
Chen and Zhang Boundary Value Problems         (2019) 2019:64 
https://doi.org/10.1186/s13661-019-1177-1

R E S E A R C H Open Access

Infinitely many geometrically distinct
solutions for periodic Schrödinger–Poisson
systems
Jing Chen1* and Ning Zhang2

*Correspondence:
cjhnust@aliyun.com
1School of Mathematics and
Computing Sciences, Hunan
University of Science and
Technology, Xiangtan, P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper is dedicated to studying the following Schrödinger–Poisson system:

{
–�u + V(x)u + K (x)φ(x)u = f (x,u), x ∈ R

3,

–�φ = K (x)u2, x ∈R
3,

where V(x), K (x), and f (x,u) are periodic in x. By using the non-Nehari manifold
method, we establish the existence of ground state solutions for the above problem
under some weak assumptions. Moreover, when f is odd in u, we prove that the
above problem admits infinitely many geometrically distinct solutions. Our results
improve and complement some related literature.
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1 Introduction
In this paper we are concerned with the nonlinear Schrödinger–Poisson system:

⎧⎨
⎩–�u + V (x)u + K(x)φ(x)u = f (x, u), x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(1.1)

where V , K : R3 →R and f : R3 ×R →R satisfy the following basic assumptions:
(V0) V , K ∈ C(R3, (0,∞)), V (x), and K(x) are 1-periodic in x1, x2, and x3;
(F0) f (x, t) is 1-periodic in x1, x2, and x3;
(F1) f ∈ C(R3 ×R,R), f (x, t) = o(|t|) uniformly in x as t → 0, and there exist constants

C0 > 0 and p ∈ (2, 6) such that

∣∣f (x, t)
∣∣ ≤ C0

(
1 + |t|p–1), ∀(x, t) ∈R

3 ×R.

Schrödinger–Poisson system (also called Schrödinger–Maxwell system) appears in the
quantum mechanics model or Hartree–Fock model, which is related to the study of the
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interaction of a charged non-relativistic quantum mechanical particle with the electro-
magnetic field. System (1.1) can be described by coupling a nonlinear Schrödinger and a
Poisson equation, from physical point of view, the unknown terms u and φ are the fields
associated to the particle and the electric potential, respectively, the functions V and K
are, respectively, an external potential and nonnegative density charge, the nonlinear term
f simulates the interaction effect between particles or external nonlinear perturbations,
and the coupled term φ(x)u concerns the interaction with the field. For more details on
the physical aspects, we refer the readers to [5–8, 20, 23].

Note that when φ ≡ 0, (1.1) reduces to the well-known Schrödinger equation, which
has been the object of various investigations; see, for example, [26, 33–35, 39, 40] and the
references therein.

Under assumption (V0), the set

E =
{

u ∈ H1(
R

3) :
∫
R3

(|∇u|2 + V (x)u2)dx < +∞
}

is a Hilbert space equipped with the norm

‖u‖ =
(∫

R3

(|∇u|2 + V (x)u2)dx
)1/2

.

It is well known that the Poisson equation is solved by using the Lax–Milgram theorem.
Indeed, as we shall see in Sect. 2, for every u ∈ E, unique φu ∈ D1,2(R3) is obtained, such
that –�φ = K(x)u2 and so (1.1) can be reduced to a single equation with a nonlocal term

–�u + V (x)u + K(x)φu(x)u = f (x, u). (1.2)

Moreover, (1.2) is variational and its solutions are the critical points of the functional Φ

defined on E by

Φ(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2)dx +
1
4

∫
R3

K(x)φu(x)u2 dx –
∫
R3

F(x, u) dx, (1.3)

where F(x, t) =
∫ t

0 f (x, s) ds. Define

N :=
{

u ∈ E :
〈
Φ ′(u), u

〉
= 0, u �= 0

}
, (1.4)

which is the Nehari manifold of Φ . Let ∗ denote the action of Z3 on H1(R3) given by

(k ∗ u)(x) = u(x – k), k ∈ Z
3.

We note that if u0 is a solution of (1.1), then so are k ∗ u0 for all k ∈ Z
3. Set

O(u) :=
{

k ∗ u0, k ∈ Z
3},

which is called the orbit of u0 with respect to the action of Z3. Two solutions u1 and u2

are said to be geometrically distinct if O(u1) and O(u2) are disjoint.
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In recent years, there have been rich results for Schrödinger–Poisson systems like (1.1)
on the existence of nontrivial solutions, positive solutions, ground states, semi-classical
states, and multiple solutions; we refer to [1–3, 6, 9, 14–17, 25, 29] for the case f (x, u) ∼
|u|q–2u with q ∈ (4, 6); [4, 28, 31, 36, 41] for the case f (x, u) ∼ |u|q–2u with q ∈ (3, 4]; [13] for
the convolution nonlinearity;[18, 38] for the critical growth nonlinearity. [19] deals with
the multiplicity of solutions for the fractional Schrödinger–Poisson systems. In this paper,
we focus on the existence of ground state solutions and infinitely many geometrically dis-
tinct solutions for (1.1) in a periodic setting. Let us recall some previous results that led
us to the present research.

