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Abstract
In this paper, by using Karamata regular variation theory and the method of upper
and lower solutions, we mainly study the second order expansion of solutions to the
following p-Laplacian problems: �pu = b(x)f (u),u > 0, x ∈ Ω ,u|∂Ω =∞, where Ω is a
bounded domain with smooth boundary in R

N(N ≥ 2), p > 1, b ∈ Cα(Ω̄ ) which is
positive in Ω and may be vanishing on the boundary. The absorption term f is
normalized regularly varying at infinity with index σ > p – 1. The results extend some
previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.
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1 Introduction and the main results
In this paper, we mainly consider the second order expansion of solutions near the bound-
ary to the following boundary blow-up problem:

�pu = b(x)f (u), u > 0, x ∈ Ω , u|∂Ω = ∞, (1.1)

where �pu := div(|∇u|p–2∇u) stands for a p-Laplacian operator with p > 1, the last con-
dition means that u(x) → +∞ as d(x) := dist(x, ∂Ω) → 0, Ω is a bounded domain with
smooth boundary in R

N (N ≥ 2), b satisfies
(b1) b ∈ Cα(Ω̄) for some α ∈ (0, 1) is positive in Ω ;
(b2) there exist k ∈ Λ, c ∈ R, and θ > 0 such that

b(x) = kp(d(x)
)
(1 + c

(
d(x)

)θ + o
((

d(x)
)θ) near ∂Ω ,

where Λ denotes the set of all positive non-decreasing functions in C1(0, δ0) which
satisfy

⎧
⎨

⎩
limt→0+ K (t)

k(t) = 0, K(t) =
∫ t

0 k(s) ds;

limt→0+ d
dt ( K (t)

k(t) ) := Ck ∈ [0, 1],

and f satisfies
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(f1) f ∈ C1[0,∞), f (0) = 0, f is increasing on (0,∞);
(f2) there exist σ > p – 1 and a function E ∈ C1[S0,∞) for S0 large enough such that

f ′(s)s
f (s)

:= σ + E(s), s ≥ S0 with lim
s→∞ E(s) = 0,

i.e.,

f (s) = c0sσ exp

(∫ s

S0

E(ν)
ν

dν

)
, s ≥ S0, c0 > 0;

(f3) there exists η ≤ 0 such that

lim
s→∞

E′(s)s
E(s)

= η,

with E as in Condition (f2).
A local weak solution to problem (1.1) is meant as a function u ∈ C(Ω) ∩ W 1,p

Loc(Ω) with
u(x) → ∞ as d(x) := dist(x, ∂Ω) → 0 and, for every D ⊂⊂ Ω , it holds

∫

D
|∇u|p–2∇u∇φ dx =

∫

D
b(x)g(u)φ dx, ∀φ ∈ W 1,p

0 (D).

The investigation of problem (1.1) has a long history. Since the pioneering work of
Bieberbach [2], the problem of existence, asymptotic boundary behavior, and uniqueness
of solutions to

�u = b(x)f (u), u > 0, x ∈ Ω , u|∂Ω = ∞, (1.2)

has been extensively studied.
For b(x) ≡ 1, Keller–Osserman [3, 4] first supplied a necessary and sufficient condition

∫ ∞

1

dν√
2F(ν)

< ∞, F(ν) =
∫ ν

0
f (s) ds, (1.3)

for the existence of solutions of problem (1.2).
Loewner and Nirenberg [5] showed that if f (u) = up0 with p0 = N+2

N–2 , N > 2, problem (1.2)
has a unique solution u satisfying

lim
d(x)→0

u(x)
(
d(x)

)(N–2)/2 =
(

N(N – 2)
4

)(N–2)/4

.

Bandle and Marcus [6] proved that if f satisfies (f1) and the condition that
(f ′

1) there exist q > 0 and S0 ≥ 1 such that f (ξ s) ≤ ξ 1+qf (s) for all ξ ∈ (0, 1) and s ≥ S0/ξ ,
then, for any solution u of problem (1.1),

u(x)
ψ(d(x))

→ 1 as d(x) → 0, (1.4)
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where ψ satisfies

∫ ∞

ψ(t)

dν√
2F(ν)

= t, ∀t > 0. (1.5)

Moreover, if f satisfies
(f ′

2) f (s)/s is increasing in (0,∞),
problem (1.2) has a unique solution.

It is very worthwhile to point out that Cîrstea and Rǎdulescu [7–9], Cîrstea and Du [10]
introduced the Karamata regular variation theory to study the boundary behavior and
uniqueness of solutions for boundary blow-up elliptic problems and obtained a series of
rich and significant data about the boundary behavior of solutions.

Recently, by using the Karamata regular variation theory, Zhang et al. [11], Zhang [12],
Huang et al. [13, 14], Mi and Liu [15] further studied the second order expansion of the
solutions to problem (1.2). They showed that the second term in the boundary asymptotic
expansion of solutions u(x) depends on the weight function b(x).

Now, let us return to problem (1.1).
For b(x) ≡ 1 on Ω , Gladiali and Porru [16] studied boundary asymptotic behavior of

solutions for (1.1) under some conditions on f . They showed that if F(t)t1–p is increasing
for large t, then a solution u to problem (1.1) satisfies

∣∣u(x) – ψ
(
d(x)

)∣∣ < cd(x)ψ
(
d(x)

)
near ∂Ω

with
∫ ∞

ψ(t)

(
qF(t)

)–1/p = t, t > 0. (1.6)

Furthermore, they showed that if F(t)t–2p → ∞ as t → ∞, then

lim
d(x)→0

u(x) – ψ
(
d(x)

) → 0 as d(x) → 0.

In Mohammed [17], it was shown that problem (1.1) has a local weak solution if b ∈ C(Ω)
is a positive function for which the problem �pv = –b(x) admits a solution in W 1,p

0 (Ω). In
particular, b is allowed to vanish on the boundary ∂Ω or b may be unbounded on Ω .
Later, Mohammed [18] continued to consider the boundary asymptotic and uniqueness
of solutions for problem (1.1).

For the other works on p-Laplacian problem, see [1, 19–29] and the references therein.
Inspired by the above works, our objective in this paper is to establish the second order

expansion of solutions to problem (1.1) under appropriate conditions on weight function
b(x) and non-linearity f .

To present our main results, we introduce the following subclass for Λ.
Let β ,ς > 0, we define

Λ1,β =
{

k ∈ Λ with Ck ∈ [0, 1], lim
t→0+

(– ln t)β
(

d
dt

(
K(t)
k(t)

)
– Ck

)
= D1k ∈R

}
;

Λ2,ς =
{

k ∈ Λ with Ck ∈ (0, 1], lim
t→0+

1
tς

(
d
dt

(
K(t)
k(t)

)
– Ck

)
= D2k ∈R

}
;
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Λ3,ς =
{

k ∈ Λ with Ck = 0, lim
t→0+

1
tς

(
d
dt

(
K(t)
k(t)

))
= D3k ∈R

}
.

In the sequel, β and ς are understood in the above range.
In this paper, we need the following assumptions.
(f4) If η = 0 in (f3), there exists q1 ∈R such that

lim
s→∞(ln s)βE(s) = q1,

where β is the parameter used in the definition of Λ1,β ;

(f5) η ≤ – (σ+1–p)ς
p in (f3) and lims→∞ s

(σ+1–p)ς
p E(s) = q2 ∈R if η = – (σ+1–p)ς

p ,
where ς is the parameter used in the definition of Λ2,ς ;

(f6) If η = 0 in (f3), there exists q3 ∈R such that

lim
s→∞(ln s)τ E(s) = q3,

where τ = �
ς

, � = min{θ ,ς}, ς is the parameter used in the definition of Λ3,ς .
The key of our estimates is the solution to the problem

∫ ∞

φ(t)

dν

(qF(ν))
1
p

= t, t > 0. (1.7)

Here q stands for the Hölder conjugate of p.
Our main results are summarized as follows.

