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Abstract
In this paper, we mainly use a proper orthogonal decomposition (POD) to reduce the
order of the coefficient vectors of the solutions for the classical collocation spectral
(CS) method of two-dimensional (2D) Sobolev equations. We first establish a
reduced-order extrapolating collocation spectral (ROECS) method for 2D Sobolev
equations so that the ROECS method includes the same basis functions as the classic
CS method and the superiority of the classic CS method. Then we use the matrix
means to discuss the existence, stability, and convergence of the ROECS solutions so
that the procedure of theoretical analysis becomes very concise. Lastly, we present
two set of numerical examples to validate the effectiveness of theoretical conclusions
and to illuminate that the ROECS method is far superior to the classic CS method,
which shows that the ROECS method is quite valid to solve Sobolev equations.
Therefore, both theory and method of this paper are completely different from the
existing reduced-order methods.
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1 Introduction
Let Ω ⊂ R

2 be an open bounded domain with boundary ∂Ω . We consider the following
two-dimensional (2D) Sobolev equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – ε�ut – γ�u = f (x, y, t), (x, y, t) ∈ Ω × (0, T),

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω ,

(1)

where ut = ∂u/∂t, �u = ∂2u/∂x2 + ∂2u/∂y2, �ut = ∂2ut/∂x2 + ∂2ut/∂y2, T represents the
final moment, ε > 0 and γ > 0 are two given constants, f (x, y, t) is the known source item,
and u0(x, y) and ϕ(x, y, t) are the known initial and boundary values, respectively. For sim-
plicity but without loss of generality, we further assume that ϕ(x, y, t) = 0.
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The system of Sobolev equations (1) is a class of significant partial differential equations
(PDEs) with practical physical background, which favorably simulated many engineering
problems (see [1, 2]). Particularly, it can be applied to simulate the porous phenomenons
(see [3, 4]). Nevertheless, in actual applications, Sobolev equations frequently contain in-
tricate boundary and initial values, complicated source items, or discontinuous constants.
As a result, we cannot generally seek analytic solutions, so that we can only rest upon nu-
merical methods.

Currently, finite difference (FD), finite volume element (FVE), finite element (FE),
and spectral methods are four famous computational techniques. However, the spectral
method gives the highest accuracy among the four computational methods since the un-
known functions in the spectral methods are approximated with some sufficiently smooth
functions, such as Chebyshev polynomials, trigonometric functions, Legendre polynomi-
als, or Jacobi polynomials, whereas the unknown functions in the FVE and FE methods are
commonly approximated with some standard polynomials, and the derivatives in the FD
scheme are approximated with some difference quotients. The spectral method is com-
monly sorted into the collocation spectral (CS) method, Galerkin’s spectral method, and
the spectral tau method. It has been applied to settle various PDEs including second-order
elliptic, parabolic, hyperbolic, telegraph, and hydromechanical equations (see [5–8]).

However, Sobolev equations are mainly solved with the FD scheme, the FE method,
and the FVE method (see, e.g., [3, 4, 9–14]), except that one-dimensional Sobolev equa-
tions have been settled by the Fourier spectral method [15], and 2D Sobolev equations
have recently been settled by the classic CS method [16]. Though the classic CS method
(see [16]) for 2D Sobolev equations can attain higher accuracy than the FD scheme, FE
method, and FVE method, it also contains a lot of degrees of freedom (unknowns). In this
way, because of the round-off error accumulation in numerical calculations, after several
computational steps, there generally occurs a floating-point overflow such that we can-
not obtain the desired consequences. Hence, to ensure a sufficiently high precision of the
classic CS solutions, the crucial question is how to lessen the unknowns (i.e., degrees of
freedom) of the CS method to ease the round-off error accumulation in the calculations,
which is also central task in this paper.

Many examples have proven that the proper orthogonal decomposition (POD) can sig-
nificantly reduce the order of numerical methods (see [17–20]). It can vastly decrease the
degrees of freedom in the numerical methods. It has been applied in many fields includ-
ing pattern recognition and signal analysis [21], statistical calculations [22], and computa-
tional fluid mechanics [23]. For the past few years, it has successfully been used to the or-
der reduction for the Galerkin methods [24, 25], the FE methods [26, 27], the FD schemes
[28–30], the FVE methods [31, 32], and the reduced basis methods for PDEs [33–35].
Nevertheless, the existing POD-based reduced-order methods (see [17–27, 29–35]) are
mostly created with the POD bases produced by the classic solutions at all the time nodes
on [0, T], before repeatedly finding the order reduction solutions on the same time nodal
points. In fact, they belong to some undesirable repeated computations. To get rid of the
repeated computations, several reduced-order extrapolated approaches based on POD
have been proposed [36–41].

Nevertheless, to our knowledge, there is no reduced-order extrapolating CS (ROECS)
method for 2D Sobolev equations created by reducing the order for the coefficient vectors
of the CS solutions of the classic CS method via POD. Hence, in this paper, utilizing POD
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to reduce the order of the coefficient vectors of the CS solutions for the classic CS method,
we construct a ROECS method only holding few degrees of freedom. We employ matrix
means to discuss the existence, convergence, and stability of the ROECS solutions so that
the theoretical means here becomes very concise. In particular, we only employ the classic
CS solutions on the first several time nodal points to form the snapshots, and then we
use them to produce the POD bases and create the ROECS format so as to obtain the
ROECS solutions on all the time nodal points. Thus, we avoid the repeated computations.
Moreover, in this paper, we adopt the error estimates to serve as the suggestion of choice
of POD bases. The ROECS format contains both advantages that the POD method can
reduce the unknowns and the CS method has higher accuracy, so it is an innovation and
development of the existing reduced-order methods.