When the potential and nonlinearity are periodic, that is (V0) and (F0) are satisfied, Zhao
and Zhao [41] proved that (1.1) with K(x) = 1 has a ground solution and infinitely many
geometrically distinct solutions by using the Nehari manifold approach, where f and ∂f /∂u
are continuous and satisfy suitable conditions. Based on the generalized Nehari manifold
approach developed by Szulkin and Weth [32], Sun and Ma [31] obtained similar results
as those in [41], where f satisfies (F0), (F1) and the following assumptions:

(SC) lim|t|→∞ F(x,t)
|t|4 = +∞ uniformly in x ∈ R

3;
(MT) f (x, t)/|t|3 is increasing in t on R \ {0} for every x ∈R

3.
Later, Chen and Tang relaxed (SC) and (MT) to the following weaker conditions:

(F2) lim|t|→∞ F(x,t)
|t|3 = ∞ uniformly in x ∈R

3;
(F3′) there exists θ ∈ (0, 1) such that

[
f (x, τ )

τ 3 –
f (x, tτ )
(tτ )3

]
sign(1 – t) + θV (x)

|1 – t2|
(tτ )2 ≥ 0, ∀x ∈R

3, t > 0, τ �= 0,

and established the existence of ground state solutions for (1.1) by means of the non-
Nehari manifold method developed by Tang [33–35].

To the best of our knowledge, except for [31, 41], there seems to be no result about the
existence of infinitely many geometrically distinct solutions for (1.1). Motivated by the
work of [9, 10, 31, 33], in the present paper, we shall establish the existence of ground
state solutions and infinitely many geometrically distinct solutions for (1.1) under weaker
assumptions than previous works.

Before presenting our theorems, in addition to (V0), (F0), (F1), and (F2), we introduce
the following assumptions:

(F3) f (x,t)–V (x)t
|t|3 is nondecreasing in t on both (–∞, 0) and (0,∞) for every x ∈R

3;
(F4) there exists a constant θ ∈ [0, 1) such that

f (x, t)t – 4F(x, t) + θV (x)t2 ≥ 0, ∀(x, t) ∈R
3 ×R;

(F5) f (x, –t) = –f (x, t), ∀(x, t) ∈R
3 ×R.

Theorem 1.1 Assume that V , K , and f satisfy (V0), (F0), and (F1)–(F3). Then Problem
(1.1) has a solution u0 ∈ E such that Φ(u0) = infN Φ > 0.

Theorem 1.2 Assume that V , K , and f satisfy (V0), (F0), and (F1)–(F5). Then Problem
(1.1) admits infinitely many pairs of geometrically distinct solutions.

Remark 1.3 Note that the assumptions of Theorems 1.1 and 1.2 are weaker than those of
[10, 31, 41]. A simple example of a function satisfying our assumptions but not conditions
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in [31, 41] is f (x, u) = b(x)u3 – |u|3/2u + |u|u for all (x, u) ∈ R
3 ×R, where b(x) is 1-periodic

in x1, x2, and x3 and infR3 b > 0. In this sense, our results improve and complement those
of [10, 31, 41].

To prove Theorem 1.1, following the idea of [10], we apply the non-Nehari manifold
method. Unlike the Nehari manifold approach, the key point of this method lies in finding
a minimizing Cerami sequence for Φ outside N by using a diagonal method. However, the
fact that (F3) is weaker than (F3′) used in [10] would require our extra efforts. To prove
Theorem 1.2, inspired by [31, 32], we use deformation type arguments and Lusternik–
Schnirelman theory. However, since t �→ f (x,t)

|t|3 is not increasing, the generalized Nehari ap-
proach developed by [32] does not work. To circumvent this obstacle, we borrow the idea
of [11, 12] in which Kirchhoff–type problems and Klein–Gordon–Maxwell systems were
considered respectively. However, the competing effect of the nonlocal term

∫
R3 φuu2 dx

and the nonlinear term
∫
R3 F(u) dx in the expression of Φ makes our problem more com-

plicated.
The paper is organized as follows. In Sect. 2, we introduce some notation and prelimi-

naries. We complete the proofs of Theorems 1.1 and 1.2 in Sects. 3 and 4, respectively.
Throughout this paper, we denote the norm of Ls(R3) by ‖u‖s = (

∫
R3 |u|s dx)1/s for s ≥ 2,

Br(x) = {y ∈R
3 : |y – x| < r}, and positive constants possibly different in different places by

C1, C2, . . . .

2 Notation and preliminaries
Hereafter, H1(R3) is the usual Sobolev space with the standard scalar product and norm

(u, v)H1 =
∫
R3

(∇u∇v + uv) dx, ‖u‖2
H1 =

∫
R3

(|∇u|2 + u2)dx,

and

D1,2(
R

3) =
{

u ∈ L6(
R

3) : ∇u ∈ L2(
R

3)}
equipped with the norm defined by

‖u‖2
D1,2 =

∫
R3

|∇u|2 dx.