Theorem 1.1 Suppose that f satisfies (f1)–(f2), b satisfies (b1)–(b2), k ∈ Λ1,β , and one of
the following conditions holds:

(i) f (s) = Csσ (σ > p – 1) in a neighborhood of infinity;
(ii) f satisfies (f3) with η < 0 and D1k �= 0;

(iii) f satisfies (f3) with η = 0, (f4) holds and D2
1k + (Ckq1)2 �= 0.

Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω ,

u(x) = A1φ
(
K

(
d(x)

))(
1 + A2

(
– ln

(
d(x)

))–β + o
((

– ln
(
d(x)

))–β))
, (1.8)

where φ is uniquely determined by (1.7) and

A1 =
(

Ck(σ + 1 – p) + p
σ + 1

) 1
σ–p+1

;

A2 =

⎧
⎨

⎩

D1k
p+(σ+1–p)Ck

if (i) or (ii) holds;
D1k

p+(σ+1–p)Ck
–

q1ξ1(σ+1)( p(1–Ck )
(σ+1)(σ+1+η) +Aσ–p+1

1 ln A1)
(σ+1–p)(p+(σ+1–p)Ck ) if (iii) holds,

where ξ1 = p–β ((p – 1 – σ )Ck)β .

Theorem 1.2 Let f satisfy (f1)–(f2), b satisfy (b1)–(b2), ς < p(1+σ )
σ+1–p , and � < p

(σ+1–p)Ck
. Sup-

pose k ∈ Λ2,ς with Ck ∈ (0, 1), and one of the following conditions holds:
(i) f (s) = Csσ (σ > p – 1) in a neighborhood of infinity;

(ii) f satisfies (f3) and (f5).
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Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω ,

u(x) = A1φ
(
K

(
d(x)

))(
1 + A3

(
d(x)

)� + o
((

d(x)
)� ))

, (1.9)

where φ is uniquely determined by (1.7), � = min{θ ,ς}, A1 is in Theorem 1.1 and

A3 = –
p(σ + 1 – p)D2kHeaviside(θ – ς ) – c(p + (σ + 1 – p)Ck)Heaviside(ς – θ )

(σ + 1 – p)(Ck(σ + 1 – p)(� (� + 1)Ck – p(1 + �Ck)) – p2(1 + �Ck))
.

Theorem 1.3 Let f satisfy (f1)–(f2), b satisfy (b1)–(b2). Suppose that k ∈ Λ3,ς and one of
the following conditions holds:

(i) f (s) = Csσ (σ > p – 1) in a neighborhood of infinity;
(ii) f satisfies (f3) with η < 0;

(iii) f satisfies (f3) with η = 0 and (f6) holds.
Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω ,

u(x) = A1φ
(
K

(
d(x)

))(
1 + A4

(
d(x)

)� + o
((

d(x)
)� ))

, (1.10)

where φ is uniquely determined by (1.7), A1 = ( p
σ+1 )

1
σ–p+1 , and

A4 =

⎧
⎨

⎩

1
p D3k Heaviside(θ – ς ) + c

σ+1–p Heaviside(ς – θ ) := A5 if (i) or (ii) holds;

A5 – ξ2q3( 1
(σ+1+η)(σ+1–p) +

ln p
p+1

(σ+1–p)2 ) if (iii) holds,

where ξ2 = (2(ς + 1))–τ ((p – 1)ςD3k)τ .

Remark 1.1 For the existence of solutions for problem (1.1), see Mohammed [17]. For the
uniqueness of solutions for problem (1.1), see Mohammed [18].

Remark 1.2 In Theorem 1.1, suppose (i) or (ii) holds. When Ck ∈ [0, 1], the constant A2 is
defined by the same formula:

A2 =
D1k

p + (σ + 1 – p)Ck
.

Remark 1.3 When k ∈ Λ1,β ,Λ2,ς , orΛ3,ς , the second order expansion of u (see (1.8)–
(1.10)) only involves the distance d(x).

Remark 1.4 Some basic examples of functions for the function E are:
(i) when f (s) = Csσ (ln s)β (σ > p – 1, s ≥ S0), E(s) = β(ln s)–1;

(ii) when f (s) = Csσ exp((ln s)β )(σ > p – 1,β < 1, s ≥ S0), E(s) = β(ln s)β–1;
(iii) when f (s) = Csσ exp(sβ )(σ > p – 1,β ≤ 0, s ≥ S0), E(s) = βsβ .

The outline of this paper is as follows. In Sect. 2, we give some preliminary results of
regularly varying functions. In Sect. 3, we give some auxiliary results that will be used in
the next sections. The proofs of Theorems 1.1–1.3 are in the next sections.
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2 Some properties of regularly varying function
The Karamata regular variation theory was first introduced and established by Karamata
in 1930 and is a basic tool in stochastic processes (see [30–32]). In this section, we present
some bases of Karamata regular variation theory.

A positive measurable function f defined on [a,∞), for some a > 0, is called regularly
varying at infinity with index ρ , written f ∈ RVρ , if for each ξ > 0 and some ρ ∈R,

lim
s→∞

f (ξ s)
f (s)

= ξρ . (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.
Clearly, if f ∈ RVρ , then L(s) := f (s)/sρ is slowly varying at infinity.
We also see that a positive measurable function h defined on (0, a) for some a > 0 is

regularly varying at zero with index ρ (write h ∈ RVZρ ) if t → h(1/t) belongs to RV–ρ .

Proposition 2.1 (Uniform convergence theorem) If f ∈ RVρ , then (2.1) holds uniformly
for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.2 (Representation theorem) A function L is slowly varying at infinity if and
only if it may be written in the form

L(s) = ϕ(s) exp

(∫ s

a1

y(ν)
ν

dν

)
, s ≥ a1, (2.2)

for some a1 ≥ a, where the functions ϕ and y are measurable and for s → ∞, y(s) → 0 and
ϕ(s) → c0, with c0 > 0.

We call that

L̂(s) = c0 exp

(∫ s

a1

y(ν)
ν

dν

)
, s ≥ a1, (2.3)

is normalized slowly varying at infinity and

f (s) = sρ L̂(s), s ≥ a1, (2.4)

is normalized regularly varying at infinity with index ρ (and write f ∈ NRVρ ).
Similarly, g is called normalized regularly varying at zero with index ρ , written g ∈

NRVZρ , if t → g(1/t) belongs to NRV–ρ .
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1,∞) for some a1 > 0 and lim
s→∞

sf ′(s)
f (s)

= ρ. (2.5)

Proposition 2.3 If functions L, L1 are slowly varying at infinity, then
(i) Lρ for every ρ ∈ R, c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1 (if L1(t) → ∞

as t → ∞) are also slowly varying at infinity.
(ii) For every ρ > 0 and t → ∞,

tρL(t) → ∞, t–ρL(t) → 0.
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(iii) For ρ ∈R and t → ∞, ln(L(t))/ln t → 0 and ln(tρL(t))/ln t → ρ .

Proposition 2.4
(i) If g1 ∈ RVZρ1 , g2 ∈ RVZρ2 with limt→0+ g2(t) = 0, then g1 ◦ g2 ∈ RVZρ1ρ2 .

(ii) If g ∈ RVZρ , then gα ∈ RVZρα for every α ∈R.

Proposition 2.5 (Asymptotic behavior) If a function L is slowly varying at infinity, then
for a ≥ 0 and t → ∞,

(i)
∫ t

a sρL(s) ds ∼= (ρ + 1)–1t1+ρL(t) for ρ > –1;
(ii)

∫ ∞
t sρL(s) ds ∼= (–ρ – 1)–1t1+ρL(t) for ρ < –1.

