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Abstract
The aim of this paper is to establish the existence and global asymptotic behavior of a
positive continuous solution for the following semilinear problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�u(x) = a(x)uσ (x), x ∈ D,

u > 0, in D,

u(x) = 0, x ∈ ∂D,

lim|x|→∞ u(x)
ln |x| = 0,

where σ < 1, D is an unbounded domain in R
2 with a compact nonempty boundary

∂D consisting of finitely many Jordan curves. As main tools, we use Kato class,
Karamata regular variation theory and the Schauder fixed point theorem.
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1 Introduction
There are many papers which have been dedicated to resolving questions of existence,
uniqueness and asymptotic behavior for solutions of semilinear/quasilinear elliptic equa-
tions of the form

�u(x) + ϕ(x, u) = 0, x ∈ Ω , (1.1)

where Ω is either a bounded or unbounded domain of Rn (n ≥ 2) (see, for instance, [1, 3,
5, 16, 20–22, 24, 25, 27–29, 32, 33, 37, 48, 49, 51, 52] and the references therein).

In [32, Theorem 3.2], Kusano and Swanson studied equation (1.1) for Ω = ΩT := {x ∈
R

2 : |x| > T > 1}. Using the sub-super solution method, they have proved that equation
(1.1) has a positive solution u(x) such that u(x)

ln |x| is bounded and bounded away from zero
in ΩT if

φ
(|x|, u

) ≤ ϕ(x, u) ≤ Φ
(|x|, u

)
, for all (x, u) ∈ ΩT × (0,∞),

where φ(t, u) and Φ(t, u) are nonincreasing functions of u for each fixed t > 0 with
∫ ∞ tΦ(t, c ln t) dt < ∞, for some positive constant c.
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Ufuktepe and Zhao [48, Theorem 1.1] considered (1.1) in the case Ω = D is an un-
bounded domain in R

2 with a compact nonempty boundary ∂D consisting of finitely many
Jordan curves, ϕ(x, t) is a Borel measurable function in R

2 × [0,∞) continuous in the sec-
ond variable for each fixed x ∈ R

2 and satisfying

∣
∣ϕ(x, t)

∣
∣ ≤ F(x, t), (x, t) ∈R

2 × [0,∞),

where F(x, t) is a positive, convex and continuously differentiable function in R
2 × [0,∞)

with F(x, 0) = ∂
∂t F(x, 0) = 0, and ∂

∂t F(x, ln |x| + 1) belonging to the Kato class K∞
2 (D) (see

[48]).
Then by using Brownian path integration and potential theory, they have proved that

for a small λ > 0, Eq. (1.1) has a positive solution u ∈ C(D) satisfying u|∂D = 0 and
lim|x|→∞ u(x)

ln |x| = λ.
In [37, Theorem 1.1], Mâagli and Mâatoug improved the result obtained in [48] by intro-

ducing a Kato class K(D) (see Definition 1.1), which properly contains K∞
2 (D), and adopt-

ing weaker hypotheses on ϕ.
The class K(D) has been proved to be very useful in the study of various existence and

multiplicity results for large classes of elliptic boundary value problems (see, e.g., [39, 41,
51]).

In [51, Theorem 3.5], Zeddini proved that for Ω = {x ∈ R
2 : |x| > 1} and for each λ > 0,

Eq. (1.1) has a positive solution u ∈ C(Ω) satisfying u|∂Ω
= 0 and lim|x|→∞ u(x)

ln |x| = λ, pro-
vided that ϕ is continuous and nonincreasing with respect to the second variable with
ϕ(·, c) ∈ K(Ω) for every c > 0. Several estimates of a such solution have been also ob-
tained.

In [26, Theorems 1.1 and 1.2], by combining variational methods with the geo-
metrical feature, Filippucci et al. established existence and non-existence results for
quasilinear elliptic problems with nonlinear boundary conditions and lack of compact-
ness.

In [11, Theorem 1.2], by using sub-supersolution method, Chhetri et al. studied the ex-
istence of positive solutions of –�pu = K(x) f (u)

uδ in an exterior domain Ω of Rn, u = 0 on
∂Ω lim|x|→∞ u(x) = 0, where �pu := div(|∇u|p–2∇u) is the p-Laplacian with 1 < p < n and
0 ≤ δ < 1. The weight function K : Ω → (0,∞) and the nonlinearity f : [0,∞) → (0,∞)
satisfy the following hypotheses:

• There exists K∗ > 0 such that 0 < K(x) < K∗
|x|α for x ∈ Ω , where α > n + δ

n–p
p–1 .

• f is continuous and lims→∞ f (s)
sp–1+δ = 0.

Sharp estimates have also been obtained. The uniqueness has also been proved under an
additional assumption on f .

Recently, Carl et al. [7] considered Eq. (1.1) for Ω = {x ∈ R
2 : |x| > 1} with ϕ(x, u) =

a(x)(λu – g(u)), where λ > 0, a : Ω →R is measurable with | supp(a)| > 0 satisfying

0 ≤ a(x) ≤ c
|x|2+α

, with α > 0 for some constant c > 0,

and the growth for the continuous nonlinearity g : R →R at zero and at infinity is su-
perlinear, which includes even exponential growth. By proving a Hopf-type lemma and
employing the sub-supersolution method in the space D1,2

0 (Ω), which is the completion
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of C∞
c (Ω) with respect to the ‖∇ .‖2,Ω -norm, they have proved the existence of extremal

constant-sign solutions u in D1,2
0 (Ω) for Eq. (1.1) subject to the boundary condition u = 0

on ∂Ω . The obtained solutions are not decaying to zero at infinity, and instead are bounded
away from zero.

In this paper, we will address the question of existence and global behavior of positive
continuous solutions to the following nonlinear singular sublinear problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u(x) = a(x)uσ (x), x ∈ D (in the distributional sense),

u > 0, in D,

u(x) = 0, x ∈ ∂D,

lim|x|→∞ u(x)
ln |x| = 0,

(1.2)

where σ < 1, D is an unbounded domain in R
2 with a compact nonempty boundary ∂D

consisting of finitely many Jordan curves and the weight function a(x) (which could be sin-
gular) is required to satisfy some adequate conditions related to the Karamata class (see
Definition 1.3). In particular, we improve the sharp estimates obtained in [51]. We empha-
size that the use of Karamata regular variation theory has been suggested by Cîrstea and
Rădulescu, [13–17] in the study of various qualitative and asymptotic properties of solu-
tions of nonlinear differential equations. Since then, this setting became a powerful tool
in describing the asymptotic behavior of solutions of large classes of nonlinear equations
(see [3, 8–10, 18, 23, 27–29, 35, 36, 38, 43–45, 50, 53]).