It is easy to show that (1.1) can be reduced to a single equation with a nonlocal term.
Namely, for any Ku2 ∈ L1

loc(R3) such that

∫
R3

∫
R3

u2(x)u2(y)
|x – y| dx dy < ∞,

the distributional solution

φu(x) =
∫
R3

K(y)u2(y)
|x – y| dy =

1
|x| ∗ Ku2 (2.1)

of the Poisson equation

–�φ = K(x)u2, x ∈ R
3
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belongs to D1,2(R3) and is the unique weak solution in D1,2(R3) (see, e.g., [29] for more
details), and

∫
R3

∇φu∇v dx =
∫
R3

K(x)u2v dx, ∀v ∈ H1(
R

3), (2.2)
∫
R3

∫
R3

K(x)K(y)
|x – y| u2(x)u2(y) dx dy =

∫
R3

K(x)φu(x)u2 dx. (2.3)

Moreover, φu(x) > 0 when u �= 0, because K does (see (V0)). By using Hardy–Littlewood–
Sobolev inequality (see [21] or [22, p. 98]), we have the following inequality:

∫
R3

∫
R3

|u(x)v(y)|
|x – y| dx dy ≤ 8 3√2

3 3√π
‖u‖6/5‖v‖6/5, u, v ∈ L6/5(

R
3). (2.4)

Formally, the solutions of (1.1) are then the critical points of the reduced functional (1.3).
Indeed, (V0), (F0), and (2.4) imply that Φ is a well-defined functional of class C1 and that

〈
Φ ′(u), v

〉
=

∫
R3

(∇u∇v + V (x)uv
)

dx +
∫
R3

[
K(x)φu(x)u – f (x, u)

]
v dx. (2.5)

Hence if u ∈ E is a critical point of Φ , then the pair (u,φu), with φu as in (2.1), is a solution
of (1.1).

Lemma 2.1 Under assumptions (V0), (F1), and (F2),

Φ(u) ≥ Φ(tu) +
1 – t4

4
〈
Φ ′(u), u

〉
+

(1 – t2)2

4
‖∇u‖2

2, ∀u ∈ E, t ≥ 0. (2.6)

Proof For any x ∈ R
3, t ≥ 0, τ �= 0, (F2) yields

1 – t4

4
τ f (x, τ ) + F(x, tτ ) – F(x, τ ) +

V (x)
4

(
1 – t2)2

τ 2

=
∫ 1

t

[
f (x, τ )

τ 3 –
f (x, sτ )
(sτ )3 + V (x)

(1 – s2)
(sτ )2

]
s3τ 4 ds ≥ 0. (2.7)

Note that

Φ(u) =
1
2
‖u‖2 +

1
4

∫
R3

K(x)φu(x)u2 dx –
∫
R3

F(x, u) dx (2.8)

and

〈
Φ ′(u), u

〉
= ‖u‖2 +

∫
R3

K(x)φu(x)u2 dx –
∫
R3

f (x, u)u dx. (2.9)

Thus, by (2.7), (2.8), and (2.9), one has

Φ(u) – Φ(tu) =
1 – t2

2
‖u‖2 +

1 – t4

4

∫
R3

K(x)φu(x)u2 dx +
∫
R3

[
F(x, tu) – F(x, u)

]
dx

=
1 – t4

4
〈
Φ ′(u), u

〉
+

(1 – t2)2

4
‖∇u‖2

2
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+
∫
R3

[
1 – t4

4
f (x, u)u + F(x, tu) – F(x, u) +

V (x)
4

(
1 – t2)2u2

]
dx

≥ 1 – t4

4
〈
Φ ′(u), u

〉
+

(1 – t2)2

4
‖∇u‖2

2, t ≥ 0.

This shows that (2.6) holds. �

Corollary 2.2 Under assumptions (V0), (F1), and (F2), for u ∈N ,

Φ(u) = max
t≥0

Φ(tu). (2.10)

Unlike the super-cubic case, to show N �= ∅ in our situation, we have to overcome the
competing effect of the nonlocal term. Inspired by Chen and Tang [10], we define a set Λ

as follows:

Λ =
{

u ∈ E :
∫
R3

[
V (x)u2 + K(x)φuu2 – f (x, u)u

]
dx < 0

}
.

Lemma 2.3 Under assumptions (V0) and (F1)–(F3), Λ �= ∅ and N ⊂ Λ. Then, for any
u ∈ Λ, there exists unique t(u) > 0 such that t(u)u ∈N .

Proof First, we show that Λ �= ∅. From (2.4) and Sobolev imbedding theorem, there exists
C1 > 0 such that

∫
R3 φuu2 dx ≤ C1‖u‖4 for all u ∈ E. For any fixed u ∈ E with u �= 0, set

ut(x) = u(tx) for t > 0. By (V0), one has

∫
R3

[
V (x)(tut)2 + K(x)φ(tut )(tut)2 – f (x, tut)tut

]
dx

= t–1
∫
R3

V
(
t–1x

)
u2 dx + t–1

∫
R3

K
(
t–1x

)
φuu2 dx –

∫
R3

f (t–1x, tu)tu
t3 dx

≤ V∞t–1‖u‖2
2 + C1K∞t–1‖u‖4 –

∫
R3

f (t–1x, tu)tu
t3 dx, (2.11)

where V∞ = supx∈R3 V (x) and K∞ = supx∈R3 K(x). Note that, for u(x) �= 0, F(t–1x, tu)/
|tu|3 → +∞ as t → +∞ uniformly in x ∈R

3 by (F3), and (2.7) with t = 0 yields

1
4

f (x, τ )τ – F(x, τ ) +
V (x)

4
τ 2 ≥ 0, ∀x ∈R

3, τ ∈R, (2.12)

then we have

f (t–1x, tu)tu
|tu|3 → +∞, as t → +∞ uniformly in x ∈R

3. (2.13)

Thus, it follows from (V0), (2.11), and (2.13) that

∫
R3

[
V (x)(tut)2 + K(x)φ(tut )(tut)2 – f (x, tut)tut

]
dx → –∞, as t → +∞.