3 Auxiliary results
In this section, we collect some useful results.

Lemma 3.1 (Lemma 3.1 in [15]) Let k ∈ Λ. Then
(i) limt→0+ K (t)

k(t) = 0, limt→0+ K (t)
tk(t) = Ck ;

(ii) limt→0+ K (t)k′(t)
k2(t) = 1 – Ck ;

(iii) when k ∈ Λ1,β ,

lim
t→0+

(– ln t)β
(

K(t)k′(t)
k2(t)

– (1 – Ck)
)

= –D1k ;

(iv) when k ∈ Λ2,ς ,

lim
t→0+

1
tς

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)
= –D2k ;

(v) when k ∈ Λ3,ς ,

lim
t→0+

1
tς

(
K(t)k′(t)

k2(t)
– 1

)
= –D3k .

Lemma 3.2 If f satisfies (f1)–(f2), then
(i) f satisfies the generalized Keller–Osserman condition

∫ ∞

1

(
qF(t)

)–1/p < +∞, F(t) =
∫ t

0
f (s) ds;

(ii)

lim
s→∞ f ′(s)

∫ ∞

s

dν

f (ν)
=

σ

σ – 1

and

lim
s→∞

f (s)
∫ ∞

s
dν

f (ν)

s
=

1
σ – 1

;

(iii) there exists S0 > 0 such that f (s)
sm is increasing in [S0,∞), where m ∈ (1,σ );
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(iv)

lim
s→∞

sf (s)
F(s)

= σ + 1;

(v)

lim
s→∞

s(F(s))– 1
p

∫ ∞
s (F(t))– 1

p dt
=

σ + 1 – p
p

.

Proof By f ∈ NRVσ with σ > p–1, we see that f (s) = c0sσ L̂(s) in [S0,∞), where L̂ is normal-
ized slowly varying at infinity and c0 > 0. Let σ1 ∈ (p – 1,σ ). It follows by Proposition 2.3(ii)
that

lim
s→∞ sσ–σ1 L̂(s) = ∞.

Then there exists S1 > S0 such that

c0sσ–σ1 L̂(s) > 1, ∀s ≥ S1, i.e., f (s) ≥ sσ1 ,∀s ≥ S1

and there exists S2 > S1 such that

F(s) ≥ sσ1+1

σ1 + 1
, ∀s ≥ S2.

So, (i) holds.
(ii) By (f2) and Proposition 2.5(ii), we obtain that

lim
s→∞ f ′(s)

∫ ∞

s

dν

f (ν)
= lim

s→∞
sf ′(s)
f (s)

lim
s→∞

f (s)
s

∫ ∞

s

dν

f (ν)

= σ lim
s→∞ sσ–1L̂(s)

∫ ∞

s
ν–σ

(
L̂(ν)

)–1 dν

=
σ

σ – 1
.

It follows by l’Hospital’s rule that

lim
s→∞

f (s)
∫ ∞

s
dν

f (ν)

s
= lim

s→∞ f ′(s)
∫ ∞

s

dν

f (ν)
– 1 =

1
σ – 1

.

(iii) By the choice of m and (ii), one can see that

lim
s→∞

(
f ′(s) – m

f (s)
s

)∫ ∞

s

dν

f (ν)
=

σ – m
σ – 1

> 0.

Then there exists S0 > 0 such that ( f (s)
sm )′ = s–m(f ′(s) – m f (s)

s ) > 0,∀s ≥ S0, i.e., f (s)/sm is in-
creasing on [S0,∞).
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(iv) By (f2) and Proposition 2.5(i), we obtain that

lim
s→∞

sf (s)
F(s)

= lim
s→∞

sσ+1L̂(s)
∫ s

0 νσ L̂(ν) dν

= lim
s→∞

sσ+1L̂(s)
(σ + 1)–1s1+σ L̂(s)

= σ + 1.

(v) It follows by (iv) that F ∈ NRVσ+1 with σ + 1 > p. By Proposition 2.4(ii), we have
F– 1

p ∈ NRV– σ+1
p

. Hence, by Proposition 2.4(ii), we obtain

lim
s→∞

s(F(s))– 1
p

∫ ∞
s (F(t))– 1

p dt
= lim

s→∞
s– σ+1

p +1L̂(s)
∫ ∞

s ν
– σ+1

p L̂(ν) dν

= lim
s→∞

s– σ+1
p +1L̂(s)

( σ+1
p – 1)–1s– σ+1

p +1L̂(s)

=
σ + 1 – p

p
. �

Lemma 3.3 Let f satisfy (f1)–(f3), and let (f4) hold, then
(i)

lim
s→∞(ln s)β

(
F(s)
sf (s)

–
1

σ + 1

)
= σ1,

where

σ1 =

⎧
⎨

⎩
0 if η < 0,

– q1
(σ+1)(σ+1+η) if η = 0;

(ii)

lim
s→∞(ln s)β

(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
–

σ + 1 – p
p

)
= σ2,

where

σ2 =

⎧
⎨

⎩
0 if η < 0,

q1(σ+1)
p(η+σ+1) if η = 0;

(iii)

lim
s→∞(ln s)β

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)
= σ3,
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where

σ3 =

⎧
⎨

⎩
0 if η < 0,

q1
(σ+1)(σ+1+η) if η = 0;

(iv)

lim
s→∞(ln s)β

(
f (A1s)

Ap–1
1 f (s)

– Aσ–p+1
1

)
= σ4,

where

σ4 =

⎧
⎨

⎩
0 if η < 0,

q1Aσ–p+1
1 ln A1 if η = 0.

Proof (i) It follows by (f2) that

sf ′(s) = σ f (s) + E(s)f (s), s ∈ [S0,∞).

Integrating it from S0 to s and integrating by parts, we obtain that

sf (s) = (σ + 1)F(s) +
∫ s

S0

E(ν)f (ν) dν + c, s ∈ [S0,∞), (3.1)

i.e.,

F(s)
sf (s)

–
1

σ + 1
= –

E(s)
σ + 1

∫ s
S0

f (ν)E(ν) dν

sf (s)E(s)
–

c
(σ + 1)sf (s)

, (3.2)

where c is a constant.
Since f ∈ NRVσ with σ > p – 1, we obtain by Propositions 2.5 and 2.3(ii) that

lim
s→∞

∫ s
S0

f (ν)E(ν) dν

sf (s)E(s)
=

1
σ + 1 + η

and lim
s→∞ sf (s)(ln s)–β = ∞. (3.3)

Thus (ii) follows by (3.2).
(ii) By (3.1), it follows that

tf (t)
F(t)

= (σ + 1) +

∫ t
S0

E(s)f (s) ds
F(t)

+
c

F(t)
, t ∈ [S0,∞). (3.4)

Besides, by a simple calculation, it leads to

t d
dt ((F(t))– 1

p )

(F(t))– 1
p

= –
tf (t)
pF(t)

= –
σ + 1

p
–

∫ t
S0

E(s)f (s) ds
pF(t)

–
c

pF(t)
, t ∈ [S0,∞), (3.5)

i.e.,

t
d
dt

((
F(t)

)– 1
p
)

= –
σ + 1

p
(
F(t)

)– 1
p –

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

–
c

p(F(t))1+ 1
p

, t ∈ [S0,∞). (3.6)
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Since f ∈ NRVσ with σ > p – 1, by Proposition 2.3(ii), we know lims→∞ s

(F(s))
1
p

= 0.