Before stating our main result, we need to fix some notation.

Notation
(i) D is an unbounded domain in R

2 with a compact nonempty boundary ∂D
consisting of finitely many Jordan curves. That is, Dc =

⋃k
j=1 Dj, where (Dj) is a

family of bounded domains satisfying:
• For i 
= j, Di ∩ Dj = ∅.
• For any j ∈ {1, . . . , k}, there exists a continuous function fj : [0, 1] →R

2 with
fj(0) = fj(1) and fj(t) 
= fj(s) for any 0 < t < s < 1 such that ∂Dj = {fj(t), t ∈ [0, 1)}.

(ii) For x ∈ D, δD(x) will denote the Euclidean distance from x to ∂D, ρD(x) = δD(x)
δD(x)+1

and λD(x) = δD(x)(δD(x) + 1).
(iii) For x, y ∈ D, GD(x, y) will be the Green’s function of the Laplace operator

u → –�u in D with zero boundary Dirichlet condition.
(iv) Let a ∈ R

2\D and r > 0 such that B(a, r) ⊂R
2\D. Then we have for x, y ∈ D,

GD(x, y) = G D–a
r

(
x – a

r
,

y – a
r

)

and δD(x) = rδ D–a
r

(
x – a

r

)

.

So without loss of generality, we may assume throughout this paper that
B(0, 1) ⊂R

2\D.
(v) For any two nonnegative functions f and g on a set S,

f (x) ≈ g(x), x ∈ S ⇐⇒ ∃c > 0,∀x ∈ S,
1
c

f (x) ≤ g(x) ≤ cf (x).
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(vi) For x ∈ D, let x∗ = x
|x|2 be the Kelvin inversion from D ∪ {∞} onto

D∗ = {x∗ ∈ B(0, 1) : x ∈ D ∪ {∞}}.
• From [12], D∗ is a regular bounded domain containing 0 and

GD(x, y) = GD∗
(
x∗, y∗) ≈ ln

(

1 +
δD∗ (x∗)δD∗ (y∗)

|x∗ – y∗|2
)

, for x, y ∈ D. (1.3)

• From [37, Lemma 2.1 and Proposition 2.3], we have

⎧
⎪⎪⎨

⎪⎪⎩

δD(x) + 1 ≈ |x|, x ∈ D,

ρD(x) ≈ δD∗ (x∗), x ∈ D,

GD(x, y) ≈ ln(1 + λD(x)λD(y)
|x–y|2 ), x, y ∈ D.

(1.4)

(vii) ω is a sufficiently large positive real number.
(viii) B(D) be the set of Borel measurable functions in D and B+(D) be the set of

nonnegative ones.
(ix) C(D) is the set of all continuous functions in D.
(x) C0(D) := {v ∈ C(D), limx→ξ∈∂D v(x) = 0 and lim|x|→∞ v(x) = 0}. Note that C0(D) is a

Banach space with the uniform norm ‖v‖∞ := supx∈D |v(x)|.
(xi) We define the potential kernel V on B+(D) by

Vf (x) =
∫

D
GD(x, y)f (y) dy.

We recall that for any function f ∈ B+(D) such that f ∈ L1
loc(D) and Vf ∈ L1

loc(D), we have

–�(Vf ) = f in D (in the distributional sense). (1.5)

From [12, Lemma 2.9] or [42, Theorem 6.6], we know that for any function f ∈ B+(D) such
that Vf (x0) < ∞ for some x0 ∈ D, we have Vf ∈ L1

loc(D).
The letter C will be a generic positive constant which may vary from line to line.

Definition 1.1 A Borel measurable function q belongs to the class K(D) if q satisfies the
following conditions:

lim
r→0

sup
x∈D

∫

B(x,r)∩D

ρD(y)
ρD(x)

GD(x, y)
∣
∣q(y)

∣
∣dy = 0

and

lim
M→+∞ sup

x∈D

∫

(|y|≥M)∩D

ρD(y)
ρD(x)

GD(x, y)
∣
∣q(y)

∣
∣dy = 0.

Remark 1.2 ([37, Proposition 3.6]) Let λ,μ ∈ R. Then

x → |x|λ–μ
(
δ(x)

)–λ ∈ K(D) if and only if λ < 2 < μ.
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Definition 1.3 ([30])
(i) A function M defined on (0,η), for some η > 0, belongs to the Karamata class K0 if

M(t) := c exp

(∫ η

t

v(s)
s

ds
)

,

where c > 0 and v ∈ C([0,η])) with v(0) = 0.
(ii) A function M defined on [1,∞) belongs to the Karamata class K∞ if

M(t) := c exp

(∫ η

t

v(s)
s

ds
)

,

where c > 0 and v ∈ C([1,∞)) with limt→∞ v(t) = 0.

Remark 1.4
(i) The classes K∞ and K0 are characterized respectively by

K∞ =
{

M : [1,∞) −→ (0,∞),M ∈ C1([1,∞)
)

and lim
t→∞

tM′(t)
M(t)

= 0
}

,

and, for some η > 0,

K0 =
{

M : (0,η) −→ (0,∞),M ∈ C1((0,η)
)

and lim
t→0+

tM′(t)
M(t)

= 0
}

.

(ii) Observe that the map t →M(t) belongs to K∞ if and only if the map t →M( 1
t ),

defined on (0, 1], belongs to K0.

Nontrivial examples of functions belonging to the class K0 (see [4, 40, 46, 47]) include
•

∏m
j=1(lnj( ω

t ))ξj , for any integer m ≥ 1, lnj t = ln◦ ln◦ · · · ◦ ln t (j times), ξj ∈R. Such
functions are frequently used as weight functions (see, for example, [31] and [34]);

• exp((– ln t)α) with α ∈ (0, 1), t ∈ (0, 1).
The class K∞ contains, for example, functions of the form

∏m
j=1(lnj(ωt))ξj , where ξj ∈R.

Throughout this paper, we assume that the following conditions hold:
(H) a is a positive continuous function in D such that

a(x) ≈ (
ρD(x)

)–λL0
(
ρD(x)

)|x|–μL∞
(|x|), for x ∈ D, (1.6)

where σ < 1 and λ ≤ 2 ≤ μ.
Here,
• L0 ∈K0 defined on (0,η) (η > 1) is such that

∫ η

0
s1–λL0(s) ds < ∞.