The main merits of the ROECS method hare the following. First, we only reduce the
order of the coefficient vectors of the solutions for the classic CS method by POD and
have not altered the basis functions for the classic CS method so that the ROECS method
holds simultaneously both virtues that POD can reduce the unknowns and the classic CS
method has higher accuracy. Second, the classic CS method is totally different from the
Galerkin spectral method, and the Sobolev equations not only include a first-order deriva-
tive term of time and two 2nd-order derivative terms of spacial variables but also contain
two mixed derivative terms of the first order with respect to time and of the second order
with respect to spacial variables, that is, the 2D Sobolev equations are more complex than
the hyperbolic and parabolic equations in [42, 43]. So the ROECS method is totally differ-
ent from the methods in [42, 43], but 2D Sobolev equations have some special applications
as stated before. Third, we use the matrix means to discuss the existence, convergence, and
stability of the ROECS solutions so that theoretical analysis becomes very concise and our
theory and methods are totally different from the other existing order reduction meth-
ods. Therefore, our method is totally new and superior over the existing order reduction
methods.

The rest of this paper is organized the following. In Sect. 2, we first retrospect the classic
CS format of the 2D Sobolev equations and gain snapshots from the initial few classic CS
solutions. Then, in Sect. 3, we produce a cluster of POD basis from the snapshots, develop
the ROECS format, prove the existence, convergence, and stability of the ROECS solutions
by the matrix means, and supply the flow-chart for settling the ROECS format. Next, in
Sect. 4, we use two sets of numerical examples to illuminate that the ROECS format is
distinctly superior to the classic CS model, to validate that the numeric computational
conclusions accord with the theoretical ones and that the ROECS format is quite valid
to solve Sobolev equations, and to confirm that the ROECS format can greatly lessen the
unknowns (i.e., degrees of freedom), the calculation load, the CPU elapsed time, and the
required storage volumes in numerical computations. Finally, in Sect. 5, we provide the
chief conclusions and discussions.

2 The classic CS method for 2D Sobolev equations
Because any bounded closed domain Ω in R

2 can be approximately covered with several
rectangles [ai, bi] × [ci, di] (i = 1, 2, . . . , I), for simplicity and without loss of generality, let
Ω = [a, b] × [c, d] ⊂R

2. Moreover, using the transforms x′ = –1 + 2(x – a)/(b – a) and y′ =
–1 + 2(y – c)/(d – c), we can ensure [a, b] ↔ [–1, 1] and [c, d] ↔ [–1, 1], respectively. Thus,
for convenience, we can further assume that a = c = –1 and b = d = 1.
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2.1 The variational formulation for the 2D Sobolev equations
The Sobolev spaces and norms used in this paper are standard, whose detailed descrip-
tions can be found in [44]. For example, we set ω = 1/

√
(1 – x2)(1 – y2), and L2

ω(Ω) denotes
the set of all square-integrable functions on Ω equipped with inner product and norm

(u, v)ω =
∫

Ω

uvω dx dy, ‖u‖0,ω =
(∫

Ω

|u|2ω dx dy
)1/2

, ∀u, v ∈ L2
ω(Ω),

whereas Hm
ω (Ω) := {u ∈ L2

ω(Ω) : Dαu ∈ L2
ω(Ω), 0 ≤ |α| ≤ m} denotes the weighted Sobolev

space on Ω with the CGL quadrature weight function, equipped with the norm

‖u‖m,ω =
( ∑

0≤|α|≤m

∥
∥Dαu

∥
∥2

0,ω

) 1
2

.

Furthermore, set H1
0,ω(Ω) = {u ∈ H1

ω(Ω) : u|∂Ω = 0}, and let ‖ · ‖Hl(Hm
ω ) be the norm in the

space

Hl(0, T ; Hm
ω (Ω)

) ≡
{

v(t) ∈ Hm
ω (Ω) : ‖v‖2

Hl(Hm
ω ) ≡

∫ T

0

l∑

i=0

∥
∥
∥
∥

di

dti v(t)
∥
∥
∥
∥

2

m,ω
dt < ∞

}

.

We consider the following variational formulation for 2D Sobolev equations.

Problem 1 For t ∈ (0, T), find u ∈ H1
0,ω(Ω) such that

⎧
⎨

⎩

(ut , v)ω + ε(∇ut ,∇v)ω + γ (∇u,∇v)ω = (f , v)ω, ∀v ∈ H1
0,ω(Ω),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω .
(2)

The following result on the existence, uniqueness, and stability of the generalized solu-
tion for Problem 1 has been provided in [16].

Theorem 2 If f ∈ L2(0, T ; H–1
ω (Ω)) and u0 ∈ H1

ω(Ω), then there exists a unique generalized
solution for the variational formulation (2) satisfying the following stability:

‖u‖1,ω ≤ c̃
(‖u0‖1,ω + ‖f ‖L2(H–1

ω )
)
, (3)

where c̃ =
√

max{1, ε, 1/(γ c2
p)}/ min{1, ε}, and cp is the Poincaré coefficient.

