm ,sm}k+1
m=1 are orthogonal in L2(RN ) and linearly

independent, so the dimension of the space

Mk+1 = span {uϕτm ,sm}k+1
m=1 (2.3)

is k + 1. Furthermore, one gets from (2.2) that Qu(h) < 0 for any h ∈ Mk+1. Thus, the
Morse index of u is at least k + 1, which contradicts i(u) = k, and we complete the proof of
Lemma 2.1. �

Now, we give some estimates.

Lemma 2.2 Assume (A1)–(A3). If u is a bounded solution of (1.1) with a finite Morse index,
then ∫

R
N
+

f
(|x|)|u|r+1 dx < ∞,

∫
∂RN

+

g
(∣∣x′∣∣)|u|q+1 dx′ < ∞. (2.4)

Proof We prove the first claim of (2.4). For this purpose, we will divide our proof into three
cases.

(i) r > p – 1 + bp
N .

According to Lemma 2.1, there exists τ0 > 0 such that Qu(uϕτ0,s) ≥ 0 for s > 2τ0, that is,

q
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕτ0,s dx′ + r

∫
R

N
+

f
(|x|)ϕ2

τ0,s dx

≤
∫
R

N
+

|x|–ap|∇u|p–2(∇uϕτ0,s + u∇ϕτ0,s)2 dx

+ (p – 2)
∫
R

N
+

|x|–ap|∇u|p–4(∇u · ∇(uϕτ0,s)
)2 dx

= (p – 1)
∫
R

N
+

|x|–ap|∇u|pϕ2
τ0,s dx + 2(p – 1)

∫
R

N
+

|x|–ap|∇u|p–2uϕτ0,s∇u∇ϕτ0,s dx

+ (p – 1)
∫
R

N
+

|∇u|2|∇ϕ|2τ0,s dx. (2.5)

On the other hand, multiplying (1.1) by uϕ2
τ0,s and integrating by parts, one gets

∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx +
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕ2

τ0,s dx′

=
∫
R

N
+

|x|–ap|∇u|pϕ2
τ0,s dx

+ 2
∫
R

N
+

|x|–ap|∇u|p–2uϕτ0,s∇u∇ϕτ0,s dx. (2.6)
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It follows from Lemma 2.1 that there exists τ0 > 0 such that

q
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕτ0,s dx′ + r

∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx

≤ (p – 1)
∫
R

N
+

|x|–ap|∇u|pϕ2
τ0,s dx

+ 2(p – 1)
∫
R

N
+

|x|–ap|∇u|p–2uϕτ0,s∇u∇ϕτ0,s dx

+ (p – 1)
∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx. (2.7)

Inserting (2.6) into (2.7), one gets

q
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕτ0,s dx′ + r

∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx

≤ (p – 1)
[∫

R
N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx

+
∫

∂RN
+

g
(|x|)|u|q+1ϕ2

τ0,s dx′
]

+ (p – 1)
∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx. (2.8)

That is,

(q – p – 1)
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕτ0,s dx′ + (r – p – 1)

∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx

≤ (p – 1)
∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx. (2.9)

Then, we get that

(q – p – 1)
∫

∂RN
+

g
(∣∣x′∣∣)|u|q+1ϕτ0,s dx′ ≤ (p – 1)

∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx (2.10)

and

(r – p – 1)
∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx ≤ (p – 1)
∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx. (2.11)

In the following, we prove that

∫
R

N
+

f
(|x|)|u|r+1 dx < ∞. (2.12)

By (2.11), we get that

(r – p – 1)
∫
R

N
+

f
(|x|)|u|r+1ϕ2

τ0,s dx

≤ (p – 1)
∫
R

N
+

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx
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= (p – 1)
∫

τ0<|x|<2τ0

|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx

+ (p – 1)
∫

s<|x|<2s
|x|–ap|∇u|p–2u2|∇ϕτ0,s|2 dx

≤ (p – 1)
(∫

τ0<|x|<2τ0

|x|–ap|∇u|p dx
) p–2

p
(∫

τ0<|x|<2τ0

|x|–ap|u|p|∇u|p dx
) 2

p

+ (p – 1)
(∫

s≤|x|≤2s
|x|–ap|∇u|p dx

) p–2
p

(∫
s≤|x|≤2s

|x|–ap|u|p|∇ϕr0,s |p dx
) 2

p

≤ c1(τ0)–2a
∫

τ0<|x|<2τ0

|x|–ap|u|p|∇u|p dx)
2
p + c2(s)–2a–2

∫
s≤|x|≤2s

|u|p dx. (2.13)