Thus, taking v = TuT for T large, we have v ∈ Λ. Hence, Λ �= ∅. From (2.5), it is easy to see
that N ⊂ Λ.
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Next, we prove the last part of the lemma. Let u ∈ Λ be fixed and define a function
g(t) := 〈Φ ′(tu), tu〉 on [0,∞). By (F2), one has

f (x, tτ )tτ ≥ f (x, τ )τ t4 – V (x)
(
t2 – 1

)
(tτ )2, ∀x ∈R

3, t ≥ 1, τ ∈R, (2.14)

which yields

∫
R3

[
V (x)(tτ )2 + K(x)φtτ (tτ )2 – f (x, tτ )tτ

]
dx

≤ t4
∫
R3

[
V (x)τ 2 + K(x)φτ τ

2 – f (x, τ )τ
]

dx, ∀t ≥ 1, τ ∈R. (2.15)

From (2.5) and (2.15) it follows that

g(t) ≤ t2‖u‖2 + t4
∫
R3

[
V (x)u2 + K(x)φuu2 – f (x, u)u

]
dx

– t2
∫
R3

V (x)u2 dx, ∀t ≥ 1. (2.16)

Using (F0), (2.5), and (2.16), it is easy to verify that g(0) = 0, g(t) > 0 for t > 0 small and
g(t) < 0 for t large due to u ∈ Λ. Therefore, there exists t0 = t(u) > 0 so that g(t0) = 0 and
t(u)u ∈ N . We claim that t(u) is unique for any u ∈ Λ. In fact, for any given u ∈ Λ, let
t1, t2 > 0 such that g(t1) = g(t2) = 0. Jointly with (2.6), we have

Φ(t1u) ≥ Φ(t2u) +
t4
1 – t4

2
4t4

1

〈
Φ ′(t1u), t1u

〉
+

(t2
1 – t2

2)2

4t2
1

‖∇u‖2
2

= Φ(t2u) +
(t2

1 – t2
2)2

4t2
1

‖∇u‖2
2 (2.17)

and

Φ(t2u) ≥ Φ(t1u) +
t4
2 – t4

1
4t4

2

〈
Φ ′(t2u), t2u

〉
+

(t2
2 – t2

1)2

4t2
2

‖∇u‖2
2

= Φ(t1u) +
(t2

2 – t2
1)2

4t2
2

‖∇u‖2
2. (2.18)

(2.17) and (2.18) imply t1 = t2. Hence, t(u) > 0 is unique for any u ∈ Λ. �

Lemma 2.4 Under assumptions (V0) and (F1)–(F3), then

inf
u∈N

Φ(u) := c = inf
u∈Λ,u�=0

max
t≥0

Φ(tu) > 0.

Proof Both Corollary 2.2 and Lemma 2.3 imply that c = infu∈Λ,u�=0 maxt≥0 Φ(tu). Using
Lemma 2.1, it is easy to see that c > 0. �

Lemma 2.5 Under assumptions (V0) and (F1)–(F3), there exist a constant c∗ ∈ (0, c] and
a sequence {un} ⊂ E satisfying

Φ(un) → c∗,
∥∥Φ ′(un)

∥∥(
1 + ‖un‖

) → 0. (2.19)
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Proof By (F1) and (1.3), we know that there exist δ0 > 0 and ρ0 > 0 such that

Φ(u) ≥ ρ0, ‖u‖ = δ0. (2.20)

In view of Lemmas 2.3 and 2.4, we may choose vk ∈N ⊂ Λ such that

c –
1
k

< Φ(vk) < c +
1
k

, k ∈N. (2.21)

Using Lemma 2.1 and (2.20), it is easy to check that Φ(tvk) ≥ ρ0 for small t > 0 and Φ(tvk) <
0 for large t > 0 due to vk ∈ Λ. Since Φ(0) = 0, then the mountain pass lemma implies that
there exists a sequence {uk,n}n∈N ⊂ E satisfying

Φ(uk,n) → ck ,
∥∥Φ ′(uk,n)

∥∥(
1 + ‖uk,n‖

) → 0, k ∈N, (2.22)

where ck ∈ [ρ0, supt≥0 Φ(tvk)]. By virtue of Corollary 2.2, one has Φ(vk) = supt≥0 Φ(tvk).
Hence, by (2.21) and (2.22), one has

Φ(uk,n) → ck ∈
[
ρ0, c +

1
k

)
,

∥∥Φ ′(uk,n)
∥∥(

1 + ‖uk,n‖
) → 0, k ∈N. (2.23)

Now, we can choose a sequence {nk} ⊂N such that

Φ(uk,nk ) ∈
[
ρ0, c +

1
k

)
,

∥∥Φ ′(uk,nk )
∥∥(

1 + ‖uk,nk ‖
)

<
1
k

, k ∈N. (2.24)

Let uk = uk,nk , k ∈N. Then, going if necessary to a subsequence, we have

Φ(un) → c∗ ∈ [ρ0, c],
∥∥Φ ′(un)

∥∥(
1 + ‖un‖

) → 0. �

Lemma 2.6 Under assumptions (V0) and (F1)–(F3), any sequence {un} ⊂ E satisfying
(2.19) is bounded in E.