2.2 The classic CS method for the 2D Sobolev equations
Too solve time-dependent PDEs by the CS format, it is necessary to discretize ut by means
of the difference quotient and spatial variables by means of the CS method. The CS method
consists in seeking some approximate solutions at time and spatial nodes. In this paper,
we take the Chebyshev–Gauss–Lobatto (CGL) type interpolation points (see [8]) as the
space nodes, namely, let {xj}N

j=0 and {yk}N
k=0 be the space nodes in the x and y directions,

respectively, with

xj = – cos
jπ
N

, yk = – cos
kπ

N
,
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where the positive integer N denotes the number of nodes in a certain direction. For in-
teger K > 0, let �t = T/K be the time step, that is, K�t = T . We approximate u(x, y, n�t)
with un, the time derivative ut of u(x, y, t) at time tn = n�t with (un+1 – un)/�t, and un(x, y)
with un

N (x, y), namely,

un(x, y) ≈ un
N (x, y) =

N∑

j=0

N∑

k=0

un
N (xj, yk)hj(x)hk(y), 0 ≤ n ≤ K ,

where {hj(x)}N
j=0 and {hk(y)}N

j=0 are the Lagrange basis polynomials associated with the sets
of the CGL points {xj}N

j=0 and {yk}N
k=0, respectively.

Define the H1
ω-orthogonal projection RN : H1

0,ω(Ω) → PN , that is, for any u ∈ H1
0,ω(Ω), it

satisfies

(∇(RN u – u),∇v
)

ω
= 0, ∀v ∈ PN .

Thus, RN has the following important property (see [8]).

Theorem 3 For any u ∈ Hq
ω(Ω) with q ≥ 1, we have

‖∇RN u‖0,ω ≤ ‖∇u‖0,ω,
∥
∥∂k(RN u – u)

∥
∥

0,ω ≤ CNk–q, 0 ≤ k ≤ q ≤ N + 1,

where C is a general positive constant independent of N and �t.

Now, we obtain the following CS format for 2D Sobolev equations.

Problem 4 Find un
N ∈ UN ≡ H1

0,ω(Ω) ∩ PN such that

⎧
⎪⎪⎨

⎪⎪⎩

(un+1
N – un

N , vN )ω + ε(∇un+1
N – ∇un

N ,∇vN )ω + γ�t(∇un+1
N ,∇vN )ω

= �t(f (tn+1), vN )ω, ∀vN ∈ UN , 0 ≤ n ≤ K ,

u0
N (x, y) = RN u0(x, y), (x, y) ∈ Ω ,

(4)

where f (tn) = f (x, y, tn).

The result on the existence, uniqueness, stability, and convergence about the CS solu-
tions for Problem 4 is given in [16].

Theorem 5 If f ∈ L2(0, T ; L2
ω(Ω)) and u0 ∈ H1

ω(Ω), then there exists a unique series of
solutions un

N ∈ UN (n = 1, 2, . . . , K ) for the CS format (4) satisfying the following stability:

∥
∥∇un

N
∥
∥2

0,ω ≤ ‖∇u0‖2
0,ω +

�t
γ

n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω, n = 1, 2, . . . , K . (5)

Furthermore, when �t = O(N–1) and solutions of Problem 1 u(tn) ∈ Hq
ω(Ω) (2 ≤ q ≤ N + 1),

the errors between the solution for Problem 1 and the series of solutions of Problem 4 have
the following estimates:

∥
∥∇(

u(tn) – un
N
)∥
∥

0,ω ≤ C
(
�t + N–q+1), n = 1, 2, . . . , K , (6)
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∥
∥u(tn) – un

N
∥
∥

0,ω ≤ C
(
�t2 + N–q), n = 1, 2, . . . , K . (7)

Remark 1 The error estimates in Theorem 5 attain an optimal order. Theorem 5 shows
that the classic CS format, that is, Problem 4 for 2D Sobolev equations has a unique se-
ries of solutions, which is stable and continuously depends on the initial value and source
functions. This theoretically ensures that Problem 4 is effective and reliable for solving 2D
Sobolev equations.

2.3 The matrix representation of the classic CS format
To understand more easily the classic CS format for 2D Sobolev equations, we will rewrite
the classic CS format (4) in the matrix form so that it can be easily programmed and com-
puted by a computer. Let un

Nj,k
(0 ≤ j, k ≤ N ) denote the spectral approximate values of

u(xj, yk , n�t), namely

u(x, y, n�t) ≈ un
N =

N∑

j=0

N∑

k=0

un
Nj,k

hj(x)hk(y). (8)

Taking vN = hm(x)hl(y) ∈ UN (0 ≤ m, l ≤ N ) in scheme (4), we come to the conclusion

(
un+1

N , vN
)

ω
=

N∑

j=0

N∑

k=0

un+1
Nj,k

(
hj(x)hk(y), hm(x)hl(y)

)

ω
,

(∇un+1
N ,∇vN

)

ω
=

N∑

j=0

N∑

k=0

un+1
Nj,k

(
h′

j(x)hk(y), h′
m(x)hl(y)

)

ω

+
N∑

j=0

N∑

k=0

un+1
Nj,k

(
hj(x)h′

k(y), hm(x)h′
l(y)

)

ω
.