Hence, integrating (3.6) from s to ∞ and integrating by parts, we derive that

s
(
F(s)

)– 1
p =

σ + 1 – p
p

∫ ∞

s

dt

(F(t))
1
p

+
∫ ∞

s

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

dt

+
∫ ∞

s

c dt

p(F(t))1+ 1
p

, s ≥ S0,

i.e.,

s(F(s))– 1
p

∫ ∞
s

dt

(F(t))
1
p

–
σ + 1 – p

p
=

∫ ∞
s

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

dt +
∫ ∞

s
c dt

p(F(t))1+ 1
p

∫ ∞
s

dt

(F(t))
1
p

, s ≥ S0. (3.7)

By l’Hospital’s rule it follows that

lim
s→∞(ln s)β

∫ ∞
s

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

dt +
∫ ∞

s
c dt

p(F(t))1+ 1
p

∫ ∞
s

dt

(F(t))
1
p

=
1
p

lim
s→∞

(ln s)βE(s)
∫ t

S0
E(ν)f (ν) dν

sE(s)f (s)
sf (s)
F(s) + c (ln s)β

F(s)

1 + (s ln s)–1β(F(t))
1
p
∫ ∞

s
dt

(F(t))
1
p

= σ2.

(iii) By a simple calculation, we have

lim
s→∞(ln s)β

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)

= lim
s→∞(ln s)β

(
F(s)
sf (s)

s(F(s))– 1
p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p(σ + 1)

)

= lim
s→∞(ln s)β

((
F(s)
sf (s)

–
1

σ + 1

)(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p

)

–
p – σ – 1

p

(
F(s)
sf (s)

–
1

σ + 1

)
+

1
σ + 1

(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p

))
.

Hence, by (i)–(ii), we get

lim
s→∞(ln s)β

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)
= σ3.

(iv) When A1 = 1, the result is obvious. Now let A1 �= 1. By (f2), we see that

f (A1s)
Ap–1

1 f (s)
– Aσ–p+1

1 = Aσ–p+1
1

(
exp

(∫ A1s

s

E(ν)
ν

dν

)
– 1

)
. (3.8)
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By Proposition 2.1 and (f3), we know

lim
s→∞

E(su)
u

= 0 and lim
s→∞

E(su)
E(s)u

= uη–1

uniformly with respect to s ∈ [1, A1] or s ∈ [A1, 1].
So,

lim
s→∞

∫ A1s

s

E(ν)
ν

dν = lim
s→∞

∫ A1

1

E(su)
u

du = 0

and

lim
s→∞

∫ A1

1

E(su)
E(s)u

du =
∫ A1

1
uη–1 du = κ ,

where

κ =

⎧
⎨

⎩

1
η

(Aη
1 – 1) if η < 0,

ln A1 if η = 0.
(3.9)

Since er – 1 ∼= r as r → 0, we obtain

f (A1s)
Ap–1

1 f (s)
– Aσ–p+1

1
∼= Aσ–p+1

1

∫ A1s

s

E(ν)
ν

dν, as s → ∞. (3.10)

Hence,

lim
s→∞(ln s)β

(
f (A1s)

Ap–1
1 f (s)

– Aσ–p+1
1

)

= Aσ–p+1
1 lim

s→∞(ln s)βE(s) lim
s→∞

∫ A1

1

E(su)
E(s)u

du = σ4. �

Lemma 3.4 Let f satisfy (f1)–(f3), and let (f5) hold, then
(i)

lim
s→∞ s

σ+1–p
p ς

(
F(s)
sf (s)

–
1

σ + 1

)
= κ1,

where

κ1 =

⎧
⎨

⎩
0 if σ+1–p

p ς + η < 0,

– q2
(σ+1)(σ+1+η) if σ+1–p

p ς + η = 0;

(ii)

lim
s→∞ s

σ+1–p
p ς

(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
–

σ + 1 – p
p

)
= κ2,
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where

κ2 =

⎧
⎨

⎩
0 if σ+1–p

p ς + η < 0,
(σ+1)q2

p(1+ς )(σ+1+η) if σ+1–p
p ς + η = 0;

(iii)

lim
s→∞ s

σ+1–p
p ς

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)
= κ3,

where

κ3 =

⎧
⎨

⎩
0 if σ+1–p

p ς + η < 0,
q2(p–ς (σ+1–p))

p(σ+1)(σ+1+η)(1+ς ) if σ+1–p
p ς + η = 0;

(iv)

lim
s→∞ s

σ+1–p
p ς

(
f (A1s)

Ap–1
1 f (s)

– Aσ–p+1
1

)
= κ4,

where

κ4 =

⎧
⎨

⎩
0 if σ+1–p

p ς + η < 0,
q2
η

Ap–1
1 (Aη

1 – 1) if σ+1–p
p ς + η = 0.

Proof (i) By (3.2), we obtain

lim
s→∞ s

σ+1–p
p ς

(
F(t)
tf (t)

–
1

σ + 1

)

= – lim
s→∞

s
σ+1–p

p ς E(s)
σ + 1

lim
s→∞

∫ s
S0

f (ν)E(ν) dν

sf (s)E(s)
– lim

s→∞
cs

σ+1–p
p ς

(σ + 1)sf (s)
.

Since f ∈ NRVσ and ς < p(σ+1)
σ+1–p , by Proposition 2.3(ii), we know lims→∞ s

σ+1–p
p ς

sf (s) = 0.
Combining with (3.3), it follows that

lim
s→∞ s

σ+1–p
p ς

(
F(t)
tf (t)

–
1

σ + 1

)
= κ1. �

(ii) It follows by (3.7) that

lim
s→∞ s

σ+1–p
p ς

(
s(F(s))– 1

p
∫ ∞

s
dt

(F(t))
1
p

–
σ + 1 – p

p

)

= lim
s→∞ s

σ+1–p
p ς

∫ ∞
s

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

dt +
∫ ∞

s
c dt

p(F(t))1+ 1
p

∫ ∞
s

dt

(F(t))
1
p

.
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By l’Hospital’s rule, it follows that

lim
s→∞ s

σ+1–p
p ς

∫ ∞
s

∫ t
S0

E(ν)f (ν) dν

p(F(t))1+ 1
p

dt +
∫ ∞

s
c dt

p(F(t))1+ 1
p

∫ ∞
s

dt

(F(t))
1
p

=
1
p

lim
s→∞

s
σ+1–p

p ς E(s)
∫ s

S0
E(ν)f (ν) dν

sE(s)f (s)
sf (s)
F(s) + c s

σ+1–p
p ς

F(s)

1 + σ+1–p
p ςs–1(F(s))

1
p
∫ ∞

s
dν

(F(ν))
1
p

= κ2.

(iii) By a simple calculation, we get

lim
s→∞ s

σ+1–p
p ς

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)

= lim
s→∞ s

σ+1–p
p ς

(
F(s)
sf (s)

s(F(s))– 1
p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p(σ + 1)

)

= lim
s→∞ s

σ+1–p
p ς

((
F(s)
sf (s)

–
1

σ + 1

)(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p

)

–
p – σ – 1

p

(
F(s)
sf (s)

–
1

σ + 1

)
+

1
σ + 1

(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
+

p – σ – 1
p

))
.

Hence, by (i)–(ii), we get

lim
s→∞ s

σ+1–p
p ς

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)
= κ3.

(iv) By (3.10), we see that

lim
s→∞ s

σ+1–p
p ς

(
f (A1s)

Ap–1
1 f (s)

– Aσ+1–p
1

)

= Aσ+1–p
1 lim

s→∞ s
σ+1–p

p ς E(s)
∫ A1

1

E(su)
E(s)u

du.

Hence, by (3.9), we reach

lim
s→∞ s

σ+1–p
p ς

(
f (A1s)

Ap–1
1 f (s)

– Aσ–p+1
1

)

= Ap–1
1 lim

s→∞ s
σ+1–p

p ς E(s) lim
s→∞

∫ A1

1

E(su)
E(s)u

du = κ4.