• L∞(t) :=
∏m

k=1(lnk(ωt))–μk , with μk ∈R satisfying

⎧
⎪⎪⎨

⎪⎪⎩

either μ1 > 1 + σ ,

or μ1 = 1 + σ and there exists p ≥ 2 such that

μ2 = · · · = μp–1 = 1 and μp > 1.
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We introduce the function θ defined on D by

θ (x) :=
(
ρD(x)

)min(1, 2–λ
1–σ )(L̃0

(
ρD(x)

)) 1
1–σ

(
L̃∞

(|x|)) 1
1–σ , (1.7)

where L̃0 is defined on (0,η) by

L̃0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if λ < 1,
∫ η

t
L0(s)

s ds, if λ = 1,

L0(t), if 1 < λ < 2,
∫ t

0
L0(s)

s ds, if λ = 2,

and L̃∞(t) = 1, if μ > 2 and for μ = 2, L̃∞ is defined on [1,∞) as follows:
(i) If μ1 = 1 + σ , μ2 = · · · = μp–1 = 1 and μp > 1,

L̃∞(t) :=
(
ln(ωt)

)1–σ (
lnp(ωt)

)1–μp
m∏

k=p+1

(
lnk(ωt)

)–μk .

(ii) If 1 + σ < μ1 < 2,

L̃∞(t) :=
(
ln(ωt)

)2–μ1
m∏

k=2

(
lnk(ωt)

)–μk .

(iii) If μ1 = 2 and μi = 1, for 2 ≤ i ≤ m,

L̃∞(t) := lnm+1(ωt).

(iv) If μ1 = 2, μ2 = · · · = μl–1 = 1 and μl < 1,

L̃∞(t) :=
(
lnl(ωt)

)1–μl
m∏

k=l+1

(
lnk(ωt)

)–μk .

(v) If (μ1 = 2, μ2 = · · · = μl–1 = 1 and μl > 1) or μ1 > 2,

L̃∞(t) := 1.

Using Karamata’s theory and the Schauder fixed point theorem, we prove our main re-
sult.

Theorem 1.5 Let σ < 1 and assume that function a satisfies assumption (H). Then problem
(1.2) has at least one positive continuous solution u on D such that

1
c
θ (x) ≤ u(x) ≤ cθ (x), (1.8)

for x ∈ D and where c is a positive constant.

Remark 1.6 Since u ≈ θ , it is important to note that in the above cases (i)–(iv),
lim|x|→∞ u(x) = ∞.
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2 Preliminaries and key tools
2.1 Kato class K(D)
In this subsection, we recall and prove some properties related to the Kato class K(D).

Proposition 2.1 Let q ∈ K(D), x0 ∈ D, and let h be a positive superharmonic function in D.
Then we have

(i)

lim
r→0

(

sup
ξ∈D

1
h(ξ )

∫

B(x0,r)∩D
GD(ξ , y)h(y)

∣
∣q(y)

∣
∣dy

)

= 0, (2.1)

lim
M→+∞

(

sup
x∈D

1
h(ξ )

∫

(|y|≥M)∩D
GD(ξ , y)h(y)

∣
∣q(y)

∣
∣dy

)

= 0. (2.2)

(ii) The potential Vq is bounded and the function x �→ ρD(x)q(x) is in L1(D).

Proof See [37, Proposition 3.4 and Corollary 3.5]. �

Lemma 2.2 Let M > 0 and α > 0. Then there exists a constant C > 0 such that for all x, y ∈ D
with |x – y| ≥ α, and |y| ≤ M,

ln(ω|y|)
ln(ω|x|) GD(x, y) ≤ Cδ(y).

Proof Let x, y ∈ D with |x – y| ≥ α, and |y| ≤ M. Since |x| ≥ 1, by using (1.4) and the fact
that ln(1 + t) ≤ t, for t ≥ 0, we obtain

ln(ω|y|)
ln(ω|x|) GD(x, y) ≤ C

λD(x)λD(y)
|x – y|2

≤ C
(δD(x) + 1)2

|x – y|2
(
δD(y)

)

≤ C
[

sup
|x|≤M+1

(δD(x) + 1)2

α2 + sup
|x|≥M+1

(δD(x) + 1)2

(|x| – M)2

]

δD(y)

≤ CδD(y). �

Proposition 2.3 Let q ∈ K(D). Then the function

ϑ(x) :=
1

ln(ω|x|)
∫

D
GD(x, y) ln

(
ω|y|)q(y) dy

belongs to C0(D).

Proof Let ε > 0, x0 ∈ D and q ∈ K(D). Using Proposition 2.1 with h(x) = ln(ω|x|), there
exists r > 0 such that

sup
ξ∈D

1
ln(ω|ξ |)

∫

B(x0,r)∩D
G(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy ≤ ε

8

and

sup
ξ∈D

1
ln(ω|ξ |)

∫

(|y|≥M)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy ≤ ε

8
.
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If x0 ∈ D and x ∈ B(x0, r
2 ) ∩ D, then we have

∣
∣ϑ(x) – ϑ(x0)

∣
∣ ≤ 2 sup

ξ∈D

1
ln(ω|ξ |)

∫

B(x0,r)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy

+ 2 sup
ξ∈D

1
ln(ω|ξ |)

∫

(|y|≥M)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy

+
∫

D0

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)∣∣q(y)

∣
∣dy

≤ ε

2
+

∫

D0

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)∣∣q(y)

∣
∣dy,

where D0 = D ∩ B(0, M) ∩ Bc(x0, r).
By Lemma 2.2, there exists C > 0 such that for all x ∈ B(x0, r

2 ) ∩ D and y ∈ D0,

ln(ω|y|)
ln(ω|x|) GD(x, y)

∣
∣q(y)

∣
∣ ≤ Cδ(y)

∣
∣q(y)

∣
∣.

Moreover, (x, y) �→ 1
ln(ω|x|) GD(x, y) is continuous on (B(x0, r

2 ) ∩ D) × D0. Then by Proposi-
tion 2.1(ii) and Lebesgue’s dominated convergence theorem, we have

lim
x→x0

∫

D0

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)∣∣q(y)

∣
∣dy = 0.

That is, there exists δ > 0 with δ < r
2 such that if x ∈ B(x0, δ) ∩ D then

∫

D0

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)∣∣q(y)

∣
∣dy ≤ ε

2

and

∣
∣ϑ(x) – ϑ(x0)

∣
∣ ≤ ε.

This implies that

lim
x→x0

ϑ(x) = ϑ(x0).