From Problem 4 we obtain

Ajm,kl =
(
hj(x)hk(y), hm(x)hl(y)

)

ω

=
N∑

p=0

N∑

q=0

hj(xp)hm(xp)ωphk(yq)hn(yq)ωq, (9)

Bjm,kl =
(
h′

j(x)hk(y), h′
m(x)hl(y)

)

ω
+

(
hj(x)h′

k(y), hm(x)h′
l(y)

)

ω

=
N∑

p=0

N∑

q=0

h′
j(xp)h′

m(xp)ωphk(yq)hl(yq)ωq

+
N∑

p=0

N∑

q=0

hj(xp)hm(xp)ωph′
k(yq)h′

l(yq)ωq, (10)

where 0 ≤ j, m, k, l ≤ N .
Then we can rewrite the classic CS format (4) for the 2D equations as the following

matrix form with (N + 1)2 equations for {un
Nz}K

n=0:

⎧
⎨

⎩

(A + εB + γ�tB)Un+1
N = �tFn+1 + (A + εB)Un

N , 0 ≤ n ≤ K – 1,

U0
N = U0,

(11)
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where

A = [Ajm,kl](N+1)2×(N+1)2 , B = [Bjm,kl](N+1)2×(N+1)2 ,

Un+1
N =

[
un+1

N0,0 , un+1
N1,0 , . . . , un+1

NN ,0
, un+1

N0,1 , un+1
N1,1 , . . . , un+1

NN ,1
, . . . , un+1

N0,N
, . . . , un+1

NN ,N

]T ,

Fn+1 =
[
Fn+1

0,0 , Fn+1
1,0 , . . . , Fn+1

N ,0 , Fn+1
0,1 , . . . , Fn+1

N ,1 , . . . , Fn+1
0,N , . . . , Fn+1

N ,N
]T ,

Fn+1
m,l = f

(
xm, yl, (n + 1)�t

)
, 0 ≤ n ≤ N – 1,

U0 =
[
u0(x0, y0), u0(x1, y0), . . . , u0(xN , y0), u0(x0, y1), . . . , u0(xN , y1), . . . ,

u0(x0, yN ), . . . , u0(xN , yN )
]T .

Remark 2 Because the classic CS format adopts the Chebyshev polynomials as basic func-
tions, it has a higher accuracy than general numerical methods, such as the FE method,
FD scheme, and FVE method, but it also contains as many unknowns as the general nu-
merical methods, so that it has to bear a lot of computing load. Thus, reducing the order
for the classic CS format is more significative than for other numerical methods. For this
purpose, we extract the initial L coefficient vectors U1

N , U2
N , . . . , UL

N (L � K ) in the series
of coefficient vectors {Un

N }K
n=1 for the classic CNCS matrix format (11) to form a set of

snapshots.

3 The ROECS method based on POD for 2D Sobolev equations
3.1 Formulation of POD basis
We use the set of snapshots obtained by Sect. 2.3 to form a snapshot matrix P =
(U1

N , U2
N , . . . , UL

N ) of volume (2N + 1)2 ×L. Let λj > 0 (j = 1, 2, . . . , r =: rank(P)) be the positive
eigenvalues of PPT arranged nonincreasingly, and let U = (φ1,φ2, . . . ,φr) ∈ R

(2N+1)2×r be
the associated orthonormal eigenvectors of PPT . Thus, the POD basis Φ = (φ1,φ2, . . . ,φd)
(d ≤ r) is formed by the first d vectors in U and satisfies (see [36])

∥
∥P – ΦΦT P

∥
∥

2,2 =
√

λd+1, (12)

where ‖P‖2,2 = supχ �=0 ‖Pχ‖2/‖χ‖2, and ‖χ‖2 is the norm of a vector χ . Further, we obtain

∥
∥Un

N – ΦΦT Un
N
∥
∥

2 =
∥
∥
(

P – ΦΦT P
)

en
∥
∥

2

≤ ∥
∥P – ΦΦT P

∥
∥

2,2

∥
∥en

∥
∥

2 ≤ √
λd+1, n = 1, 2, . . . , L, (13)

where en = (0, . . . , 0, 1, 0, . . . , 0)T (n = 1, 2, . . . , L) with the nth component equal to 1. Hence,
Φ = (φ1,φ2, . . . ,φd) is an optimal POD basis.

Remark 3 Since the order (2N + 1)2 of the matrix PPT is far larger than the order L of
the matrix PT P, the number of the nodes of spatial meshes (2N + 1)2 is far larger than
that of extracted snapshots L. Nevertheless, both positive eigenvalues λi (i = 1, 2, . . . , r)
are the same, and thus we may first search out the eigenvalues λi (i = 1, 2, . . . , r) of PT P
and the associated eigenvectors ϕi (i = 1, 2, . . . , r), and then by the formula φi = Pϕi/

√
λi

(i = 1, 2, . . . , r) we can gain the eigenvectors φi (i = 1, 2, . . . , r) associated with the positive
eigenvalues λi (i = 1, 2, . . . , r) of PPT and such that we can expediently obtain the POD
basis.