Proof By (2.6) with t = 0, one has

c∗ + o(1) = Φ(un) –
1
4
〈
Φ ′(un), un

〉 ≥ 1
4
‖∇un‖2

2. (2.25)

By (V0), it is easy to see that there exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R
3. Since

〈Φ ′(un), un〉 = o(1), it follows from (V0), (F1), and the Sobolev embedding inequality that

V0‖un‖2
2 ≤ ‖un‖2 +

∫
R3

K(x)φun u2
n dx

=
∫
R3

f (un)un dx + o(1)

≤ 1
2

V0‖un‖2
2 + C2‖un‖6

6 + o(1)

≤ 1
2

V0‖un‖2
2 + C2S–3‖∇un‖6

2 + o(1), (2.26)

which together with (2.25) implies that {un} is bounded in E. �
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3 Ground state solutions
In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Lemma 2.5 implies the existence of a sequence {un} ⊂ E satisfying
(2.19), then

Φ(un) → c∗ > 0,
〈
Φ ′(un), un

〉 → 0. (3.1)

By Lemma 2.6, {un} is bounded in E. If

δ := lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2 dx = 0,

then by Lion’s concentration compactness principle [24] or [37, Lemma 1.21], un → 0
in Ls(R3) for 2 < s < 6. Moreover, there exists C3 > 0 such that ‖un‖2 ≤ C3. By (F0), for
ε = c∗/2C2

3 , there exists Cε > 0 such that

lim sup
n→∞

∫
R3

∣∣∣∣1
2

f (x, un)un – F(x, un)
∣∣∣∣dx ≤ 3

2
εC2

3 + Cε lim
n→∞‖un‖p

p =
3c∗
4

. (3.2)

By (V0), (2.3), and (2.4), we have

lim sup
n→∞

∫
R3

K(x)φun (x)u2
n dx = lim sup

n→∞

∫
R3

∫
R3

K(x)K(y)
|x – y| u2

n(x)u2
n(y) dx dy

≤ K2
∞ lim sup

n→∞

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x – y| dx dy

≤ C1K2
∞ lim sup

n→∞
‖un‖4

12/5 = 0, (3.3)

where, and in the sequel, C1 = 8 3√2/3 3√π . From (1.3), (2.5), (3.1), (3.2), and (3.3), one has

c∗ = Φ(un) –
1
2
〈
Φ ′(un), un

〉
+ o(1)

= –
1
4

∫
R3

K(x)φun (x)u2
n dx +

∫
R3

[
1
2

f (x, un)un – F(x, un)
]

dx + o(1)

≤ 3c∗
4

+ o(1).

This contradiction shows δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

3 such that

∫
B2(kn)

|un|2 dx >
δ

2
. (3.4)

Let vn(x) = un(x + kn). Then

∫
B2(0)

|vn|2 dx >
δ

2
. (3.5)
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Since V (x), K(x), and f (x, u) are periodic on x, we have

Φ(vn) → c∗ ∈ (0, c],
∥∥Φ ′(vn)

∥∥(
1 + ‖vn‖

) → 0. (3.6)

Passing to a subsequence, we have vn ⇀ v̄ in E, vn → v̄ in Ls
loc(R3), 2 ≤ s < 6, and vn(x) →

v̄(x) a.e. on R
3. Thus, (3.5) implies that v̄ �= 0. For every φ ∈ C∞

0 (R3), we have

〈
Φ ′(v̄),φ

〉
= lim

n→∞
〈
Φ ′(vn),φ

〉
= 0.

Hence Φ ′(v̄) = 0. This shows that v̄ ∈ N is a nontrivial solution of Problem (1.1) and
Φ(v̄) ≥ c. It follows from (F2), (3.6), and Fatou’s lemma that

c ≥ c∗ = lim
n→∞

[
Φ(vn) –

1
4
〈
Φ ′(vn), vn

〉]

= lim
n→∞

{
1
4
‖∇vn‖2

2 +
∫
R3

[
1
4

f (x, vn)vn – F(x, vn) +
V (x)

4
v2

n

]
dx

}

≥ 1
4

lim inf
n→∞ ‖∇vn‖2

2 + lim inf
n→∞

∫
R3

[
1
4

f (x, vn)vn – F(x, vn) +
V (x)

4
v2

n

]
dx

≥ 1
4
‖v̄‖2 +

∫
R3

[
1
4

f (x, v̄)v̄ – F(x, v̄)
]

dx

= Φ(v̄) –
1
4
〈
Φ ′(v̄), v̄

〉
= Φ(v̄).