By Hölder inequality, one gets

∫
s≤|x|≤2s

|u|p dx ≤
(∫

Ω2s

f
(|x|)|u|r+1 dx

) p
r+1

(∫
Ω2s

f
(|x|) –p

r+1–p dx
) r+1–p

r+1
, (2.14)

where Ωs = B+
s \B+

2τ0 for s > 2τ0, and B+
s is defined in (3.1). Thus, it follows from (2.13) and

(2.14) that

∫
R

N
+

f
(|x|)|u|r+1 dx

≤ c1 + c2(s)–2a–2
(∫

Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

(∫
Ω2s

f
(|x|) p

r+1–p dx
) 2(r+1–p)

p(r+1)
. (2.15)

Note that s > 2τ0 > 1, then if r > p – 1 + bp
N , we get

∫
Ω2s

f
(|x|) p

r+1–p dx ≤ c3

∫
Ω2s

|x| –bp
r+1–p dx ≤ c3|r|N– bp

r+1–p . (2.16)

Combining (2.15) with (2.16), we obtain

∫
Ω2s

f
(|x|) p

r+1–p dx ≤ c0 + c1|2s| 2N(r+1–p)–2bp
p(r+1) –2(a+1)

(∫
Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

= c0 + c1|s|θ 2θ

(∫
Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

, (2.17)

where

θ =
2N(r + 1 – p) – 2bp

p(r + 1)
– 2(a + 1) < 0. (2.18)

In the following, we will prove the first part of (2.4) by contradiction.
Suppose

∫
R

N
+

f (|x|)|u|r+1 dx = ∞. Then one gets by (2.17) that there exists a constant
α > 0 such that

G(s) =
∫

Ωs

f
(|x|)|u|r+1 dx ≤ α

(∫
Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

2θ sθ . (2.19)
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Integrating (2.19), we get

G(s) ≤ αγm 2γmθ sγmθ
(
G

(
2m+1s

))( 2
r+1 )m+1

, (2.20)

where

β =
2

r + 1
< 1, γm = 1 + β + β2 + · · · + βm =

1 – βm

1 – β
→ 1

1 – β
as m → ∞.

On the other hand, by our assumption, the solution is bounded. So, there exists M > 0
such that |u(x)| ≤ M in ∂RN

+ and

G
(
2m+1s

)
=

∫
Ω2m+1s

f
(|x|)|u|r+1 dx ≤ 3

2
b0Mr+1

∫
Ω2m+1s

|x|b dx

=
3
2

b0Mr+1 ωN (2m+1s)N+b

N + b
. (2.21)

Then we get from (2.20) and (2.21) that

G(s) ≤ αγm 2γmθ sγmθ

(
3
2

b0ωN
(2m+1s)N+b

N + b

)( 2
r+1 )m+1

= c0α
γm 2γmθ+(m+1)(N+b)βm+1

sγmθ+(N+b)βm+1
, (2.22)

where θ is defined as (2.18).
Note that, when m → ∞,

γmθ + (m + 1)(N + b)βm+1 → β0 =
p + 1
p – 1

θ ,

γmθ + (N + b)βm+1 → β0 =
p + 1
p – 1

θ .
(2.23)

Then, there exists c2 > 0 such that

G(s) ≤ c2s
β0
2 , s > 2τ0, m > 1. (2.24)

Since β0 < 0, (2.24) yields G(∞) = 0, which contradicts
∫
R

N
+

f (|x|)|u|r+1 dx = ∞. Thus, we
complete the proof of (i).

(ii) 1 < r < p – 1 + bp
N .