If x0 ∈ ∂D and x ∈ B(x0, r
2 ) ∩ D, then we have

∣
∣ϑ(x)

∣
∣ ≤ sup

ξ∈D

1
ln(ω|ξ |)

∫

B(x0,r)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy

+ sup
ξ∈D

1
ln(ω|ξ |)

∫

(|y|≥M)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy

+
∫

D0

1
ln(ω|x|) GD(x, y) ln

(
ω|y|)∣∣q(y)

∣
∣dy.

Now, since limx→x0
ln(ω|y|)
ln(ω|x|) GD(x, y) = 0, for all y ∈ D0, we deduce by similar arguments as

above that

lim
x→x0

ϑ(x) = 0.
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It remains to prove that lim|x|→∞ ϑ(x) = 0. Indeed, let M > 0 and x ∈ D be such that |x| ≥
M + 1. Then we have

∣
∣ϑ(x)

∣
∣ ≤ sup

ξ∈D

1
ln(ω|ξ |)

∫

(|y|≥M)∩D
GD(ξ , y) ln

(
ω|y|)∣∣q(y)

∣
∣dy

+
1

ln(ω|x|)
∫

(|y|≤M)∩D
GD(x, y) ln

(
ω|y|)∣∣q(y)

∣
∣dy.

Since lim|x|→∞ ln(ω|y|)
ln(ω|x|) GD(x, y) = 0 uniformly for |y| ≤ M, then from (2.2), Lemma 2.2,

Proposition 2.1(ii) and Lebesgue’s dominated convergence theorem, we deduce that
lim|x|→∞ ϑ(x) = 0.

Hence ϑ ∈ C0(D). �

2.2 Karamata class
In this section, we collect some properties of the Karamata functions, which will be used
later.

Lemma 2.4 (See [47])
(i) If M1,M2 ∈K0 (resp. K∞) and τ ∈R, then

Mτ
1,M1M2 and M1 + M2 belong to K0 (resp. K∞).

(ii) Let M ∈K0 and ε > 0. Then

lim
t→0+

tεM(t) = 0 and lim
t→0+

t–εM(t) = ∞.

(iii) Let M ∈K∞ and ε > 0. Then

lim
t→∞ t–εM(t) = 0 and lim

t→∞ tεM(t) = ∞.

Lemma 2.5 (See [40, 47]) Let γ ∈R, M ∈K0 and L ∈K∞. Then
(i)

∫ η

0 sγM(s) ds converges for γ > –1, and

∫ t

0
sγM(s) ds ∼

t→0+

tγ +1M(t)
γ + 1

.

(ii)
∫ η

0 sγM(s) ds diverges for γ < –1, and

∫ η

t
sγM(s) ds ∼

t→0+
–

tγ +1M(t)
γ + 1

.

(iii)
∫ ∞

1 sγL(s) ds converges for γ < –1, and

∫ ∞

t
sγL(s) ds ∼

t→∞ –
tγ +1L(t)
γ + 1

.
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(iv)
∫ ∞

1 sγL(s) ds diverges for γ > –1, and

∫ t

1
sγL(s) ds ∼

t→∞
tγ +1L(t)
γ + 1

.

Lemma 2.6 (See [47]) Let M ∈K0. Then limt→0+ M(t)
∫ η

t
M(s)

s ds
= 0.

In particular t → ∫ η

t
M(s)

s ds ∈K0.
If further

∫ η

0
M(s)

s ds converges, then limt→0+ M(t)
∫ t

0
M(s)

s ds
= 0.

In particular, t → ∫ t
0

M(s)
s ds ∈K0.

We have the following similar properties related to the class K∞.

Lemma 2.7 (See [9]) Let L ∈K∞. Then limt→∞ L(t)
∫ t

1
L(s)

s ds
= 0.

In particular, t → ∫ t+1
1

L(s)
s ds ∈K∞.

If, furthermore,
∫ ∞

1
L(s)

s ds converges, then limt→∞ L(t)
∫ ∞

t
L(s)

s ds
= 0.

In particular, t → ∫ ∞
t

L(s)
s ds ∈K∞.

An important step in the proof of Theorem 1.5 uses the following

Proposition 2.8 ([2]) Let Ω be a bounded regular domain in R
2 containing 0.

Let γ ,ν ≤ 2 and L3, L4 ∈K0 be such that

∫ η

0
s1–γ L3(s) ds < ∞ and

∫ η

0
s1–νL4(s) ds < ∞, for η > diam(Ω). (2.3)

Put

b(x) = |x|–γ L3
(|x|)(δΩ (x)

)–νL4
(
δΩ (x)

)
, for x ∈ Ω\{0}.

Then for x ∈ Ω\{0},

Vb(x) ≈ L̃3
(|x|)(δΩ (x)

)min(1,2–ν )̃L4
(
δΩ (x)

)
,

where for t ∈ (0,η)

L̃3(t) :=

⎧
⎨

⎩

1 if γ < 2,

ln( ω
t )

∫ t
0

L3(s)
s ds +

∫ η

t ln( ω
s ) L3(s)

s ds, if γ = 2,
(2.4)

and

L̃4(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if ν < 1,
∫ η

t
L4(s)

s ds, if ν = 1,

L4(t), if 1 < ν < 2,
∫ t

0
L4(s)

s ds, if ν = 2.
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Proposition 2.9 Let ϕ be a positive continuous function in D such that

ϕ(x) ≈ (
ρD(x)

)–αM0
(
ρD(x)

)|x|–βN∞
(|x|), for x ∈ D, (2.5)

where α ≤ 2 ≤ β , M0 ∈K0 defined on (0,η) (η > 1) is such that

∫ η

0
s1–αM0(s) ds < ∞,

and N∞(t) :=
∏m

k=1(lnk(ωt))–βk , with βk ∈ R satisfying either β1 > 1, or (β1 = 1 and there
exists p ≥ 2 such that β2 = · · · = βp–1 = 1 and βp > 1). Then

Vϕ(x) ≈ (
ρD(x)

)min(1,2–α)(M̃0
(
ρD(x)

))(
Ñ∞

(|x|)), for x ∈ D,

where M̃0 is defined on (0, 1) by

M̃0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if α < 1,
∫ η

t
M0(s)

s ds, if α = 1,

M0(t), if 1 < α < 2,
∫ t

0
M0(s)

s ds, if α = 2,

and Ñ∞(t) = 1, if β > 2 and for β = 2, Ñ∞ is defined on [1,∞) as follows:
(i) If β1 = 1, β2 = · · · = βp–1 = 1 and βp > 1,

Ñ∞(t) :=
(
ln(ωt)

)(
lnp(ωt)

)1–βp
m∏

k=p+1

(
lnk(ωt)

)–βk .