This shows that Φ(v̄) ≤ c, and so Φ(v̄) = c = infN Φ > 0. �

4 Infinitely many geometrically distinct solutions
To prove Theorem 1.2, we need some notations. For d2 ≥ d1 > –∞ and c ∈R, we put

Φd2 :=
{

u ∈ E : Φ(u) ≤ d2
}

, Φd1 :=
{

u ∈ E : Φ(u) ≥ d1
}

, Φ
d2
d1

:= Φd1 ∩ Φd2 ;

K :=
{

u ∈ E \ {0} : Φ ′(u) = 0
}

, Kc :=
{

u ∈K : Φ(u) = c
}

.

In view of Theorem 1.1, under (V0), (F0), and (F1)–(F3), (1.1) has a nontrivial solution
ū ∈ H1(RN ) satisfying Φ(ū) = c0 := infK Φ > 0. Therefore,K ⊇Kc0 �= ∅. Following the strat-
egy of [32], we choose a subset F of K such that F = –F and each orbit O(w) ⊂ K has a
unique representative in F . It suffices to show that the set F is infinite. So from now on
we assume by contradiction that

F is a finite set. (4.1)

Lemma 4.1 κ := inf{‖u – v‖ : u, v ∈K, u �= v} > 0.

Proof Choose {un}, {vn} ⊂ K such that ‖un – vn‖ → κ . Then there exist w1, w2 ∈ F and
kn, ln ∈ Z

3 such that un = w1(· – kn) and vn = w2(· – ln). Put mn = kn – ln. There are two
possible cases.

Case (1). {|mn|} is bounded. Passing to a subsequence, mn = m ∈ Z
3, one has

κ + o(1) = ‖un – vn‖ =
∥∥w1(· – kn) – w2(· – ln)

∥∥ =
∥∥w1 – w2(· – m)

∥∥ > 0.
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Case (2). {|mn|} is unbounded. Passing to a subsequence, |mn| → ∞, one has

κ + o(1) = ‖un – vn‖ =
∥∥w1(· – kn) – w2(· – ln)

∥∥
=

∥∥w1 – w2(· – mn)
∥∥ =

(∥∥w1∥∥2 +
∥∥w2∥∥2)1/2 + o(1) > 0.

Both Cases (1) and (2) show that κ > 0. �

Lemma 4.2 (Discreteness of (PS)-sequences) Let c ≥ c0. If {u1
n}, {u2

n} ⊂ Φc are two
(PS)-sequences for Φ , then either ‖u1

n – u2
n‖ → 0 as n → ∞ or lim infn→∞ ‖u1

n – u2
n‖ ≥

min{κ ,
√

2c0} > 0.

Proof First, we prove the boundedness of Palais–Smale sequences for Φ . Let {un} be such
that

Φ(un) → c > 0, Φ ′(un) → 0. (4.2)

Then it follows from (F4) and (4.2) that, for large n ∈N,

c + 1 + ‖un‖ ≥ Φ(un) –
1
4
〈
Φ ′(un), un

〉
=

1
4
‖un‖2 +

∫
R3

[
1
4

f (x, un)un – F(x, un)
]

dx

≥ 1 – θ

4
‖un‖2,

which implies that {un} is bounded in E. Thus, {u1
n}, {u2

n} ⊂ Φc are two bounded (PS)-
sequences for Φ . Next, we fix p as in (F1), and we distinguish two cases.

Case (1). ‖u1
n –u2

n‖p → 0. In this case, we can prove that limn→∞ ‖u1
n –u2

n‖ = 0 in a similar
fashion as [32, Lemma 2.14].

Case (2). ‖u1
n – u2

n‖p � 0. Then again by [37, Lemma 1.21], there exist ε0 > 0 and kn ∈ Z
3

such that, after passing to a subsequence,

∫
B1+

√
N (kn)

∣∣u1
n – u2

n
∣∣p dx = max

k∈Z3

∫
B1+

√
N (k)

∣∣u1
n – u2

n
∣∣p dx ≥ ε0.

Using that Φ is equivariant with respect to translations of the form u �→ u(· – k) with
k ∈ Z

3, we may assume that {kn} is bounded in Z
3. We may pass to a subsequence such

that

u1
n ⇀ u1, u2

n ⇀ u2, u1 �= u2, Φ ′(u1) = Φ ′(u2) = 0.

We first consider the case where u1 �= 0 and u2 �= 0, so that u1, u2 ∈ K. By Lemma 4.1, one
has lim infn→∞ ‖u1

n – u2
n‖ ≥ ‖u1 – u2‖ ≥ κ . It remains to consider the case where either

u2 = 0 or u1 = 0. In this case, it is easy to see that lim infn→∞ ‖u1
n – u2

n‖ ≥ ‖u1 – u2‖ ≥√
2c0. �

Since Φ is even, it is known (see, e.g., [30, Lemma II.3.9]) that Φ admits an odd pseudo-
gradient vector field, i.e., there exists an odd Lipschitz continuous map W : E\ (K∪{0}) →
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E such that

‖W (u)‖ ≤ 2‖Φ ′(u)‖,
〈Φ ′(u), W (u)〉 ≥ ‖Φ ′(u)‖2.

}
(4.3)

Now we consider the Cauchy problem:

⎧⎨
⎩

dη

dt = –W (η),

η(0, u) = u.
(4.4)

The basic existence-uniqueness theorem for ordinary differential equations implies that,
for each u ∈ E, (4.4) has a unique solution η(t, u) defined for t in a maximal interval
(T–(u), T+(u)), and η(t, u) is odd with respect to u ∈ E.