For a large τ0 > 0, we get

∫
Ω2s

f
(|x|) p

r+1–p dx ≤ c
∫

Ω2s

|x| p
r+1–p dx ≤ c(2τ0)N– bp

r+1–p < 1. (2.25)

Then, we get from (2.15) and (2.25) that

∫
Ωs

f
(|x|)|u|r+1 dx ≤ c1 + c2(s)–2a–2

(∫
Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

. (2.26)
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Suppose
∫
R

N
+

f (|x|)|u|r+1 dx = ∞. Then there exists α > 0 such that

G(s) =
∫

Ωs

f
(|x|)|u|p+1 dx ≤ αs–(2α+2)

(∫
Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

≤ αγm s–(2α+2)γm G
(
2m+1s

)βm+1
, m = 0, 1, 2, . . . . (2.27)

Thus, one gets from (2.21) and (2.27) that

G(s) ≤ c0α
γm s–(2α+2)γm+(N+b)βm+1

2(m+1)(N+b)βm+1
. (2.28)

Since γm → γ0 = p+1
p–1 as m → ∞ and β < 1, we obtain G(∞) = 0, which contradicts∫

R
N
+

f (|x|)|u|r+1 dx = ∞. The proof of (ii) is completed.
(iii) r = p – 1 + bp

N .
For this case, there exists a constant c0 > 0 such that

∫
Ω2s

f
(|x|)– p

r+1–p dx ≤
∫

Ω2s

|x| –bp
r+1–p dx ≤ c0

∫ 2s

2τ0

ρ–1 dρ ≤ c0s. (2.29)

Moreover, similar to case (i) and (ii), we can obtain

G(s) ≤ c1 + c2s–(2a+1)
(∫

Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

, (2.30)

and there exists a constant α > 0 such that

G(s) ≤ αγm s–(2α+1)γm
(
G

(
2m+1s

))( 2
r+1 )(m+1)

≤ c0α
γm s–(2a+1)γm+(N+a)βm+1

2(m+1)(N+a)βm+1
. (2.31)

If
∫
R

N
+

f (|x|)|u|r+1 dx = ∞, we can similarly get from (2.31) that G(∞) = 0, which is a con-
traction. As a result, we complete the proof of (iii).

Next, we will prove
∫
∂RN

+
g(|x′|)|u|q+1 dx′ < ∞.

It follows from (2.10) that
∫

B0
s \B0

τ0

g
(∣∣x′∣∣)|u|q+1 dx′ ≤

∫
∂RN

+

g
(∣∣x′∣∣)|u|q+1φ2 dx′ ≤

∫
R

N
+

|x|–ap|∇u|p–2u2|∇φ|2 dx

≤ 2
s2

(∫
Ω2s

|x|–ap|∇u|p dx
) p–2

p
(∫

Ω2s

|x|–ap|u|p dx
) 2

p

≤ cs–2–2a
(∫

Ω2s

f
(|x|)|u|r+1 dx

) 2
r+1

(∫
Ω2s

f
(|x|) –p

r+1–p dx
) 2(r+1–p)

p(r+1)

≤ csθ . (2.32)

Noting that θ < 0, we get from (2.32) that
∫
RN–1\Bτ0

g
(∣∣x′∣∣)|u|q+1 dx′ = 0. (2.33)

Furthermore, we get the second claim in (2.4), and the proof of this lemma is completed. �
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3 The proof of Theorem 1
In this part, we will complete the proof of Theorem 1. To make the proof clear, we give the
following symbols;

S+
s =

{
x =

(
x′, xN

) ∈R
N–1 ×R

+ : |x| = s
}

,

B0
s =

{
x =

(
x′, 0

)
, x′ ∈R

N–1 :
∣∣x′∣∣ < s

}
,

∂B0
s =

{
x =

(
x′, 0

)
, x′ ∈R

N–1 :
∣∣x′∣∣ = s

}
,

B+
s =

{
x =

(
x′, xN

) ∈R
N–1 ×R

+ : |x| < s
}

.

(3.1)

It is obvious that ∂B+
R = S+

R ∪ B0
R, where R ∈ R

+. In order to prove the nonexistence of
solutions, we need to establish the following Pohozaev identity for problem (1.1).

