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Abstract
In this paper, we consider the blow-up result of solution for a quasilinear viscoelastic
wave equation with strong damping and boundary nonlinear damping. We prove a
finite time blow-up result of solution with positive initial energy as well as nonpositive
initial energy under suitable conditions on the initial data and positive function g.
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1 Introduction
In this paper we investigate a blow-up result for the following quasilinear viscoelastic wave
equation:

|ut|ρutt – �u +
∫ t

0
g(t – s)�u(s) ds – �ut = 0, in Ω × (0,∞), (1.1)

u(x, t) = 0, on Γ0 × [0,∞), (1.2)

∂u
∂ν

+
∂ut

∂ν
–

∫ t

0
g(t – s)

∂u
∂ν

(s) ds + f (ut) = |u|p–2u, on Γ1 × [0,∞), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω , (1.4)

where Ω ⊂ R
n is a bounded domain with sufficiently smooth boundary ∂Ω = Γ0 ∪ Γ1,

Γ0 ∩ Γ1 = ∅, where Γ0 and Γ1 are measurable over ∂Ω , ν is the unit outward normal to
∂Ω , and g is a positive function.

For the case of ρ = 0, problem (1.1)–(1.4) arises in the theory of viscoelasticity and de-
scribes the spread of strain waves in a viscoelastic configuration [1–3]. Messaoudi [4] stud-
ied the following initial-boundary value problem:

⎧⎨
⎩

utt – �u +
∫ t

0 g(t – s)�u(s) ds + a|ut|m–2ut = b|u|p–2u, in Ω × (0,∞),

u(x, t) = 0, on ∂Ω × [0,∞),

where m ≥ 1, p > 2, a, b > 0 are constants and g : R+ → R
+ is a nonincreasing function.

Under suitable conditions on g , he proved that any weak solution with negative initial
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energy blows up in finite time if p > m. He [5] also extended the blow-up result to certain
solutions with positive initial energy. Song and Zhong [6] considered the viscoelastic wave
equation with strong damping:

⎧⎨
⎩

utt – �u +
∫ t

0 g(t – s)�u(s) ds – �ut = |u|p–2u, in Ω × [0, T],

u(x, t) = 0, x ∈ ∂Ω .

Recently, Park et al. [7] showed the blow-up result of solution for the following viscoelastic
wave equation with nonlinear damping:

⎧⎨
⎩

utt – �u +
∫ t

0 g(t – s)�u(s) ds + h(ut) = |u|p–2u, in Ω × (0,∞),

u(x, t) = 0, on ∂Ω × (0,∞).

They obtained the blow-up of solution with positive initial energy as well as nonpositive
initial energy under a weaker assumption on the damping term. Liu and Yu [8] studied the
following viscoelastic wave equation with boundary damping and source terms:

⎧⎪⎪⎨
⎪⎪⎩

utt – �u +
∫ t

0 g(t – s)�u(s) ds = 0, in Ω × (0,∞),

u(x, t) = 0, on Γ0 × [0,∞),
∂u
∂ν

–
∫ t

0 g(t – s) ∂u
∂ν

(s) ds + |ut|m–2ut = |u|p–2u, on Γ1 × [0,∞).

They proved the blow-up result of solutions with nonpositive initial energy as well as pos-
itive initial energy for both the linear and nonlinear damping cases. In the absence of the
viscoelastic term (g = 0), the related problem has been extensively investigated, and re-
sults concerning the global existence of solution and nonexistence have been studied (see
[9–14]).

For the case of ρ > 0, Cavalcanti et al. [15] considered the following problem:

⎧⎨
⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – s)�u(s) ds – γ�ut = 0, in Ω × (0,∞),

u(x, t) = 0, on ∂Ω × (0,∞).

They showed a global existence result for γ ≥ 0 and an exponential decay result for γ > 0.
In the case of γ = 0, Liu [16] proved the nonlinear viscoelastic problem:

⎧⎨
⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – s)�u(s) ds = b|u|p–2u, in Ω × (0,∞),

u(x, t) = 0, on ∂Ω × (0,∞).