Jin and Luo Boundary Value Problems         (2019) 2019:63 Page 8 of 19

3.2 Establishment of the ROECS model
By (13) in Sect. 3.1, we can obtain the first L (L ≤ K ) coefficient vectors of ROESE solutions:
Un

d = ΦΦT Un
N =: Φβn

d (n = 1, 2, . . . , L), where Un
d = (un

d,0,0, un
d,1,0, . . . , un

d,N ,0, un
d,0,1, un

d,1,1, . . . ,
un

d,N ,1, . . . , un
d,0,N , un

d,1,N , . . . , un+1
d,N ,N )T and βn

d = (βn
1 ,βn

2 , . . . ,βn
d )T . When the coefficient vec-

tors Un
N in (11) are replaced with Un

d = Φβn
d (n = L + 1, L + 2, . . . , K ), we can obtain the

following ROECS format:

⎧
⎪⎪⎨

⎪⎪⎩

Φβn
d = ΦΦT Un

N , 1 ≤ n ≤ L,

(A + εB + γ�tB)Φβn+1
d = (A + εB)Φβn

d + �tFn+1, L ≤ n ≤ K – 1,

Un
d = Φβn

d, n = 1, 2, . . . , K ,

(14)

where Un
N (n = 1, 2, . . . , L) are the initial L coefficient vectors in (11), and the matrices A

and B are provided in (11). Further, due to the reversibility of the matrix (A + εB + γ�tB),
the format (14) is abbreviated as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βn
d = ΦT Un

N , 1 ≤ n ≤ L,

βn+1
d = βn

d – γ�tΦT (A + εB + γ�tB)–1BΦβn
d

+ �tΦT (A + εB + γ�tB)–1Fn+1, L ≤ n ≤ K – 1,

Un
d = Φβn

d, n = 1, 2, . . . , K .

(15)

Remark 4 As equation (11) contains (N + 1)2 unknowns at each time node, but the
ROECS model, that is, the format (15) at the same time node only involves d un-
knowns (d ≤ L � (N + 1)2, for example, d = 6, but (N + 1)2 = 10,201 in Sect. 4),
the format (15) is obviously superior to equation (11). After we have gained Un

d =
(un

d,0,0, un
d,1,0, . . . , un

d,N ,0, un
d,0,1, un

d,1,1, . . . , un
d,N ,1, . . . , un

d,0,N , un
d,1,N , . . . , un+1

d,N ,N )T (1 ≤ n ≤ K ) via
(15), we can obtain the ROECS solutions by the formula un

d(x, y) =
∑N

j=0
∑N

k=0 un
d,j,khj(x) ×

hk(y) (n = 1, 2, . . . , K ).

3.3 The existence, stability, and convergence for the ROECS solutions
To discuss the existence, stability, and convergence of the ROECS solutions, we think
about the max-norms of a matrix and vector (for more detail, see [45]), which are, re-
spectively, defined dy

‖D‖∞ = max
1≤i≤m

l∑

j=1

|dij|, ∀D = (dij)m×l ∈R
m ×R

l,

‖χ‖∞ = max
1≤j≤m

|χj|, ∀χ = (χ1,χ2, . . . ,χm)T ∈ R
m.

We also employ the following discrete Gronwall inequality (see [46, Lemma 3.4] or [36,
Lemma 1.4.1]).

Lemma 6 If {an} and {bn} are two nonnegative sequences and {cn} is a positive monotone
sequence satisfying

an + bn ≤ cn + λ̄

n–1∑

i=0

ai (λ̄ > 0), a0 + b0 ≤ c0,
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then

an + bn ≤ cn exp(nλ̄), n = 0, 1, 2, . . . .

We have the following main result of the existence, stability, and convergence of the
ROECS solutions for the format (15).

Theorem 7 Under the conditions of Theorem 5, there exists a unique series of ROECS
solutions un

d (n = 1, 2, . . . , K ) satisfying the following stability:

∥
∥∇un

d
∥
∥

0,ω ≤ C(u0, f ), n = 1, 2, . . . , L, L + 1, L + 2, . . . , K , (16)

where C(u0, f ) are positive constants dependent on u0 and f but independent of N and
�t. Moreover, when u(tn) ∈ Hq

ω(Ω) (2 ≤ q ≤ N + 1), the errors between the solutions for
Problem 1 and the ROECS solutions un

d (n = 1, 2, . . . , K ) have the following estimates:

∥
∥u(tn) – un

d
∥
∥

0,ω ≤ C
(
�t2 + N–q +

√
λd+1

)
, 1 ≤ n ≤ K . (17)

Proof (1) The existence and stability for the ROECS solutions.
Due to the reversibility of the matrix (A +εB +γ�tB), from the format (15) and Remark 4

we can conclude that the format (15) has a unique series of the ROECS solutions.
From (14) we can recover the following format:

Un
d = ΦΦT Un

N , 1 ≤ n ≤ L; (18)

Un+1
d = Un

d – γ�t(A + εB + γ�tB)–1BUn
d

+ �t(A + εB + γ�tB)–1Fn, L ≤ n ≤ K – 1. (19)

Write H(x, y) = (h0(x)h0(y), h1(x)h0(y), . . . , hN (x)h0(y), h0(x)h1(y), h1(x)h1(y), . . . , hN (x) ×
h1(y), . . . , h0(x)hN (y), h1(x)hN (y), . . . , hN (x)hN (y))T . Then we denote the solutions for Prob-
lem 4 by un

N = (Un
N )T H(x, y) = Un

N · H(x, y). Similarly, un
d = (Un

d)T H(x, y) = Un
d · H(x, y).