Lemma 3.1 Let u be a solution of (1.1), then for any R > 0 the following equality holds:

(
N
p

– 1 – a
)∫

B+
R

|x|–ap|∇u|p dx –
1

r + 1

∫
B+

R

[
Nf

(|x|) + |x|f ′(|x|)]|u|r+1 dx

–
1

q + 1

∫
B0

R

|u|q+1[(N – 1)g
(∣∣x′∣∣) +

∣∣x′∣∣g ′(|x|)]dx′ –
R
p

∫
B0

R

|x|–ap|∇u|p dx

=
–R

r + 1

∫
∂B+

R

f
(|x|)|u|r+1 dS +

R
p

∫
S+

R

|x|–ap|∇u|p dS

–
R

q + 1

∫
∂B0

R

g
(|x|)|u|q+1 dσ . (3.2)

Proof Multiplying (1.1) by x · ∇u and integrating, we get

–
N∑

j=1

∫
B+

R

∂

∂xj

(
|x|–ap|∇u|p–2 ∂u

∂xj

)
x · ∇u dx =

N∑
i=1

∫
B+

R

f
(|x|)|u|r–1uxi

∂u
∂xi

dx. (3.3)

For the right-hand side of (3.3), we have

N∑
i=1

∫
B+

R

f
(|x|)|u|r–1uxi

∂u
∂xi

dx

=
1

r + 1

N∑
i=1

∫
B+

R

∂

∂xi

(
xif

(|x|)|u|r+1)dx

–
N

r + 1

∫
B+

R

f
(|x|)|u|r+1 dx –

N∑
i=1

∫
B+

R

(∫ u

0
xif ′(|x|) xi

|x| |s|
r–1s ds

)
dx

=
1

r + 1

N∑
i=1

∫
∂B+

R

xi · υif
(|x|)|u|r+1 dS –

N
r + 1

∫
B+

R

f
(|x|)|u|r+1 dx

–
1

r + 1

∫
B+

R

f ′(|x|)|x||u|r+1 dx

=
R

r + 1

∫
∂B+

R

f
(|x|)|u|r+1 dS

–
1

r + 1

∫
B+

R

(
Nf

(|x|) + |x|f ′(|x|)|u|r+1)dx. (3.4)
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For the left part of (3.3), we have

–
N∑

j=1

∫
B+

R

∂

∂xj

(
|x|–ap|∇u|p–2 ∂u

∂xj

)
x · ∇u dx

= –
N∑

j=1

∫
B+

R

∂

∂xj

(
|x|–ap|∇u|p–2 ∂u

∂xj
x · ∇u

)
dx

+
∫

B+
R

|x|–ap|∇u|p–2 ∂u
∂xj

N∑
i=1

(
δij

∂u
∂xi

+ xi
∂2u

∂xi∂xj

)
dx

= –
N∑

j=1

∫
∂B+

R

(
|x|–ap|∇u|p–2 ∂u

∂xj
υjx · ∇u

)
dS +

∫
B+

R

|x|–ap|∇u|p dx

+
N∑

j=1

∫
B+

R

|x|–ap|∇u|p–2 ∂u
∂xj

N∑
i=1

xi
∂2u

∂xi∂xj
dx. (3.5)

For the first and third terms of the right-hand side of (3.5), we get

N∑
j=1

∫
∂B+

R

(
|x|–ap|∇u|p–2 ∂u

∂xj
υjx · ∇u

)
dS

=
∫

S+
R

|x|–ap|∇u|p dS

+
N–1∑
i=1

∫
B0

R

g
(∣∣x′∣∣)|u|q–1uxi

∂u
∂xi

dx′

=
∫

S+
R

|x|–ap|∇u|p dS +
1

q + 1

N–1∑
i=1

∫
B0

R

[
∂

∂xi

(
xig

(∣∣x′∣∣)|u|q+1) – |u|q+1 ∂

∂xi
(xig

(∣∣x′∣∣)]dx′

=
∫

S+
R

|x|–ap|∇u|p dS +
1

q + 1

N–1∑
i=1

∫
∂B0

R

xig
(|x|)|u|q+1υi dσ

–
1

q + 1

N–1∑
i=1

∫
B0

R

|u|q+1 ∂

∂xi

(
xig

(∣∣x′∣∣))dx′

=
∫

S+
R

|x|–ap|∇u|p dS +
1

q + 1

∫
∂B0

R

(
x · υg

(|x|)|u|q+1)dσ

–
1

q + 1

N–1∑
i=1

∫
B0

R

|u|q+1
[

g
(∣∣x′∣∣) + xig ′(∣∣x′∣∣) xi

|x|
]