He discussed the general decay result for the global solution and the finite time blow-up
of solution. In the absence of the dispersion term –�utt , Song [17] investigated the nonex-
istence of global solutions with positive initial energy for the viscoelastic wave equation
with nonlinear damping:

⎧⎨
⎩

|ut|ρutt – �u +
∫ t

0 g(t – s)�u(s) ds + |ut|m–2ut = |u|p–2u, in Ω × [0, T],

u(x, t) = 0, x ∈ ∂Ω .
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Recently, Hao and Wei [18] established the blow-up result of solution with negative initial
energy and some positive initial energy for the quasilinear viscoelastic wave equation with
strong damping:

⎧⎨
⎩

|ut|ρutt – �u +
∫ t

0 g(t – s)�u(s) ds – �ut = |u|p–2u, in Ω × (0,∞),

u(x, t) = 0, on ∂Ω × (0,∞).

To our knowledge, there are few blow-up results of solution for quasilinear viscoelastic
wave equation with boundary nonlinear damping and source terms. Motivated by the
previous work, we study the blow-up of solution with nonpositive initial energy as well
as positive initial energy for the quasilinear viscoelastic wave equation with strong damp-
ing and boundary weak damping.

This paper is organized as follows. In Sect. 2, we recall the notation, hypotheses, and
some necessary preliminaries. In Sect. 3, we prove the blow-up of solution for (1.1)–(1.4).

2 Preliminaries
In this section we give notations, hypotheses, and some lemmas needed in our main result.

We impose the assumptions for problem (1.1)–(1.4):
(H1) Hypotheses on g

The kernel g : [0,∞) → [0,∞) is a nonincreasing and differentiable function sat-
isfying

1 –
∫ ∞

0
g(s) ds := l > 0. (2.1)

(H2) Hypotheses on f
Let f : R → R be a nondecreasing C1 function with f (0) = 0. Assume that there

exists a strictly increasing and odd function ξ : [–1, 1] →R such that

∣∣ξ (s)
∣∣ ≤ ∣∣f (s)

∣∣ ≤ ∣∣ξ–1(s)
∣∣ for |s| ≤ 1, (2.2)

a1|s|m–1 ≤ ∣∣f (s)
∣∣ ≤ a2|s|m–1 for |s| > 1, (2.3)

where a1, a2 are positive constants and ξ–1 represents the inverse function of ξ .
(H3) Hypotheses on p, m, and ρ

2 < m, 2 < p if n = 1, 2, 2 < m, p ≤ 2(n – 1)
n – 2

if n ≥ 3, (2.4)

0 < ρ if n = 1, 2, 0 < ρ ≤ 2
n – 2

if n ≥ 3. (2.5)

As usual, (·, ·) and ‖ · ‖p denote the inner product in the space L2(Ω) and the norm of the
space Lp(Ω), respectively. For brevity, we denote ‖ ·‖2 by ‖ ·‖. We introduce the notations:

(u, v)Γ1 =
∫

Γ1

u(x)v(x) dΓ , ‖ · ‖q,Γ1 = ‖ · ‖Lq(Γ1), 1 ≤ q ≤ ∞,

the Hilbert space

V =
{

u ∈ H1(Ω) : u|Γ0 = 0
}
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(u|Γ0 is the trace sense), endowed the equivalent norm ‖∇u‖. We recall the trace Sobolev
embedding

V ↪→ Lq(Γ1) for 2 ≤ q < r =
2(n – 1)
(n – 2)

and the embedding inequality

‖v‖q,Γ1 ≤ B‖∇v‖ for v ∈ V , (2.6)

where B > 0 is the optimal constant. We define the energy associated with problem (1.1)–
(1.4) by

E(t) =
1

ρ + 2
∥∥ut(t)

∥∥ρ+2
ρ+2 +

1
2

(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2

+
1
2

(g ◦ ∇u)(t) –
1
p
∥∥u(t)

∥∥p
p,Γ1

, (2.7)

where (g ◦ ∇u)(t) =
∫ t

0 g(t – s)‖∇u(t) – ∇u(s)‖2 ds. It is easy to find that

E′(t) = –
(
f
(
ut(t)

)
, ut(t)

)
Γ1

+
1
2
(
g ′ ◦ ∇u

)
(t) –

g(t)
2

∥∥∇u(t)
∥∥2 – ‖∇ut‖2 ≤ 0. (2.8)

Therefore, E is a nonincreasing function.
Next, we define the functionals:

I(t) =
(

1 –
∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t) –

∥∥u(t)
∥∥p

p,Γ1
,

H(t) =
1
2

[(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t)

]
–

1
p
∥∥u(t)

∥∥p
p,Γ1

.