(ii) If 1 < β1 < 2,

Ñ∞(t) :=
(
ln(ωt)

)2–β1
m∏

k=2

(
lnk(ωt)

)–βk .

(iii) If β1 = 2 and βi = 1, for 2 ≤ i ≤ m,

Ñ∞(t) := lnm+1(ωt).

(iv) If β1 = 2, β2 = · · · = βl–1 = 1 and βl < 1,

Ñ∞(t) :=
(
lnl(ωt)

)1–βl
m∏

k=l+1

(
lnk(ωt)

)–μk .

(v) If (β1 = 2, β2 = · · · = βl–1 = 1 and βl > 1) or β1 > 2,

Ñ∞(t) := 1.



Bachar et al. Boundary Value Problems         (2019) 2019:65 Page 12 of 24

Proof From (2.5), we have

Vϕ(x) ≈
∫

D
GD(x, y)

(
ρD(y)

)–αM0
(
ρD(y)

)|y|–βN∞
(|y|)dy, for x ∈ D.

Using (1.3), (1.4) and the fact that M0(ρD(y)) ≈M0(δD∗ (y∗)), we obtain

Vϕ(x) ≈
∫

D
GD∗

(
x∗, y∗)(δD∗

(
y∗))–αM0

(
δD∗

(
y∗))|y|–βN∞

(|y|)dy, for x ∈ D.

By letting ξ = y∗, we obtain

Vϕ(x) ≈
∫

D∗
GD∗

(
x∗, ξ

)(
δD∗ (ξ )

)–αM0
(
δD∗ (ξ )

)|ξ |β–4N∞
(

1
|ξ |

)

dξ , for x ∈ D.

From Remark 1.4(ii), the function t →N∞( 1
t ) belongs to K0. Using this fact, and apply-

ing Proposition 2.8 with γ = 4 – β ≤ 2, ν = α ≤ 2, L3(t) = N∞( 1
t ) and L4 = M0, we deduce

that

Vϕ(x) ≈ (
δD∗

(
x∗))min(1,2–α)M̃0

(
δD∗

(
x∗))L̃3

(∣
∣x∗∣∣), (2.6)

where for r ∈ (0,η)

M̃0(r) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if α < 1,
∫ η

r
M0(s)

s ds, if α = 1,

M0(r), if 1 < α < 2,
∫ r

0
M0(s)

s ds, if α = 2,

and

L̃3(r) :=

⎧
⎨

⎩

1 if β > 2,

ln( ω
r )

∫ r
0

N∞( 1
s )

s ds +
∫ η

r ln( ω
s )N∞( 1

s )
s ds, if β = 2.

For β = 2, by direct computation, we obtain the following:
(i) If β1 = 1, β2 = · · · = βp–1 = 1 and βp > 1,

L̃3(r) ≈ ln

(
ω

r

)(

lnp

(
ω

r

))1–βp m∏

k=p+1

(

lnk

(
ω

r

))–βk

.

(ii) If 1 < β1 < 2,

L̃3(r) ≈
(

ln

(
ω

r

))2–β1 m∏

k=2

(

lnk

(
ω

r

))–βk

.

(iii) If β1 = 2 and βi = 1, for 2 ≤ i ≤ m,

L̃3(r) ≈ lnm+1

(
ω

r

)

.
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(iv) If β1 = 2, β2 = · · · = βl–1 = 1 and βl < 1,

L̃3(r) ≈
(

lnl

(
ω

r

))1–βl m∏

k=l+1

(

lnk

(
ω

r

))–μk

.

(v) If (β1 = 2, β2 = · · · = βl–1 = 1 and βl > 1) or β1 > 2,

L̃3(r) = 1.

We let Ñ∞(t) := L̃3( 1
t ), for t ∈ [1,∞). The required result follows from (2.6) and the fact

that |x∗| = 1
|x| , for x ∈ D.

The proof is completed. �

Proposition 2.10 Under condition (H), we have

Vp(x) ≈ θ (x), for x ∈ D,

where p(x) := a(x)θσ (x), σ < 1 and θ is defined in (1.7).

Proof Let a be a function satisfying condition (H). Using (1.6) and (1.7), we obtain

p(x) = a(x)θσ (x) ≈
(
ρD(x)

)–αM0
(
ρD(x)

)|x|–βN∞
(|x|)

where α = λ – min(1, 2–λ
1–σ

)σ , β = μ ≥ 2 and for t ∈ (0,η)

M0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L0(t), if λ < 1,

L0(t)(
∫ η

t
L0(s)

s ds) σ
1–σ , if λ = 1,

(L0(t)) 1
1–σ , if 1 < λ < 2,

L0(t)(
∫ t

0
L0(s)

s ds) σ
1–σ , if λ = 2,

and for s ≥ 1, N∞(s) = L∞(s), if μ > 2 while for μ = 2, N∞ is defined as follows:
– If μ1 = 1 + σ , μ2 = · · · = μp–1 = 1 and μp > 1,

N∞(s) =
(
ln(ωs)

)–1(
lnp(ωs)

) σ–μp
1–σ

p–1∏

k=2

(
lnk(ωs)

)–1
m∏

k=p+1

(
lnk(ωs)

)– μk
1–σ .

– If 1 + σ < μ1 < 2

N∞(s) =
(
ln(ωs)

) 2σ–μ1
1–σ

m∏

k=2

(
lnk(ωs)

)– μk
1–σ .

– If μ1 = 2 and μi = 1, for all 2 ≤ i ≤ m,

N∞(s) =
(
lnm+1(ωs)

) σ
1–σ

m∏

k=1

(
lnk(ωs)

)–μk .
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– If μ1 = 2, μ2 = · · · = μl–1 = 1 and μl < 1,

N∞(s) =
(
ln(ωs)

)–2(
lnl(ωs)

) σ–μl
1–σ

l–1∏

k=2

(
lnk(ωs)

)–1
m∏

k=l+1

(

lnk

(
ωs
t

))– μk
1–σ

.

– If (μ1 = 2, μ2 = · · · = μl–1 = 1 and μl > 1) or μ1 > 2,

N∞(s) =
m∏

k=1

(
lnk(ωs)

)–μk ,

Since λ ≤ 2, then it follows that α ≤ 2.
By applying Proposition 2.9, we obtain

Vp(x) ≈
(
ρD(x)

)min(1,2–α)(M̃0
(
ρD(x)

))(
Ñ∞

(|x|)).