When n = 1, 2, . . . , L, we have

∥
∥un

d
∥
∥

0,ω =
∥
∥ΦΦT Un

N · H(x, y)
∥
∥

0,ω ≤ ∥
∥ΦΦT∥

∥∞
∥
∥Un

N · H(x, y)
∥
∥

0,ω

≤ ∥
∥un

N
∥
∥

0,ω, n = 1, 2, . . . , L. (20)

Furthermore, by Theorem 5 we conclude that (16) is correct for n = 1, 2, . . . , L.
When n = L + 1, L + 2, . . . , K , we rewrite (19) as follows:

∥
∥Un+1

d
∥
∥∞ ≤ ∥

∥Un
d
∥
∥

2 + γ�t
∥
∥(A + εB + γ�tB)–1B

∥
∥∞

∥
∥Un

d
∥
∥∞

+ �t
∥
∥(A + εB + γ�tB)–1∥∥∞

∥
∥Fn∥∥∞, L ≤ n ≤ K – 1. (21)

Moreover, from the FE method (see, e.g., [46, Lemmas 1.18 and 1.22]), the CS method
(see, e.g., [6, Chapters II and III]), and the properties of matrix norms we can attain the
inequalities

‖A‖∞ ≤ C;
∥
∥A–1∥∥∞ ≤ C; ‖B‖∞ ≤ CN ;

∥
∥B–1∥∥∞ ≤ CN–1. (22)
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Furthermore, by the properties of matrixes (see [45, Lemma 1.4.1]) and (22) we obtain

∥
∥(A + εB + γ�tB)–1∥∥∞ =

1
ε + γ�t

∥
∥
(
γ�tAB–1 + I

)–1B–1∥∥∞

≤ 1
ε + γ�t

∥
∥B–1∥∥∞ ≤ CN–1, (23)

∥
∥(A + εB + γ�tB)–1B

∥
∥∞ =

1
ε + γ�t

∥
∥
(
γ�tAB–1 + I

)–1∥∥∞ ≤ 1
ε + γ

. (24)

Thus, from (21), (23), and (24) we get

∥
∥Un+1

d
∥
∥∞ ≤ ∥

∥Un
d
∥
∥

2 + C�t
∥
∥Un

d
∥
∥∞ + C�tN–1∥∥Fn∥∥∞, L ≤ n ≤ K – 1. (25)

Summing (25) from L to n, we obtain

∥
∥Un+1

d
∥
∥∞ ≤ ∥

∥UL
d
∥
∥

2 + C�t
n∑

i=L

∥
∥Ui

d
∥
∥∞ + C�tN–1

n∑

i=L

∥
∥Fi∥∥∞, L ≤ n ≤ K – 1. (26)

Applying the discrete Gronwall lemma (Lemma 6) to (26), we get

∥
∥Un+1

d
∥
∥∞ ≤

(
∥
∥UL

d
∥
∥

2 + C�tN–1
n∑

i=L

∥
∥Fi∥∥∞

)

exp
[
C(n – L)�t

]
, (27)

where L ≤ n ≤ K – 1. Thus, we obtain

∥
∥un

d
∥
∥

0,ω =
∥
∥ΦΦT Un

N · H(x, y)
∥
∥

0,ω

≤ ∥
∥ΦΦT∥

∥∞
∥
∥Un

N
∥
∥∞

∥
∥H(x, y)

∥
∥

0,ω ≤ C(u0, f ), L + 1 ≤ n ≤ K , (28)

which shows that (16) is correct for n = L + 1, L + 2, . . . , K .
(2) Error estimates (17).
Set en = Un

N – Un
d . For n = 1, 2, . . . , L, from (13) we get

∥
∥en∥∥∞ ≤ ∥

∥en∥∥
2 =

∥
∥Un

N – Un
d
∥
∥

2

=
∥
∥Un

N – ΦΦT Un
N
∥
∥

2 ≤ √
λd+1, n = 1, 2, . . . , L. (29)

For n = L + 1, L + 2, . . . , K , from (11) and (19) we obtain

en+1 = en – γ�t(A + εB + γ�tB)–1Ben, L ≤ n ≤ K – 1. (30)

Further, from (24) we get

∥
∥en+1∥∥∞ ≤ ∥

∥en∥∥∞ + γ�t
∥
∥(A + εB + γ�tB)–1B

∥
∥∞

∥
∥en∥∥∞

≤ ∥
∥en∥∥∞ + C�t

∥
∥en∥∥∞, L ≤ n ≤ K – 1. (31)

Summing (31) from L to n, we obtain

∥
∥en+1∥∥∞ ≤ ∥

∥eL∥∥∞ + C�t
n∑

i=L

∥
∥ei∥∥∞, L ≤ n ≤ K – 1. (32)
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Applying the discrete Gronwall lemma to (32), from (29) we get

∥
∥en∥∥∞ ≤ ∥

∥eL∥∥∞ exp
[
C�t(n – L)

] ≤ C
√

λd+1, L + 1 ≤ n ≤ K . (33)

Thus, by un
N = Un

N · H, un
d = Un

d · H, and ‖H‖0,ω ≤ 1, with the orthogonality of elements in
H(x, y) and the inverse estimate theorem, we attain

∥
∥un

N – un
d
∥
∥

0,ω =
∥
∥en · H(x, y)

∥
∥

0,ω ≤ ∥
∥en∥∥∞

∥
∥H(x, y)

∥
∥

0,ω

≤ C
√

λd+1, 1 ≤ n ≤ K . (34)

Combining Theorem 5 and (34), we gain (17). This finishes the argument of Theorem 7.
�

Remark 5 We have two annotations for the ROECS format.
(1) The factor

√
λd+1 in Theorem 7 is caused by the order reduction for the CS format

and can serve as the criterion of choice of the POD basis, that is, it is necessary to
choose the number of the POD basis d and L satisfying

√
λd+1 ≤ max{�t2, N–2}.