Similar as in [8], for t ≥ 0, we define

h(t) = inf
u∈V ,u�=0

sup
λ≥0

H(λu).

Then, we have

0 < h0 ≤ h(t) ≤ sup
λ≥0

H(λu) for t ≥ 0,

where

h0 =
p – 2

2p

(
l

B2

)p/(p–2)

,

sup
λ≥0

H(λu) =
p – 2

2p

( (1 –
∫ t

0 g(s) ds)‖∇u(t)‖2 + (g ◦ ∇u)(t)
‖u(t)‖2

p,Γ1

)p/(p–2)

.
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Lemma 2.1 (Lemma 4.1 of [8]) Suppose that (H1)–(H3) hold. For any fixed number δ < 1,
assume that (u0, u1) ∈ V × L2(Ω) and satisfy

I(0) < 0, E(0) < δh0. (2.9)

Assume further that g satisfies

∫ ∞

0
g(s) ds <

p – 2
p – 2 + 1

[(1–δ̂)2(p–2)+2(1–δ̂)]

, (2.10)

where δ̂ = max{0, δ}. Then we have I(t) < 0 for all t ∈ [0, T), and

h0 <
p – 2

2p

[(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t)

]

<
p – 2

2p
∥∥u(t)

∥∥p
p,Γ1

, t ∈ [0, T). (2.11)

Throughout this paper, we define

K(t) = δ̂h0 – E(t), (2.12)

which, from (2.8), is an increasing function. Using (2.7), (2.9), and (2.11), we see that

0 < K(0) ≤ K(t) ≤ δ̂h0 +
1
p
∥∥u(t)

∥∥p
p,Γ1

≤ p0
∥∥u(t)

∥∥p
p,Γ1

, t ∈ [0, T), (2.13)

where p0 = (p–2)δ̂
2p + 1

p .
Moreover, similar as in [5], we can show the following lemma which is needed later.

Lemma 2.2 Let the conditions of Lemma 2.1 hold. Then the solution u of problem (1.1)–
(1.4) satisfies

∥∥u(t)
∥∥s

p,Γ1
≤ C0

∥∥u(t)
∥∥p

p,Γ1
, t ∈ [0, T), for any 2 ≤ s ≤ p, (2.14)

where C0 is a positive constant.

Proof If ‖u(t)‖p,Γ1 ≥ 1, then ‖u(t)‖s
p,Γ1

≤ ‖u(t)‖p
p,Γ1

.
If ‖u(t)‖p,Γ1 ≤ 1, then

∥∥u(t)
∥∥s

p,Γ1
≤ ∥∥u(t)

∥∥2
p,Γ1

≤ B2∥∥∇u(t)
∥∥2,

where we used (2.6). Then there exists a positive constant C1 = max{1, B2} such that

∥∥u(t)
∥∥s

p,Γ1
≤ C1

(∥∥u(t)
∥∥p

p,Γ1
+

∥∥∇u(t)
∥∥2) for any 2 ≤ s ≤ p. (2.15)

By (2.1), (2.7), (2.12), and (2.13), we get

l
2
∥∥∇u(t)

∥∥2 ≤ 1
2

(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2
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≤ δ̂h0 – K(t) –
1

ρ + 2
∥∥ut(t)

∥∥ρ+2
ρ+2 –

1
2

(g ◦ ∇u)(t) +
1
p
∥∥u(t)

∥∥p
p,Γ1

≤ δ̂h0 +
1
p
∥∥u(t)

∥∥p
p,Γ1

. (2.16)

Using (2.13), (2.15), and (2.16), we have the desired result (2.14). �

We state the well-posedness which can be established by the arguments of [5, 19–21].