Lemma 4.3 Let u ∈ E \ (K ∪ {0}). If inft∈[0,T+(u)) Φ(η(t, u)) > –∞, then limt→T+(u) η(t, u)
exists and is a critical point of Φ .

Proof From (4.3) and (4.4), we have

d
dt

Φ
(
η(t, u)

)
= –

〈
Φ ′(η(t, u)

)
, W

(
η(t, u)

)〉
≤ –

∥∥Φ ′(η(t, u)
)∥∥2 < 0, ∀t ∈ [

0, T+(u)
)
. (4.5)

This shows that Φ(η(t, u)) is strictly decreasing on t ∈ [0, T+(u)), and so τ :=
limt→T+(u) Φ(η(t, u)) exists.

Case (1). T+(u) < +∞. For 0 ≤ t1 < t2 < T+(u), from (4.3) and (4.4), we have

∥∥η(t2, u) – η(t1, u)
∥∥ ≤

∫ t2

t1

∥∥W
(
η(t, u)

)∥∥dt

≤ 2
∫ t2

t1

√〈
Φ ′(η(t, u)

)
, W

(
η(t, u)

)〉
dt

≤ 2
√

t2 – t1

[∫ t2

t1

〈
Φ ′(η(t, u)

)
, W

(
η(t, u)

)〉
dt

]1/2

= 2
√

t2 – t1
[
Φ

(
η(t1, u)

)
– Φ

(
η(t2, u)

)]1/2

≤ 2
√

t2 – t1
[
Φ(u) – τ

]1/2.

Since T+(u) < +∞, this implies that limt→T+(u) η(t, u) exists and then it must be a critical
point of Φ (otherwise the trajectory t �→ η(t, u) could be continued beyond T+(u)).

Case (2). T+(u) = +∞. To prove that limt→T+(u) η(t, u) exists, it suffices to show that

for every ε > 0, there exists tε > 0 such that
∥∥η(tε , u) – η(t, u)

∥∥ < ε, ∀t ≥ tε . (4.6)

We suppose by contradiction that (4.6) is false. Then there exist 0 < ε0 < 1
2 min{κ ,

√
2c0}

and a sequence {tn} ⊂ [0, +∞) such that

0 ≤ t1 < t2 < · · · < tn → +∞ and
∥∥η(tn+1, u) – η(tn, u)

∥∥ = ε0, ∀n ∈N. (4.7)
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Choose the smallest t1
n ∈ (tn, tn+1) and s1

n ∈ [tn, t1
n] such that

∥∥η
(
t1
n, u

)
– η(tn, u)

∥∥ =
ε0

3
and

∥∥Φ ′(η(
s1

n, u
))∥∥ = min

t∈[tn ,t1
n]

∥∥Φ ′(η(t, u)
)∥∥. (4.8)

Then it follows from (4.3), (4.4), and (4.8) that

ε0

3
=

∥∥η
(
t1
n, u

)
– η(tn, u)

∥∥
≤

∫ t1
n

tn

∥∥W
(
η(t, u)

)∥∥dt

≤ 2
∫ t1

n

tn

∥∥Φ ′(η(t, u)
)∥∥dt

≤ 2
‖Φ ′(η(s1

n, u))‖
∫ t1

n

tn

∥∥Φ ′(η(t, u)
)∥∥2 dt

≤ 2
‖Φ ′(η(s1

n, u))‖
∫ t1

n

tn

〈
Φ ′(η(t, u)

)
, W

(
η(t, u)

)〉
dt

=
2

‖Φ ′(η(s1
n, u))‖

[
Φ

(
η(tn, u)

)
– Φ

(
η
(
t1
n, u

))]
.

Since Φ(η(tn, u)) – Φ(η(t1
n, u)) → 0 as n → ∞, the above implies that Φ ′(η(s1

n, u)) →
0 as n → ∞. Similarly we find the largest t2

n ∈ (tn, tn+1) and s2
n ∈ [t2

n, tn+1] such that
‖η(tn+1, u) – η(t2

n, u)‖ = ε0
3 and Φ ′(η(s2

n, u)) → 0 as n → ∞. Let u1
n := η(s1

n, u) and u2
n :=

η(s2
n, u). Then {u1

n} and {u2
n} are two Palais–Smale sequences of Φ such that ε0

3 ≤ ‖u1
n –

u2
n‖ ≤ 2ε0 < min{κ ,

√
2c0}. This, however, contradicts Lemma 4.2, hence (4.6) is true. So

limt→T+(u) η(t, u) exists, and it must be a critical point of Φ . �

In the following, for a subset A ⊂ E and δ > 0, we put Uδ(A) := {v ∈ E : dist(v, A) < δ}.

Lemma 4.4 Let c ≥ c0. Then, for every δ > 0, there exists ε = ε(δ) > 0 such that
(a) Φc+ε

c–ε ∩K = Kc;
(b) limt→T+(u) Φ(η(t, u)) < c – ε for u ∈ Φc+ε \ Uδ(Kc).