(2) We clearly can get that the matrix representation of the classic CS format (11)
contains (N + 1)2 unknowns at each time node; nevertheless, the ROECS format
(15) has only d unknowns (d ≤ L � (N + 1)2, for instance, d = 6, but
(N + 1)2 = 10,201 in Sect. 4) at the same time node. Therefore, in comparison with
the classic CS format, the ROECS format can greatly lessen unknowns, so that it can
alleviate the calculation load and save the CPU consuming time and the storage
requirements in the computational process for solving 2D Sobolev equations.

3.4 The flowchart for solving the ROECS format
We further provide the flowchart of finding the ROECS solutions for 2D Sobolev equa-
tions, which consists of the following five steps.

Step 1. For given parameters ε and γ , the source term f (x, y, t) and the initial function
u0(x, y), the number of nodes N in the direction of x or y, the nodes {xm}N

m=0 =
– cos(mπ/N) and {yl}N

l=0 = – cos(lπ/N), the time increment �t. Solving the classic
CS format (11) on the first L steps obtains the numerical solutions Un

N (1 ≤ n ≤ L).
Step 2. Put P = (U1

N , U2
N , . . . , UL

N )(N+1)2×L and seek the positive eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λκ > 0 (r = dim{un

N : 1 ≤ n ≤ L}) and the associated eigenvectors ϕi (i =
1, 2, . . . , r) of PT P.

Step 3. Determine the number d of POD basis by means of the inequality λd+1 ≤
max{�t4, N–2q} and produce the POD basis Φ = (φ1,φ2, . . . ,φd) by the formula
φi = Pϕi/

√
λi (1 ≤ i ≤ d).

Step 4. First, obtain the ROECS solutions Un
d = (un

d,0,0, un
d,1,0, . . . , un

d,N ,0, un
d,0,1, un

d,1,1, . . . ,
un

d,N ,1, . . . , un
d,0,N , un

d,1,N , . . . , un+1
d,N ,N )T (1 ≤ n ≤ K ) by solving the ROECS format,

that is, the format (15), and then we can obtain the ROECS solutions by the for-
mula un

d(x, y) =
∑N

j=0
∑N

k=0 un
d,j,khj(x)hk(y) (n = 1, 2, . . . , K ).

Step 5. If ‖un
d – un+1

d ‖0,ω ≤ max{�t2, N–q} (n = L, L + 1, . . . , K – 1), then end. Else, let Ui
N =

Un–L–i
d (i = 1, 2, . . . , L) and return to Step 2.
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4 Some numerical examples
In this section, we present several sets of comparative numerical examples to show the
advantage of the ROECS method for the 2D Sobolev equation.

Example 1 In the Sobolev equations, we take f (x, y, t) = 2(cos 2πx cos 2πy – 1) exp(–2t),
u0(x, y) = 1 – cos 2πx cos 2πy (depicted in Fig. 1), ϕ(x, y, t) = u0(x, y) exp(–2t), ε = 1/π2,

Figure 1 Initial value function when t = 0

Figure 2 (a) The classic CS solution; (b) the ROECS
solution; (c) the error between between the ROECS
solution and the CS solution when t = 0.3



Jin and Luo Boundary Value Problems         (2019) 2019:63 Page 13 of 19

Figure 3 (a) The classic CS solution; (b) the ROECS
solution; (c) the error between the ROECS solution
and the CS solution when t = 0.6

γ = 2/π2, the time step �t = 0.01, and the number of nodes in two directions N = 100,
q = 2.

We first compute the initial L = 20 coefficient vectors Un
N of the CS solutions of (11)

at time nodes tn (n = 1, 2, . . . , 20) to form the snapshot matrix P = (U1
N , U2

N , . . . , U20
N ). Then

we find the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ20 ≥ 0 and the associated eigenvectors ϕi (i =
1, 2, . . . , r) of PT P according to Step 2 in Sect. 3.4. By computing we obtain that the error
factor

√
λ7 ≤ 4 × 10–4. Thus, we only need to produce the POD basis Φ = (φ1,φ2, . . . ,φd)

by the formula φi = Pϕi/
√

λi (1 ≤ i ≤ d). Then, by the ROECS format, we find the
ROECS solutions at T = 0.3, 0.6, 0.9, respectively, depicted in (b) of Figs. 2 to 4, respec-
tively.

To make a reasonable comparison, we also compute out the classic CS solutions at
T = 0.3, 0.6, 0.9 by the CS format (4), respectively, depicted in (a) in Figs. 2 to 4, respec-
tively.
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Figure 4 (a) The classic CS solution; (b) the ROECS
solution; (c) the error between the ROECS solution
and the CS solution when t = 0.9

The comparison of (a) and (b) in Figs. 2 to 4 exhibits a quasi-identical similarity. In the
computational process, the ROECS format at each time level only contains six unknowns,
whereas the classic CS format has 10,201 unknowns. Therefore, the ROECS format can
not only alleviate the calculation load and reduce the accumulation of round-off errors,
but can also save CPU elapsed time and resources in the computational process. Photos
(c) in Figs. 2 to 4 are, respectively, the errors between the ROECS solutions and the CS so-
lutions when t = 0.3, 0.6, 0.9, which accord with the theoretical errors, because both errors
are O(10–4).