Since min(1, 2 – ν) = min(1, 2–λ
1–σ

), we deduce for x ∈ D,

Vp(x) ≈
(
ρD(x)

)min(1, 2–λ
1–σ )(M̃0

(
ρD(x)

))(
Ñ∞

(|x|)) ≈ θ (x).

This completes the proof. �

3 Proof of Theorem 1.5
In order to prove Theorem 1.5, we need first to establish some preliminary results related
to the following problem (Pγ ) with γ > 0:

(Pγ )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u(x) = a(x)uσ (x), x ∈ D (in the distributional sense),

u > 0 in D,

limx→∂D
u(x)

ln(ω|x|) = γ ,

lim|x|→∞ u(x)
ln(ω|x|) = γ .

The next lemma will be used in what follows.

Lemma 3.1 (See [2]) Let Ω be a bounded regular domain in R
2 with 0 ∈ Ω . Let λ1,λ2 ∈R,

M1,M2 ∈K0 and set

ψ(ξ ) := |ξ |–λ1M1
(|ξ |)(δΩ (ξ )

)–λ2M2
(
δΩ (ξ )

)
, for ξ ∈ Ω .

The following properties are equivalent:
(i)

lim
α→0

sup
ζ∈Ω

∫

B(ζ ,α)∩Ω

δΩ (ξ )
δΩ (ζ )

GΩ (ζ , ξ )
∣
∣ψ(ξ )

∣
∣dξ = 0,

where GΩ (ζ , ξ ) the Green’s function of the Laplacian in Ω .
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(ii)

∫ η

0
s1–λ1 ln

(
ω

s

)

M1(s) ds < ∞ and
∫ η

0
s1–λ2M2(s) ds < ∞

with λ1 ≤ 2 and λ2 ≤ 2.

Proposition 3.2 Assume that hypothesis (H) is fulfilled. Then the function q(y) :=
(ln(ω|y|))σ–1a(y) belongs to the class K(D).

Proof Let α > 0. Since |x∗ – y∗| = |x–y|
|x||y| , |x| > 1 and |y| > 1, it follows that if y ∈ B(x,α) then

y∗ ∈ B(x∗,α). Therefore by (1.6), (1.3) and (1.4), we have

∫

B(x,α)∩D

ρD(y)
ρD(x)

GD(x, y)
(
ln

(
ω|y|))σ–1a(y) dy

≤ C
∫

B(x,α)∩D

(δD∗ (y∗))1–λ

δD∗ (x∗)
GD∗

(
x∗, y∗)(ln

(
ω|y|))σ–1L0

(
δD∗

(
y∗))|y|–μL∞

(|y|)dy

≤ C
∫

B(x∗ ,α)∩D∗

(δD∗ (ξ ))1–λ

δD∗ (x∗)
GD∗

(
x∗, ξ

)
M2

(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ

≤ C sup
ζ∈D∗

∫

B(ζ ,α)∩D∗

(δD∗ (ξ ))1–λ

δD∗ (ζ )
GD∗ (ζ , ξ )M2

(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ ,

where M1(s) := (ln( ω
s ))(σ–1)L∞( 1

s ) and M2(s) := L0(s).
By hypothesis (H), Remark 1.4(ii) and Lemma 2.4, we have M1,M2 ∈K0 and condition

(ii) in Lemma 3.1 is satisfied.
Hence

lim
α→0

sup
x∈D

∫

B(x,α)∩D

ρD(y)
ρD(x)

GD(x, y)
(
ln

(
ω|y|))σ–1a(y) dy = 0.

Next, we claim that

lim
M→+∞ sup

x∈D

∫

(|y|≥M)∩D

ρD(y)
ρD(x)

GD(x, y)
(
ln

(
ω|y|))σ–1a(y) dy = 0.

Indeed, by the above argument, for ε > 0, there exists α > 0 such that

sup
ζ∈D∗

∫

B(ζ ,α)∩D∗

(δD∗ (ξ ))1–λ

δD∗ (ζ )
GD∗ (ζ , ξ )M2

(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ ≤ ε.

Fix this α and let M > 0. Using (1.3), we obtain

∫

(|y|≥M)∩D

ρD(y)
ρD(x)

GD(x, y)
(
ln

(
ω|y|))σ–1a(y) dy

≤ C
∫

(|ξ |≤ 1
M )∩D∗

(δD∗ (ξ ))1–λ

δD∗ (x∗)
GD∗

(
x∗, ξ

)
M2

(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ

≤ Cε + C
∫

(|x∗–ξ |≥α)∩(|ξ |≤ 1
M )∩D∗

(δD∗ (ξ ))1–λ

δD∗ (x∗)
GD∗

(
x∗, ξ

)
M2

(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ
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≤ Cε + C
∫

(|ξ |≤ 1
M )∩D∗

(
δD∗ (ξ )

)2–λM2
(
δD∗ (ξ )

)|ξ |μ–4M1
(|ξ |)dξ

≤ Cε + C
∫

(|ξ |≤ 1
M )∩D∗

|ξ |μ–4M1
(|ξ |)dξ

≤ Cε + C
∫ 1

M

0
sμ–3

(

ln

(
ω

s

))σ–1

L∞
(

1
s

)

ds.

Now by using hypothesis (H), Lemmas 2.4 and 2.5, we have

∫ η

0
sμ–3

(

ln

(
ω

s

))σ–1

L∞
(

1
s

)

ds < ∞.

Therefore limM→+∞
∫ 1

M
0 sμ–3(ln( ω

s ))σ–1L∞( 1
s ) ds = 0, which gives the required result. �

Proposition 3.3 Let σ < 0, and assume that hypothesis (H) is satisfied. Then for each γ > 0,
problem (Pγ ) has at least one positive solution uγ ∈ C(D) such that for x ∈ D,

uγ (x) = γ ln
(
ω|x|) +

∫

D
GD(x, y)a(y)uσ

γ (y) dy. (3.1)

Proof Let σ < 0 and γ > 0. By Propositions 3.2 and 2.3, we have

x �→ h(x) :=
1

ln(ω|x|)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ dy ∈ C0(D). (3.2)

Let β := γ + γ σ ‖h‖∞ and consider the convex set Λ given by

Λ =
{

v ∈ C
(
D ∪ {∞}) : γ ≤ v ≤ β

}
.

Define the operator T on Λ by

Tv(x) = γ +
1

ln(ω|x|)
∫

D
GD(x, y)a(y)(ln

(
ω|y|)σ vσ (y) dy.