Lemma 3.5 Let f satisfy (f1)–(f3), and let (f6) hold, then
(i)

lim
s→∞(ln s)τ

(
F(s)
sf (s)

–
1

σ + 1

)
= γ1,
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where

γ1 =

⎧
⎨

⎩
0 if η < 0,

– q3
(σ+1)(σ+1+η) if η = 0;

(ii)

lim
s→∞(ln s)τ

(
s(F(s))– 1

p

∫ ∞
s (F(t))– 1

p dt
–

σ + 1 – p
p

)
= γ2,

where

γ2 =

⎧
⎨

⎩
0 if η < 0,

q3(σ+1)
p(η+σ+1) if η = 0;

(iii)

lim
s→∞(ln s)τ

(
(F(s))1– 1

p

f (s)
∫ ∞

s (F(t))– 1
p dt

+
p – σ – 1
p(σ + 1)

)
= γ3,

where

γ3 =

⎧
⎨

⎩
0 if η < 0,

q3
(σ+1)(σ+1+η) if η = 0;

(iv)

lim
s→∞(ln s)τ

(
f (A1s)

Ap–1
1 f (s)

– Aσ–p+1
1

)
= γ4,

where

γ4 =

⎧
⎨

⎩
0 if η < 0,

q3Aσ–p+1
1 ln A1 if η = 0.

Proof The proof is similar to the proof of Lemma 3.3, we omit it here. �

Lemma 3.6 If f satisfies (f1)–(f2) and φ is the solution to problem (1.7), then
(i) φ′(t) = –(qF(φ(t)))

1
p ,φ(t) > 0, t > 0,φ(0) := limt→0+ φ(t) = ∞;

(ii) φ′′(t) = p–1q
2
p f (φ(t))(F(φ(t)))(2–p)/p, t > 0, |φ′(t)|p–2φ′′(t) = q

p f (φ(t));
(iii) φ ∈ NRVZ– p

σ+1–p
and φ′ ∈ NRVZ– σ+1

σ+1–p
;

(iv) when k ∈ Λ, limt→0+ ln t
ln(φ(K (t))) = – (σ+1–p)Ck

p ;

(v) when k ∈ Λ with Ck ∈ (0, 1), limt→0+ t(φ(K(t)))
σ+1–p

p = ∞ and limt→0+ (– ln t)β
φ(K (t)) = 0;

furthermore, if � < p
(σ+1–p)Ck

, limt→0+ t�φ(K(t)) = ∞;
(vi) when k ∈ Λ3,ς , limt→0+ 1

tς ln(φ(K (t))) = (σ+1–p)ςD3k
p(ς+1) .
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Proof By the definition of φ and a direct calculation, we show that (i)–(ii) hold.
(iii) By (i)–(ii) and Lemma 3.2(iv)–(v), we have that

lim
t→0+

tφ′′(t)
φ′(t)

= –
1
p

lim
s→∞

f (s)
∫ ∞

s
dν

(F(ν))
1
p

(F(s))1– 1
p

= –
σ + 1

σ + 1 – p

and

lim
t→0+

tφ′(t)
φ(t)

= – lim
s→∞

(F(s))
1
p

s

∫ ∞

s

dν

(F(ν))
1
p

= –
p

σ + 1 – p
,

i.e., φ′ ∈ NRVZ– p
σ+1–p

and φ ∈ NRVZ– σ+1
σ+1–p

and (iii) follows.
(iv) By l’Hospital’s rule, (iii), and Lemma 3.1(i), we see that

lim
t→0+

ln t
ln(φ(K(t)))

= lim
t→0+

K(t)
tk(t)

φ(K(t))
K(t)φ′(K(t))

= –
σ + 1 – p

p
Ck .

(v) By Lemma 3.1(i), we see K ∈ NRVZC–1
k

. It follows by Proposition 2.4 that φ
σ+1–p

p ◦
K ∈ NRVZ– 1

Ck
and φ ◦ K ∈ NRVZ– p

(σ+1–p)Ck
. Since Ck ∈ (0, 1) and � < p

(σ+1–p)Ck
, the result

follows by Proposition 2.3(ii).
(vi) By l’Hospital’s rule and (iii), we obtain

lim
t→0+

1
tς ln(φ(K(t)))

= –ς lim
t→0+

K(t)
tς+1k(t)

φ(K(t))
K(t)φ′(K(t))

=
(σ + 1 – p)ς

p
lim

t→0+

K(t)
tς+1k(t)

=
(σ + 1 – p)ςD3k

p(ς + 1)
. �

Lemma 3.7 Under the hypotheses in Theorem 1.1, let φ be the solution to problem (1.7).
Then

(i)

lim
t→0+

(– ln t)β
(

φ′(K(t))k′(t)
φ′′(K(t)k2(t)

+
(σ + 1 – p)(1 – Ck)

σ + 1

)
= χ1,

where

χ1 =

⎧
⎨

⎩

(σ+1–p)D1k
σ+1 if (i) or (ii) holds,

–q1ξ1p(1–Ck )
(σ+1)(σ+1+η) + (σ+1–p)D1k

σ+1 if (iii) holds;

(ii)

lim
t→0+

(– ln t)β
(

f (A1φ(K(t)))
Ap–1

1 f (φ(K(t)))
– Aσ–p+1

1

)
= χ2,
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where

χ2 =

⎧
⎨

⎩
0 if (i) or (ii) holds,

ξ1q1Aσ–p+1
1 ln A1 if (iii) holds;

where ξ1 = p–β ((p – 1 – σ )Ck)β .

Proof (i) By the definition of φ, Lemma 3.3(iii), and Lemma 3.7(iv), we arrive at

lim
t→0+

(– ln t)β
(

φ′(K(t))k′(t)
φ′′(K(t))k2(t)

+
(σ + 1 – p)(1 – Ck)

σ + 1

)

= lim
t→0+

(– ln t)β
(

K(t)k′(t)
k2(t)

– (1 – Ck)
)(

φ′(K(t))
φ′′(K(t))K(t)

+
σ + 1 – p

σ + 1

)

+ (1 – Ck) lim
t→0+

(– ln t)β
(

φ′(K(t))
φ′′(K(t))K(t)

+
σ + 1 – p

σ + 1

)

–
σ + 1 – p

σ + 1
lim

t→0+
(– ln t)β

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)

= (1 – Ck) lim
t→0+

(
– lnφ

(
K(t)

))β

(
–p(F(φ(K(t))))1– 1

p

f (φ(K(t)))
∫ ∞
φ(K (t))(F(ν))– 1

p dν
+

σ + 1 – p
σ + 1

)

×
(

– ln t
lnφ(K(t))

)β

–
σ + 1 – p

σ + 1
lim

t→0+
(– ln t)β

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)

= χ1.

(ii) By Lemma 3.3(iv) and Lemma 3.7(iv), we infer that

lim
t→0+

(– ln t)β
(

f (A1φ(K(t)))
Ap–1

1 f (φ(K(t)))
– Aσ–p+1

1

)

= lim
t→0+

(
ln

(
φ
(
K(t)

)))β

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)(
– ln t

lnφ(K(t))

)β

= χ2. �

Lemma 3.8 Under the hypotheses in Theorem 1.2, let φ be the solution to problem (1.7).
Then

(i)

lim
t→0+

t–�

(
φ′(K(t))k′(t)
φ′′(K(t))k2(t)

+
(σ + 1 – p)(1 – Ck)

σ + 1

)
=

σ + 1 – p
σ + 1

D2kHeaviside(θ –ς );

(ii)

lim
t→0+

t–�

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)
= 0.