Proof In view of (4.1) and the Z
3-translation invariance for Φ , Φ(K) := {Φ(w) : w ∈ K} is

a finite set. Therefore, there exists ε̂ > 0 such that (a) is satisfied for ε ∈ (0, ε̂).
Without loss of generality, we may assume Uδ(Kc) ⊂ Φc+1 and δ < min{κ ,

√
2c0}.

Next we find ε ∈ (0, ε̂) such that (b) holds. Let u ∈ Φc+ε̂ \ Uδ(Kc). Since Φ(η(t, u)) is
strictly decreasing on t ∈ [0, T+(u)), if Φ(η(t0, u)) ≤ c – ε̂ for some t0 ∈ [0, T+(u)), then
limt→T+(u) Φ(η(t, u)) < c – ε̂. Thus, we only consider the case where Φ(η(t, u)) > c – ε̂ for all
t ∈ [0, T+(u)). In this case, it follows from Lemma 4.3 that limt→T+(u) η(t, u) exists and is a
critical point of Φ . Set

α := inf
{∥∥Φ ′(w)

∥∥ : w ∈ Uδ(Kc) \ Uδ/2(Kc)
}

. (4.9)

We claim that α > 0. Indeed, suppose by contradiction that there exists a sequence {u1
n} ⊂

Uδ(Kc) \ Uδ/2(Kc) such that Φ ′(u1
n) → 0. Passing to a subsequence, using the finiteness
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condition (4.1) and the Z
3-invariance of Φ , we may assume {u1

n} ⊂ Uδ(w0) \ Uδ/2(w0) for
some w0 ∈Kc. Let u2

n = w0. Then

δ

2
≤ lim sup

n→∞

∥∥u1
n – u2

n
∥∥ ≤ δ < min{κ ,

√
2c0},

which contradicts Lemma 4.2. Hence α > 0.
Let β := sup{‖Φ ′(w)‖ : w ∈ Uδ(Kc) \ Uδ/2(Kc)} and 0 < ε < α2δ

4β
. By Lemma 4.3 and (a), the

only way (b) can fail is that η(t, u) → w̃ ∈ Kc as t → T+(u) for some u ∈ Φc+ε\Uδ(Kc). In
this case we let

t1 := sup
{

t ∈ [
0, T+(u)

)
: η(t, u) /∈ Uδ(w̃)

}
and

t2 ∈ {
t ∈ [

0, T+(u)
)

: η(t, u) ∈ U δ
2

(w̃)
}

.
(4.10)

Then from (4.3), (4.4), and (4.10), we have

δ

2
≤ ∥∥η(t2, u) – η(t1, u)

∥∥ ≤
∫ t2

t1

∥∥W
(
η(t, u)

)∥∥dt ≤ 2
∫ t2

t1

∥∥Φ ′(η(t, u)
)∥∥dt ≤ 2β(t2 – t1)

and

Φ
(
η(t2, u)

)
– Φ

(
η(t1, u)

) ≤ –
∫ t2

t1

∥∥Φ ′(η(t, u)
)∥∥2 dt ≤ –α2(t2 – t1) ≤ –

α2δ

4β
.

Hence limt2→T+(u) Φ(η(t2, u)) ≤ c + ε – α2δ
4β

< c, contrary to our assumption. �

Proof of Theorem 1.2 For j ∈ N, we consider the family Σj of all closed and symmetric
subsets A ⊂ E \ {0} (i.e., A = –A = Ā) with γ (A) ≥ j, where γ denotes the usual Kras-
noselskii genus (see, e.g., [27, 30]). Moreover, we consider the nondecreasing sequence of
Lusternik–Schnirelman values for Φ defined by ck := {c ∈ R : γ (Φc) ≥ k} for k ∈ N. We
claim:

Kck �= ∅ and ck < ck+1, k ∈N. (4.11)

To prove this, let k ∈ N and c = ck . In view of Lemma 4.1, γ (Kc) = 0 if Kc = ∅ or γ (Kc) = 1
if Kc �= ∅. By the continuity property of the genus, there exists δ > 0 such that γ (Uδ(Kc)) =
γ (Kc). Choose ε = ε(δ) > 0 such that the properties of Lemma 4.4 hold. Then, for every
u ∈ Φc+ε \ Uδ(Kc), tu ∈ [0, T+(u)), where tu := inf{t ∈ [0, T+(u)) : Φ(η(t, u)) ≤ c – ε}. Since
η(t, u) is odd with respect to u and Φ is even, it implies that tu = t–u. Define a map

h : Φc+ε \ Uδ(Kc) → Φc–ε , h(u) = η(tu, u).

Then h is odd and continuous. Hence γ (Φc+ε \ Uδ(Kc)) ≤ γ (Φc–ε) ≤ k – 1 and therefore

γ
(
Φc+ε

) ≤ γ
(
Uδ(Kc)

)
+ k – 1 = γ (Kc) + k – 1.

The definition of c = ck and of ck+1 implies that γ (Kc) ≥ 1 if ck+1 > ck and γ (Kc) > 1 if
ck+1 = ck . Since γ (F ) = γ (Kc) ≤ 1, (4.11) follows.
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It follows now from (4.11) that there is an infinite sequence {uk} of pairs of geometrically
distinct critical points of Φ with Φ(uk) = ck , contrary to (4.1). The proof is finished. �
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