We aim at proving that TΛ is equicontinuous at each point of D.
Indeed, let x0 ∈ D. Since σ < 0, we have for each v ∈ Λ and all x ∈ D,

∣
∣Tv(x) – Tv(x0)

∣
∣ ≤ γ σ

∫

D

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)q(y) dy,

where q(y) = (ln(ω|y|))σ–1a(y) ∈ K(D).
Now, by following the proof of Proposition 2.3, we have for all ε > 0, there exists δ > 0

such that if x ∈ B(x0, δ) ∩ D, then

γ σ

∫

D

∣
∣
∣
∣

1
ln(ω|x|) GD(x, y) –

1
ln(ω|x0|) GD(x0, y)

∣
∣
∣
∣ ln

(
ω|y|)q(y) dy ≤ ε.

This implies that for all ε > 0, there exists δ > 0 such that

if x ∈ B(x0, δ) ∩ D, then
∣
∣Tv(x) – Tv(x0)

∣
∣ ≤ ε, for all v ∈ Λ.



Bachar et al. Boundary Value Problems         (2019) 2019:65 Page 17 of 24

On the other hand, for all v ∈ Λ and x ∈ D, we have

∣
∣Tv(x) – γ

∣
∣ ≤ γ σ h(x),

where the function h is given by (3.2). Since h ∈ C0(D), we deduce that

lim
x→x0∈∂D

Tv(x) = lim|x|→∞ Tv(x) = γ , uniformly for all v ∈ Λ.

So, the family TΛ is equicontinuous in C(D∪{∞}). In particular, for all v ∈ Λ, Tv ∈ C(D∪
{∞}) and therefore TΛ ⊂ Λ.

Moreover, since the family {Tv(x), v ∈ Λ} is uniformly bounded in D ∪ {∞}, then it fol-
lows from Arzelà–Ascoli theorem (see [19, p. 62] and [6, Theorem 2.3]) that T(Λ) is rela-
tively compact in C(D ∪ {∞}).

Next, we prove the continuity of T in Λ. Let (vk)k ⊂ Λ and v ∈ Λ be such that ‖vk –
v‖∞ → 0 as k → ∞. Then we have

∣
∣Tvk(x) – Tv(x)

∣
∣ ≤ 1

ln(ω|x|)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ ∣

∣vσ
k (y) – vσ (y)

∣
∣dr.

Now, since

∣
∣vσ

k (y) – vσ (y)
∣
∣ ≤ 2γ σ ,

we deduce by (3.2) and the dominated convergence theorem that

∀x ∈ D, Tvk(x) → Tv(x) as k → ∞.

Since T(Λ) is relatively compact in C(D ∪ {∞}), we obtain

‖Tvk – Tv‖∞ → 0 as k → ∞.

So, T is a compact mapping of Λ to itself. Therefore, by the Schauder fixed point theorem,
there exists vγ ∈ Λ such that for each x ∈ D

vγ (x) = γ +
1

ln(ω|x|)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ vσ

γ (y) dy. (3.3)

Since vσ
γ ≤ γ σ , we deduce from (3.3) and (3.2) that

lim
x→∂D

vγ (x) = lim|x|→∞ vγ (x) = γ . (3.4)

Put uγ (x) = ln(ω|x|)vγ (x), for x ∈ D. Then uγ ∈ C(D) and we have

uγ (x) = γ ln
(
ω|x|) +

∫

D
GD(x, y)a(y)uσ

γ (y) dy, (3.5)

as well as

γ ln
(
ω|x|) ≤ uγ (x) ≤ β ln

(
ω|x|). (3.6)
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Now, since the function y �→ a(y)uσ
γ (y) ∈ L1

loc(D) and from (3.5) the function x �→
∫

D GD(x, y)a(y)uσ
γ (y) dy ∈ L1

loc(D), we deduce by (1.5) that uγ satisfies

–�uγ (x) = a(x)uσ
γ (x), x ∈ D (in the distributional sense).

By (3.4), we have

lim
x→∂D

uγ (x)
ln(ω|x|) = lim|x|→∞

uγ (x)
ln(ω|x|) = γ .

This completes the proof. �

The next result based on the complete maximum principle is established in [51,
Lemma 3.1].

Lemma 3.4 Let g ∈ B+(D) and v be a nonnegative superharmonic function on D. Then for
any w ∈ B(D) such that V (g|w|) < ∞ and w + V (gw) = v, we have

0 ≤ w ≤ v.

Corollary 3.5 Let σ < 0, and assume that hypothesis (H) is satisfied. For 0 < γ1 ≤ γ2, we
denote by uγi ∈ C(D) the solution of problem (Pγ ) satisfying (3.1). Then we have

0 ≤ uγ2 (x) – uγ1 (x) ≤ (γ2 – γ1) ln
(
ω|x|), for x ∈ D. (3.7)

Proof Let g be the function defined on D by

g(x) =

⎧
⎨

⎩

a(x)
uσ
γ2 (x)–uσ

γ1 (x)
uγ1 (x)–uγ2 (x) , if uγ1 (x) 
= uγ2 (x),

0, if uγ1 (x) = uγ2 (x).

Since σ < 0, then g ∈ B+(D), and we have

uγ2 – uγ1 + V
(
g(uγ2 – uγ1 )

)
= (γ2 – γ1) ln

(
ω|x|). (3.8)

On the other hand, by using (3.1), (3.2) and (3.6), we obtain, for x ∈ D,

V
(
g|uγ2 – uγ1 |

)
(x) ≤ (

γ σ
1 + γ σ

2
)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ dy < ∞.

Hence the required result follows from (3.8) and Lemma 2.4 with v(x) = ln(ω|x|). �

Proposition 3.6 Let σ < 0. Under hypothesis (H), problem (1.2) has at least one positive
solution u ∈ C(D) such that for x ∈ D,

u(x) =
∫

D
GD(x, y)a(y)uσ (y) dy. (3.9)
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Proof Let (γk)k be a positive sequence decreasing to zero. Let uk ∈ C(D) be the solution of
problem (Pγk ) satisfying (3.1). By Corollary 3.5, the sequence (uk)k decreases to a function
u, and since σ < 0 the sequence (uk – γk ln(ω|x|))k increases to u. Therefore, by using (3.1),
(3.6) and the fact that σ < 0, we obtain for each x ∈ D\{0},

u(x) ≥ uk(x) – γk ln
(
ω|x|) =

∫

D
GD(x, y)a(y)uσ

k (y) dy

≥ βσ
k

∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ dy > 0,

where βk := γk + γ σ
k ‖h‖∞ and h is given by (3.2).