dx′

=
∫

S+
R

|x|–ap|∇u|p dS + +
R

q + 1

∫
∂B0

R

g
(|x|)|u|q+1 dσ

–
1

q + 1

∫
B0

R

[
(N – 1)g

(∣∣x′∣∣) +
∣∣x′∣∣g ′(∣∣x′∣∣)]dx′ (3.6)

and

N∑
j=1

∫
B+

R

|x|–ap|∇u|p–2 ∂u
∂xj

N∑
i=1

xi
∂2u

∂xi∂xj
dx
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=
1
p

N∑
i=1

∫
B+

R

|x|–apxi
∂

∂xi

(|∇u|p)dx

=
–N
p

∫
B+

R

|x|–ap|∇u|p dx +
1
p

N∑
i=1

∫
∂B+

R

|x|–ap|∇u|pxiϑi dS

+ a
N∑

i=1

∫
B+

R

xi|x|–ap–1 xi

|x| |∇u|p dx

=
–N
p

∫
B+

R

|x|–ap|∇u|p dx +
R
p

∫
∂B+

R

|x|–ap|∇u|p dS + a
∫

B+
R

|x|–ap|∇u|p dx. (3.7)

Thus, (3.2) follows from (3.3)–(3.7). �

Now, we give the proof of Theorem 1.
Multiplying (1.1) by u and integrating, one gets that

∫
R

N
+

|x|–ap|∇u|p dx =
∫
R

N
+

f
(|x|)|u|r+1 dx +

∫
∂RN

+

g
(∣∣x′∣∣)|u|q+1 dx′. (3.8)

We need to prove

lim inf
R→∞ R

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
= 0. (3.9)

Assume on the contrary that (3.9) is wrong. Then there exists a constant δ > 0 such that

lim inf
R→∞ R

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
= δ. (3.10)

Then, there exists R0 ∈ R
+ such that

R
(∫

∂B+
R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
> δ/2 (3.11)

for all R > R0.
Writing Rn = R0 + n, n = 1, 2, . . . , there exists ζn ∈ (Rn–1, Rn) such that for n = 1, 2, . . . ,

there holds

∫ Rn

Rn–1

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
dR

= ζn

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)

> δ/2. (3.12)

Furthermore, we get

∫ ∞

0

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
dR
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≥
∞∑

n=2

∫ Rn

Rn–1

(∫
∂B+

R

f
(|x|)|u|r+1 dS +

∫
∂B+

R

|x|–ap|∇u|p dS +
∫

∂B0
R

g
(|x|)|u|q+1 dσ

)
dR

= ∞, (3.13)

which contracts the result of Lemma 2.2, and we get (3.9).
Thus, letting R → ∞ in (3.2), it follows that

(
N
p

– 1 – a
)∫

R
N
+

|x|–ap|∇u|p dx –
1

r + 1

∫
R

N
+

|u|r+1[Nf
(|x|) + |x|f ′(|x|)]dx

=
1

q + 1

∫
∂RN

+

|u|q+1[(N – 1)g
(∣∣x′∣∣) +

∣∣x′∣∣g ′(∣∣x′∣∣)]dx′. (3.14)

For any η ∈ R, we get from (3.8) and (3.14) that

(
N
p

– 1 – a – η

)∫
R

N
+

|x|–ap|∇u|p dx –
(

N
r + 1

– η

)∫
R

N
+

|u|r+1f
(|x|)dx

–
∫
R

N
+

|u|r+1|x|f ′(|x|)dx

=
(

N – 1
q + 1

– η

)∫
∂RN

+

|u|q+1g
(∣∣x′∣∣)dx′ +

1
q + 1

∫
∂RN

+

∣∣x′∣∣g ′(∣∣x′∣∣)dx′. (3.15)

Particularly, when η = N
p – 1 – a, it follows from (A3) that u ≡ 0 in R

N
+ . Thus, we complete

the proof.
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