By operating records from solving the classic CS format and the ROECS format in the
same Laptop (Microsoft Surface Book: Int Core i7 Processor, 16 GB RAM), we find that
the CPU elapsed time for solving the classic CS format on 0 ≤ t ≤ 0.9 is about 6059 sec-
onds, but the CPU elapsed time for solving the ROECS format is about 48 seconds, that
is, the CPU consuming time for solving the classic CS format is 125 times greater than
for solving the ROECS format. This shows that the ROECS format is far superior to the
classic CS format.
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Example 2 To compare the CS and ROECS methods, we give another example, which
also has an analytical solution for a 2D Sobolev equation. In the 2D Sobolev equation
(1), we take ε = 1, γ = 10, f (x, y, t) = ( 1

2 + επ2 + 2γπ2) sinπx sinπy exp(t/2), u0(x, y) =
sinπx sinπy, ϕ(x, y, t) = 0. Then this Sobolev equation has an exact solution u(x, y, t) =
sinπx sinπy exp(t/2).

First, we depict the exact solution u(x, y, t) = et/2 sinπx sinπy at T = 0.9 in (a) of Fig. 5.
Next, we take time step �t = 0.01 and the number N = 100 of nodes in the x and y

directions. By the classic CS format (4) we compute out the classic CS solution at T = 0.9,
depicted in (b) of Fig. 5.

Finally, to make a reasonable comparison, in solving the ROECS format, we adopt the
same time step and number of nodes as in the classic CS format. We also compute the ini-
tial L = 20 coefficient vectors Un

N of the CS solutions with the classic CS format (11) at time
nodes tn (n = 1, 2, . . . , 20) to form the snapshot matrix P = (U1

N , U2
N , . . . , U20

N ). Then we find
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ20 ≥ 0 and the associated eigenvectors ϕi (i = 1, 2, . . . , r)

Figure 5 (a) The analytical solution when t = 0.9;
(b) the CS solution when t = 0.9, (c) The ROECS
solution when t = 0.9
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Figure 6 (a) The error between the CS solution and
the analytical solution solution when t = 0.9; (b) the
error between the ROECS solution and the analytical
solution solution when t = 0.9; (c) the error between
the ROECS solution and the CS solution when t = 0.9

of PT P according to Step 2 in Sect. 3.4. By computing we obtain that the error factor√
λ7 ≤ 2 × 10–4, so that it is only necessary to adopt the most main six POD bases

Φ = (φ1,φ2, . . . ,φd) by the formula φi = Pϕi/
√

λi (1 ≤ i ≤ d) when solving the ROECS for-
mat. The obtaining ROECS solution at T = 0.9 is depicted in (c) of Fig. 5.

Moreover, we depict the errors between the analytical solution and CS solution, the
analytical solution and ROECS solution, and the CS solution and ROECS solution at T =
0.9 in photos (a), (b), and (c) of Fig. 6, respectively.

By observing three photos of Fig. 5, we clearly find that the photos of the analytical solu-
tion, the CS numerical solution, and the ROECS numerical solution are basically identical
and that the errors between the analytical solution and CS solution, the analytical solu-
tion and ROECS solution, and the CS solution and ROECS solution are less than 2 × 10–4,
which verify the correctness of the theory for error analysis because the theoretical error
is O(10–4) according to Theorem 7. Especially, the unknowns (only six) in the ROECS for-
mat are far fewer than those in the classic CS format (i.e., (N + 1)2 = 10,201), so that the
CPU consuming time of the ROECS format is far less than that of the classic CS format;
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for instance, it takes only about 260 s when computing the ROECS solution at T = 0.9, but
takes 7033 s when computing the classic CS solution at the same time in the same Laptop
(Microsoft Surface Book: Int Core i7 Processor, 16 GB RAM).

5 Conclusions and discussions
In this study, we have studied the reduced-order of the coefficient vectors of the solutions
for the classic CS method of 2D Sobolev equations. We have established the ROECS for-
mat in matrix form for 2D Sobolev equations via the POD technique, proven the existence,
uniqueness, stability, and convergence of the ROECS solutions by the matrix means, and
also given the flowchart for solving the ROECS format of 2D Sobolev equations. More-
over, we have supplied two numerical examples to verify the correctness of the theoretical
analysis to explain that the ROECS format is far superior to the classic CS format because
the unknowns of the ROECS format are far fewer than those of the classic CS format, so
that, compared to the classic CS format, the ROECS format can greatly lessen the compu-
tational load, retard the round-off error accumulation, and save the CPU consuming time
in the operational process.

Especially, the ROECS format for the 2D Sobolev equations is first presented in this
paper and is a development and improvement over the existing reduced-order methods
because the ROECS format has higher accuracy than other reduced-order methods, such
as the reduced-order FE method, FVE method, and FD scheme. Both theory and method
of this paper are new and completely different from the existing reduced-order methods.

Although we restrict our ROECS method to Sobolev equations on rectangular domain
Ω = [a, b] × [c, d], our technique can be extended to more general domains and applied
in more complex engineering problems. Therefore, our technique has important applied
prospect.
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