Proof (i) By the definition of φ, Lemma 3.4(iii), and Lemma 3.7(v), we arrive at

lim
t→0+

t–�

(
φ′(K(t))k′(t)
φ′′(K(t))k2(t)

+
(σ + 1 – p)(1 – Ck)

σ + 1

)
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= lim
t→0+

t–�

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)(
φ′(K(t))

φ′′(K(t))K(t)
+

σ + 1 – p
σ + 1

)

+ (1 – Ck) lim
t→0+

t–�

(
φ′(K(t))

φ′′(K(t))K(t)
+

σ + 1 – p
σ + 1

)

–
σ + 1 – p

σ + 1
lim

t→0+
t–�

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)

= (1 – Ck) lim
t→0+

(
φ
(
K(t)

)) (σ+1–p)
p �

(
–p(F(φ(K(t))))1– 1

p

f (φ(K(t)))
∫ ∞
φ(K (t))(F(ν))– 1

p dν
+

σ + 1 – p
σ + 1

)

× ((
φ
(
K(t)

)) σ+1–p
p t

)–� –
σ + 1 – p

σ + 1
lim

t→0+
t–�

(
K(t)k′(t)

k2(t)
– (1 – Ck)

)

=
σ + 1 – p

σ + 1
D2k Heaviside(θ – ς ).

(ii) By Lemma 3.4(iv) and Lemma 3.7(v), we infer that

lim
t→0+

t–�

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)

= lim
t→0+

(
φ
(
K(t)

)) (σ+1–p)
p �

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)
((

φ
(
K(t)

)) σ+1–p
p t

)–�

= 0. �

Lemma 3.9 Under the hypotheses in Theorem 1.3. Let φ be the solution to problem (1.7).
Then

(i)

lim
t→0+

t–�

(
φ′(K(t))k′(t)
φ′′(K(t))k2(t)

+
σ + 1 – p

σ + 1

)
= χ3,

where

χ3 =

⎧
⎨

⎩

σ+1–p
σ+1 D3kHeaviside(θ – ς ) if (i) or (ii) holds,

– ξ2q3p
(σ+1)(σ+1+η) + (σ+1–p)D3k

σ+1 Heaviside(θ – ς ), if (iii) holds;

(ii)

lim
t→0+

t–�

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)
= χ4,

where

χ4 =

⎧
⎨

⎩
0 if (i) or (ii) holds,

ξ2q3Aσ–p+1
1 ln A1 if (iii) holds;

where ξ2 = (p(ς + 1))–τ ((σ + 1 – p)ςD3k)τ .
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Proof (i) By the definition of φ, Lemma 3.5(iii), and Lemma 3.7(vi), we arrive at

lim
t→0+

t–�

(
φ′(K(t))k′(t)
φ′′(K(t))k2(t)

+
σ + 1 – p

σ + 1

)

= lim
t→0+

t–�

(
K(t)k′(t)

k2(t)
– 1

)(
φ′(K(t))

φ′′(K(t))K(t)
+

σ + 1 – p
σ + 1

)

+ lim
t→0+

t–�

(
φ′(K(t))

φ′′(K(t))K(t)
+

σ + 1 – p
σ + 1

)

–
σ + 1 – p

σ + 1
lim

t→0+
t–�

(
K(t)k′(t)

k2(t)
– 1

)

= lim
t→0+

(
ln

(
φ
(
K(t)

)))τ

(
–p(F(φ(K(t))))1– 1

p

f (φ(K(t)))
∫ ∞
φ(K (t))(F(ν))– 1

p dν
+

σ + 1 – p
σ + 1

)

× (
ln

(
φ
(
K(t)

))
tς

)–τ –
σ + 1 – p

σ + 1
lim

t→0+
t–�

(
K(t)k′(t)

k2(t)
– 1

)

= χ3.

(ii) By Lemma 3.5(iv) and Lemma 3.7(vi), we infer that

lim
t→0+

t–�

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)

= lim
t→0+

(
ln

(
φ
(
K(t)

)))τ

(
f (A1φ(K(t)))

Ap–1
1 f (φ(K(t)))

– Aσ–p+1
1

)
(
ln

(
φ
(
K(t)

))
tς

)–τ

= χ4. �

4 Proof of Theorem 1.1
First, we need the following comparison principle for weak solutions to quasilinear equa-
tions (see [33] for a proof ).

Lemma 4.1 (Weak comparison principle) Let D ⊂R
N be a bounded domain, G : D×R →

R be non-increasing in the second variable and continuous. Let u, w ∈ W 1,p(D) satisfy the
respective inequalities

∫

D
|∇u|p–2∇u · ∇φ ≤

∫

D
G(x, u)φ and

∫

D
|∇w|p–2∇w · ∇φ ≥

∫

D
G(x, w)φ

for all non-negative φ ∈ W 1,p
0 (D). Then the inequality u ≤ w on ∂D implies u ≤ w in D.

Next fix ε > 0. For any δ > 0, we define Ωδ = {x ∈ Ω : 0 < d(x) < δ}. Since Ω is C2-smooth,
choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1 ) and

∣
∣∇d(x)

∣
∣ = 1, �d(x) = –(N – 1)H(x̄) + o(1), ∀x ∈ Ωδ1 , (4.1)

where, for all x ∈ Ωδ1 , x̄ denotes the unique point of the boundary such that d(x) = |x – x̄|
and H(x̄) denotes the mean curvature of the boundary at that point.



Mi Boundary Value Problems         (2019) 2019:66 Page 20 of 27

Let 0 < a0 < 1 and

w± = A1φ
(
K

(
d(x)

))(
1 + (A2 ± ε)

(
– ln

(
d(x)

))–β)
, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±
(
d(x)

)
= A1φ

(
K

(
d(x)

))(
1 + λ±(A2 ± ε)

(
– ln

(
d(x)

))–β)

such that, for x ∈ Ωδ1 ,

f
(
w±(x)

)
= f

(
A1φ

(
K

(
d(x)

)))
+ A1(A2 ± ε)φ

(
K

(
d(x)

))
f ′(Φ±

(
d(x)

))(
– ln

(
d(x)

))–β .

Since f ∈ NRVσ , by Proposition 2.1 we obtain

lim
d(x)→0

f (A1φ(K(d(x))))
f (Φ±(d(x)))

= lim
d(x)→0

f ′(A1φ(K(d(x))))
f ′(Φ±(d(x)))

= 1.

Define r = d(x) and

I1(r) = (– ln r)β (p – 1)
(

1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

–
f (A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

)
;

I2±(r) = (A2 ± ε)(p – 1)
(

1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ (p – 2)
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ (p – 2) – A1
f ′(Φ±(r))

f ′(A1φ(K(r)))
φ(K(r))f ′(A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

)
;

I3±(x) = β(A2 ± ε)
φ(K(r))

φ′′(K(r))k2(r)r2

(
(p – 1)(β + 1)(– ln r)–2 + (– ln r)–1�d(x)

– (p – 1)(– ln r)–1r–2) – (p – 1)(c ∓ a0ε)
f (A1φ(K(r)))

Aσ–p+1
1 f (φ(K(r)))

(– ln r)βrθ

+ 2
φ′(K(r))

φ′′(K(r))k(r)
(
(A2 ± ε)

(
�d(x) + 2β(– ln r)–1r–1) + �d(x)(– ln r)β

)

– A1(p – 1)(A2 ± ε)(c ∓ a0ε)rθ f ′(Φ±(r))
f ′(A1φ(K(r)))

φ(K(r))f ′(A1φ(K(r)))
Aσ–p+1

1 f (φ(K(r)))

+ (p – 2)(A2 + ε)2
(

1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

)
(– ln r)β + o

(
(– ln r)β

)
.

By Lemmas 3.1, 3.6, and 3.7, combining with the choices of A1, A2, ξ1 in Theorem 1.1, we
see the following.