By the monotone convergence theorem, we obtain

u(x) =
∫

D
GD(x, y)a(y)uσ (y) dy.

Since for each x ∈ D, u(x) = infk uk(x) = supk(uk(x) – γk ln(ω|x|)), u is an upper and lower
semi-continuous function on D and so u ∈ C(D).

Since the function y �→ a(y)uσ (y) is in L1
loc(D) and from (3.9) the function x �→

∫

D GD(x, y)a(y)uσ (y) dy is also in L1
loc(D), we deduce by (1.5) that

–�u(x) = a(x)uσ (x), x ∈ D\{0} (in the distributional sense).

Finally, using the fact that for all x ∈ D, 0 < u(x) ≤ uk(x) and that uk is a solution of problem
(Pγk ), we deduce that

lim
x→∂D

u(x) = 0 and lim|x|→∞
u(x)

ln(ω|x|) = 0.

Hence u is a solution of problem (1.2). �

Proof of Theorem 1.5 Assume that function a satisfies hypothesis (H). By Proposition 2.10,
there exists m ≥ 1 such that for each D,

1
m

θ (x) ≤ Vp(x) ≤ mθ (x), (3.10)

where θ is the function defined in (1.7) and p(y) := a(y)θσ (y).
We split the proof into the following two cases:
Case 1: σ < 0.
By Proposition 3.6, problem (1.2) has a positive continuous solution u satisfying (3.9).

We claim that u satisfies (1.8).
By (3.10), we have

mσ (Vp)σ (x) ≤ θσ (x) ≤ m–σ (Vp)σ (x). (3.11)

Let c = m– σ
1–σ . Then by elementary calculus we have

cVp = V
(
a(cVp)σ

)
+ Vf , (3.12)

where f (x) := ca(x)[θσ (x) – mσ (Vp)σ (x)], for x ∈ D.
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Clearly, we have f ∈ B+(D) and by using (3.9) and (3.12), we obtain

cVp – u + V
(
a
(
uσ – (cVp)σ

))
= Vf . (3.13)

Let g be the function defined on D by

g(x) =

⎧
⎨

⎩

a(x) uσ (x)–(cVp)σ (x)
(cVp)(x)–u(x) , if u(x) 
= (cVp)(x),

0, if u(x) = (cVp)(x).

Then g ∈ B+(D) and since σ < 0, we have

a
(
uσ – (cVp)σ

)
= g(cVp – u). (3.14)

Therefore the relation (3.13) becomes

(cVp – u) + V
(
g(cVp – u)

)
= Vf .

Now since f ∈ B+(D) by using (3.14), (3.9), (3.12) and (3.10), we obtain

V
(
g|cVp – u|) ≤ V

(
auσ

)
+ V

(
a(cVp)σ

)

≤ u + cVp

≤ u + cmθ < ∞.

Hence by Lemma 3.4, we obtain

u ≤ cVp.

Similarly, we prove that

1
c

Vp ≤ u.

Thus, by (3.10), u satisfies (1.7).
Case 2: 0 ≤ σ < 1.
Let ρ(x) = 1

ln(ω|x|)θ (x), for x ∈ D. By (3.10), we have

1
m

ρ(x) ≤ 1
ln(ω|x|) Vp(x) ≤ mρ(x). (3.15)

Put c = m 1
1–σ and consider the closed convex set given by

A =
{

v ∈ C0(D),
1
c
ρ ≤ v ≤ cρ

}

.

Clearly ρ ∈ A.
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Define the operator S on A by

Sv(x) :=
1

ln(ω|x|)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|)))σ vσ (y) dy, x ∈ D.

By using (3.15), we obtain for all v ∈ A,

1
c
ρ ≤ Sv ≤ cρ.

Since for all v ∈ A, we have

∣
∣vσ (y)

∣
∣ ≤ cσ

∥
∥ρσ

∥
∥∞, for all y ∈ D,

we deduce as in the proof of Proposition 3.3 that

Sv ∈ C0(D), for all v ∈ A.

So, S(A) ⊂ A.
Let (vk)k ⊂ C0(D) defined by

v0 =
1
c
ρ and vk+1 = Svk , for k ∈N.

Since the operator S is nondecreasing and S(A) ⊂ A, we deduce that

1
c
ρ = v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ vk+1 ≤ cρ.

Therefore, by the monotone convergence theorem, the sequence (vk)k converges to a func-
tion v such that for each x ∈ D,

v(x) =
1

ln(ω|x|)
∫

D
GD(x, y)a(y)

(
ln

(
ω|y|))σ vσ (y) dy

and

1
c
ρ(x) ≤ v(x) ≤ cρ(x).

Since v is bounded, we prove by similar arguments as in the proof of Proposition 3.3 that
v ∈ C0(D).

Put u(x) = ln(ω|x|)v(x). Then u ∈ C(D) satisfies the equation

u(x) = V
(
auσ

)
(x), for x ∈ D. (3.16)

Finally, since the function y �→ a(y)uσ (y) is in L1
loc(D) and from (3.16) the function x �→

V (auσ )(x) is also in L1
loc(D), we deduce by (1.5) that u is a solution of problem (1.2). The

proof of Theorem 1.5 is completed. �
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Example 3.7 Let σ < 1 and a ∈ C(D) be such that

a(x) ≈ |x|–2(ln
(
ω|x|))–2(

ln2
(
ω|x|))–β(

ρD(x)
)–2

(

ln

(
ω

ρD(x)

))–γ

,

where β ∈ R and γ > 1. Then, by Theorem 1.5, problem (1.2) has at least one positive
solution u ∈ C(D) satisfying the following estimates:

(i) If β = 1, then for x ∈ D,

u(x) ≈
(
ln3

(
ω|x|)) 1

1–σ

(

ln

(
ω

ρD(x)

)) 1–γ
1–σ

.

(ii) If β < 1, then for x ∈ D,

u(x) ≈
(
ln2

(
ω|x|)) 1–β

1–σ

(

ln

(
ω

ρD(x)

)) 1–γ
1–σ

.

(iii) If β > 1, then for x ∈ D,

u(x) ≈
(

ln

(
ω

ρD(x)

)) 1–γ
1–σ

.
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24. Dumont, S., Dupaigne, L., Goubet, O., Rădulescu, V.D.: Back to the Keller–Osserman condition for boundary blow-up

solutions. Adv. Nonlinear Stud. 7(2), 271–298 (2007)
25. Edelson, A.: Entire solutions of singular elliptic equations. J. Math. Anal. Appl. 139, 523–532 (1989)
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