Lemma 4.2 Under the hypotheses in Theorem 1.1,
(i) limr→0 I1(r) = λ1, where

λ1 =

⎧
⎨

⎩

(p–1)(σ+1–p)
σ+1 D1k := Θ1 if (i) or (ii) holds,

Θ1 – (p – 1)q1ξ1( p(1–Ck )
(σ+1)(σ+1+η) + Aσ–p+1

1 ln A1) if (iii) holds;

(ii) limr→0 I2±(r) = (A2 ± ε)(p – 1)(p – 1 – σ ) p+(σ+1–p)Ck
σ+1 ;
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(iii) limd(x)→0 I3±(x) = 0;
(iv) limd(x)→0(I1(r) + I2±(r) + I3±(x)) = ±ε(p – 1)(p – 1 – σ ) p+(σ+1–p)Ck

σ+1 .

Proof of Theorem 1.1 By (b1), (b2), Lemma 4.2, and K ∈ C[0, δ0) with K(0) = 0, we see that
there are δ1ε , δ2ε ∈ (0, min{1, δ1/2}) (which corresponds to ε) sufficiently small such that

(1) 0 ≤ K(r) ≤ 2δ1ε , r ∈ (0, 2δ2ε);
(2) kp(d(x))(1 + (c – a0ε)(d(x))θ ) ≤ b(x) ≤ kp(d(x))(1 + (c + a0ε)(d(x))θ ), x ∈ Ω2δ1ε

;
(3) I1(r) + I2+(r) + I3+(x) ≤ 0,∀(x, r) ∈ Ω2δ1ε

× (0, 2δ2ε);
(4) I1(r) + I2–(r) + I3–(x) ≥ 0,∀(x, r) ∈ Ω2δ1ε

× (0, 2δ2ε).
Now we define

⎧
⎨

⎩
σ ∈ (0, δ1ε), D–

σ = Ω2δ1ε
/Ω̄σ , D+

σ = Ω2δ1ε–σ ,

d1(x) = d(x) – σ , d2(x) = d(x) + σ ;
(4.2)

ūε = A1φ
(
K

(
d1(x)

))(
1 + (A2 + ε)

(
– ln

(
d1(x)

))–β)
, x ∈ D–

σ . (4.3)

Then, for x ∈ D–
σ ,

f
(
ūε(x)

)
= f

(
A1φ

(
K

(
d1(x)

)))
+ A1(A2 + ε)φ

(
K

(
d1(x)

))
f ′(Φ+

(
d1(x)

))(
– ln

(
d1(x)

))–β ,

where λ+ ∈ (0, 1) and

Φ+
(
d1(x)

)
= A1φ

(
K

(
d1(x)

))(
1 + λ+(A2 + ε)

(
–
(
ln

(
d1(x)

)))–β)
.

Before we prove the theorem, let us make note of the following. Suppose that z is a C2

function on a domain Ω in R
N , and v = φ(z), where φ is uniquely determined by (1.7).

Direct computation shows that

�pv = (p – 1)
∣
∣φ′(z)

∣
∣p–2

φ′′(z)|∇z|p +
∣
∣φ′(z)

∣
∣p–2

φ′(z)�pz. (4.4)

Then, combining with (4.4), it follows that, for x ∈ D–
σ ,

�pūε(x) – kp(d1(x)
)(

1 + (c – a0ε)
(
d1(x)

)θ )f
(
ūε(x)

)

= Ap–1
1

∣
∣φ′(K(r)

)∣∣p–2
φ′′(K(r)

)
kp(r)(– ln r)–β

(
I1(r) + I2+(r) + I3+(x)

)

≤ 0,

where r = d1(x), i.e., ūε is a supersolution of equation (1.1) in D–
σ .

In a similar way, we can show that

uε = A1φ
(
K

(
d2(x)

))(
1 + (A2 – ε)

(
– ln

(
d2(x)

))–β)
, x ∈ D+

σ , (4.5)

is a subsolution of equation (1.1) in D+
σ .

Now let u be an arbitrary solution of problem (1.1), and let M > 0 be sufficiently large
such that

u(x) ≤ M + on d(x) = 2δ1ε and uε(x) ≤ u(x) + M on d(x) = 2δ1ε – σ . (4.6)
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We observe that ūε(x) → ∞ as d1(x) → σ , and u|∂Ω = +∞ > uε|∂Ω . It follows from
Lemma 4.1 (the weak comparison principle) that

u ≤ M + ūε in D–
σ and uε ≤ M + u in D+

σ .

Hence, by letting σ → 0, we have, for x ∈ Ω2δ1ε
,

A2 – ε –
M(– ln(d(x)))β

A1φ(K(d(x)))
≤ (

– ln
(
d(x)

))β

(
u(x)

A1φ(K(d(x)))
– 1

)

and

(
– ln

(
d(x)

))β

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A2 + ε +

M(– ln(d(x)))β

A1φ(K(d(x)))
.

Consequently, by Lemma 3.6(vi)

A2 – ε ≤ lim
d(x)→0

inf
(
– ln

(
d(x)

))β

(
u(x)

A1φ(K(d(x)))
– 1

)
;

lim
d(x)→0

sup
(
– ln

(
d(x)

))β

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A2 + ε.

Thus letting ε → 0, we obtain (1.8). The proof is finished. �

5 Proof of Theorem 1.2
In this section, we prove Theorem 1.2.

Let 0 < a0 < 1 and

w± = A1φ
(
K

(
d(x)

))(
1 + (A3 ± ε)

(
d(x)

)� )
, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±
(
d(x)

)
= A1φ

(
K

(
d(x)

))(
1 + λ±(A3 ± ε)

(
d(x)

)� )

such that, for x ∈ Ωδ1 ,

f
(
w±(x)

)
= f

(
A1φ

(
K

(
d(x)

)))
+ A1(A3 ± ε)φ

(
K

(
d(x)

))
f ′(Φ±

(
d(x)

))(
d(x)

)� .

Since f ∈ NRVσ , by Proposition 2.1 we obtain

lim
d(x)→0

f (A1φ(K(d(x))))
f (Φ±(d(x)))

= lim
d(x)→0

f ′(A1φ(K(d(x))))
f ′(Φ±(d(x)))

= 1.

Define r = d(x) and

I1(r) = r–� (p – 1)
(

1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

–
f (A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

)
;

I2±(r) = (A3 ± ε)(p – 1)
(

p – 1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ 2�
φ′(K(r))

φ′′(K(r))k(r)r



Mi Boundary Value Problems         (2019) 2019:66 Page 23 of 27

+
� (� – 1)φ(K(r))
φ′′(K(r))k2(r)r2

– A1
f ′(Φ±(r))

f ′(A1φ(K(r)))
φ(K(r))f ′(A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

+ (p – 2)
(

�φ(K(r))
φ′(K(r))k(r)r

+
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ �
φ(K(r))

φ′(K(r))k(r)
φ′(K(r))k′(r)

φ′′(K(r))k2(r)r

)
+ o

(
s�

)
)

;

I3±(x) = �d(x)
(

φ′(K(r))
φ′′(K(r))k(r)

(
r–� + (A3 ± ε)

)
+ � r–1(A3 ± ε)

φ(K(r))
φ′′(K(r))k2(r)

)
;

I4±(r) = (c ∓ a0ε)(p – 1)rθ

(
f (A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

r–� – (A3 ± ε)
f ′(Φ±(r))φ(K(r))
Ap–1

1 f (φ(K(r)))

)
.

By Lemmas 3.1, 3.6, and 3.8, combining with the choices of A1, A3 in Theorem 1.2, we see
the following.

Lemma 5.1 Under the hypotheses in Theorem 1.2,
(i) limr→0 I1(r) = (p–1)(σ+1–p)

σ+1 D2kHeaviside(θ – ς );
(ii) limr→0 I2±(r) = (A3 ± ε)(p – 1)χ ;

(iii) limd(x)→0 I3±(x) = 0;
(iv) limr→0 I4±(r) = (c ∓ a0ε)(p – 1) Ck (σ+1–p)+p

σ+1 Heaviside(ς – θ );
(v) limd(x)→0(I1(r) + I2±(r) + I3±(x) + I4±(r)) =

±ε(p – 1)(χ – a0
Ck (σ+1–p)+p

σ+1 Heaviside(ς – θ )),
where

χ =
σ + 1 – p
p(σ + 1)

(
Ck(σ + 1 – p)

(
� (� + 1)Ck – p(1 + �Ck)

)
– p2(1 + �Ck)

)
.

Proof of Theorem 1.2 Using a proof similar to that for Theorem 1.1, let

ūε = A1φ
(
K

(
d1(x)

))(
1 + (A3 + ε)

(
d1(x)

)� )
, x ∈ D–

σ . (5.1)

Then, by a direct calculation, we have, for x ∈ D–
σ ,

�ūε(x) – kp(d1(x)
)(

1 + (c – a0ε)
(
d1(x)

)θ)f
(
ūε(x)

)

= Ap–1
1

∣∣φ′(K(r)
)∣∣p–2

φ′′(K(r)
)
kp(r)r�

(
I1(r) + I2+(r) + I3+(x) + I4+(r)

)

≤ 0,

where r = d1(x), i.e., ūε is a supersolution of equation (1.1) in D–
σ .

In a similar way, we can show that

uε = A1φ
(
K

(
d2(x)

))(
1 + (A3 – ε)

(
d2(x)

)� )
, x ∈ D+

σ , (5.2)

is a subsolution of equation (1.1) in D+
σ .

Using a proof similar to that for Theorem 1.1, we can obtain, for x ∈ Ω2δ1ε
,

A3 – ε –
M(d(x))–�

A1φ(K(d(x)))
≤ (

d(x)
)–�

(
u(x)

A1φ(K(d(x)))
– 1

)



Mi Boundary Value Problems         (2019) 2019:66 Page 24 of 27

and

(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A3 + ε +

M(d(x))–�

A1φ(K(d(x)))
.

Consequently, by Lemma 3.6,

A3 – ε ≤ lim
d(x)→0

inf
(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
;

lim
d(x)→0

sup
(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A3 + ε.

Thus letting ε → 0, we obtain (1.9). The proof is finished. �

6 Proof of Theorem 1.3
In this section, we prove Theorem 1.3.

Let 0 < a0 < 1 and

w± = A1φ
(
K

(
d(x)

))(
1 + (A4 ± ε)

(
d(x)

)� )
, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±
(
d(x)

)
= A1φ

(
K

(
d(x)

))(
1 + λ±(A4 ± ε)

(
d(x)

)� )

such that, for x ∈ Ωδ1 ,

f
(
w±(x)

)
= f

(
A1φ

(
K

(
d(x)

)))
+ A1(A4 ± ε)φ

(
K

(
d(x)

))
f ′(Φ±

(
d(x)

))(
d(x)

)� .

Since f ∈ NRVp, by Proposition 2.1 we obtain

lim
d(x)→0

f (A1φ(K(d(x))))
f (Φ±(d(x)))

= lim
d(x)→0

f ′(A1φ(K(d(x))))
f ′(Φ±(d(x)))

= 1.

Define r = d(x) and

I1(r) = r–� (p – 1)
(

1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

–
f (A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

)
;

I2±(r) = (A4 ± ε)(p – 1)
(

p – 1 +
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ 2�
φ′(K(r))

φ′′(K(r))k(r)r

+
� (� – 1)φ(K(r))
φ′′(K(r))k2(r)r2

– A1
f ′(Φ±(r))

f ′(A1φ(K(r)))
φ(K(r))f ′(A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

+ (p – 2)
(

�φ(K(r))
φ′(K(r))k(r)r

+
φ′(K(r))k′(r)
φ′′(K(r))k2(r)

+ �
φ(K(r))

φ′(K(r))k(r)
φ′(K(r))k′(r)

φ′′(K(r))k2(r)r

)
+ o

(
s�

))
;



Mi Boundary Value Problems         (2019) 2019:66 Page 25 of 27

I3±(x) = �d(x)
(

φ′(K(r))
φ′′(K(r))k(r)

(
r–� + (A4 ± ε)

)
+ � r–1(A4 ± ε)

φ(K(r))
φ′′(K(r))k2(r)

)
;

I4±(r) = (c ∓ a0ε)(p – 1)rθ

(
f (A1φ(K(r)))

Ap–1
1 f (φ(K(r)))

r–� – (A4 ± ε)
f ′(Φ±(r))φ(K(r))
Ap–1

1 f (φ(K(r)))

)
.

By Lemmas 3.1, 3.6, and 3.9, combining with the choices of A1, A4, ξ2 in Theorem 1.3, we
see the following.

Lemma 6.1 Under the hypotheses in Theorem 1.3,
(i) limr→0 I1(r) = λ2, where

λ2 =

⎧
⎨

⎩

(p–1)(σ+1–p)
σ+1 D3kHeaviside(θ – ς ) := Θ2 if (i) or (ii) holds,

Θ2 – q3ξ2p(p – 1)( 1
(σ+1)(σ+1+η) +

ln p
p+1

(σ+1)(σ+1–p) ) if (iii) holds;

(ii) limr→0 I2±(r) = –(A4 ± ε) p(p–1)(σ+1–p)
σ+1 ;

(iii) limd(x)→0 I3±(x) = 0;
(iv) limr→0 I4±(r) = p(p–1)

σ+1 (c ∓ a0ε)Heaviside(ς – θ );
(v) limd(x)→0(I1(r) + I2±(r) + I3±(x) + I4±(r)) = ±ε

p(p–1)
σ+1 (σ + 1 – p + a0Heaviside(ς – θ )).

Proof of Theorem 1.3 Using a proof similar to that for Theorem 1.1, let

ūε = A1φ
(
K

(
d1(x)

))(
1 + (A4 + ε)

(
d1(x)

)� )
, x ∈ D–

σ . (6.1)

Then, by a direct calculation, we have for x ∈ D–
σ

�ūε(x) – kp(d1(x)
)(

1 + (c – a0ε)
(
d1(x)

)θ)f
(
ūε(x)

)

= Ap–1
1

∣
∣φ′(K(r)

)∣∣p–2
φ′′(K(r)

)
kp(r)r�

(
I1(r) + I2+(r) + I3+(x) + I4+(r)

)

≤ 0,

where r = d1(x), i.e., ūε is a supersolution of equation (1.1) in D–
σ .

In a similar way, we can show that

uε = A1φ
(
K

(
d2(x)

))(
1 + (A4 – ε)

(
d2(x)

)� )
, x ∈ D+

σ , (6.2)

is a subsolution of equation (1.1) in D+
σ .

Using a proof similar to that for Theorem 1.1, we can obtain, for x ∈ Ω2δ1ε
,

A4 – ε –
M(d(x))–�

A1φ(K(d(x)))
≤ (

d(x)
)–�

(
u(x)

A1φ(K(d(x)))
– 1

)

and

(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A4 + ε +

M(d(x))–�

A1φ(K(d(x)))
.

Consequently, by Lemma 3.6 and 0 < � < 1,

A4 – ε ≤ lim
d(x)→0

inf
(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
;
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lim
d(x)→0

sup
(
d(x)

)–�

(
u(x)

A1φ(K(d(x)))
– 1

)
≤ A4 + ε.

Thus letting ε → 0, we obtain (1.9). The proof is finished. �
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