Theorem 2.1 Assume (H1)–(H3) hold. Then, for every (u0, u1) ∈ V × L2(Ω), there exists a
unique local solution in the class

u ∈ C
(
[0, T); V

)
, ut ∈ C

(
[0, T); L2(Ω)

) ∩ Lm(
Γ1 × [0, T)

)
for some T > 0.

3 A blow-up result
To show the blow-up result for solutions with nonpositive initial energy as well as positive
initial energy, we use the similar method of [8]. Our main result reads as follows.

Theorem 3.1 Let (H1)–(H3) hold and p > m, and the conditions of Lemma 2.1 hold. More-
over, we assume

ξ–1(1) <
(

θ δ̂h0pη

(p – 1)|Γ1|
) p–1

p
, (3.1)

where 0 < θ < min{2c1, 2c2}, 0 < η < θ
1

p–1 , and c1 and c2 will be specified later. Then the
solution of problem (1.1)–(1.4) blows up in finite time.

Proof To show this theorem, we use the idea given in [4, 5]. We assume that there exists
some positive constant M such that, for t > 0, the solution u(t) of (1.1)–(1.4) satisfies

∥∥ut(t)
∥∥ρ+2

ρ+2 +
∥∥∇u(t)

∥∥2 +
∥∥u(t)

∥∥p
p,Γ1

≤ M. (3.2)

Let us consider the following function:

L(t) = K1–σ (t) +
ε

ρ + 1

∫
Ω

∣∣ut(t)
∣∣ρut(t)u(t) dx +

ε

2
∥∥∇u(t)

∥∥2, ε > 0, (3.3)

where

0 < σ < min

{
1,

1
ρ + 2

,
p – m

p(m – 1)

}
. (3.4)

From (1.1)–(1.3), we obtain

L′(t) = (1 – σ )K–σ (t)K ′(t) +
ε

ρ + 1
∥∥ut(t)

∥∥ρ+2
ρ+2 – ε

∥∥∇u(t)
∥∥2

+ ε

∫ t

0
g(t – s)

(∇u(s),∇u(t)
)

ds – ε
(
f
(
ut(t)

)
, u(t)

)
Γ1

+ ε
∥∥u(t)

∥∥p
p,Γ1

. (3.5)
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Using Young’s inequality, we get

∫ t

0
g(t – s)

(∇u(s),∇u(t)
)

ds

=
∫ t

0
g(t – s)

∥∥∇u(t)
∥∥2 ds +

∫ t

0
g(t – s)

(∇u(s) – ∇u(t),∇u(t)
)

ds

≥
(

1 –
1

4τ

)∫ t

0
g(s) ds

∥∥∇u(t)
∥∥2 – τ (g ◦ ∇u)(t) (3.6)

for some number τ > 0. By (3.5) and (3.6), we have

L′(t) ≥ (1 – σ )K–σ (t)K ′(t) +
ε

ρ + 1
∥∥ut(t)

∥∥ρ+2
ρ+2 – ε

∥∥∇u(t)
∥∥2

+ ε

(
1 –

1
4τ

)∫ t

0
g(s) ds

∥∥∇u(t)
∥∥2

– ετ (g ◦ ∇u)(t) – ε
(
f
(
ut(t)

)
, u(t)

)
Γ1

+ ε
∥∥u(t)

∥∥p
p,Γ1

. (3.7)

Applying (2.7) and (2.12) to the last term ‖u(t)‖p
p,Γ1

in the right-hand side of (3.7), we find
that

L′(t) ≥ (1 – σ )K–σ (t)K ′(t) +
ε

ρ + 1
∥∥ut(t)

∥∥ρ+2
ρ+2 – ε

∥∥∇u(t)
∥∥2

+ ε

(
1 –

1
4τ

)∫ t

0
g(s) ds

∥∥∇u(t)
∥∥2 – ετ (g ◦ ∇u)(t) – ε

(
f
(
ut(t)

)
, u(t)

)
Γ1

+ ε

(
pK(t) +

p
ρ + 2

∥∥ut(t)
∥∥ρ+2

ρ+2 +
p
2

(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2

+
p
2

(g ◦ ∇u)(t) – pδ̂h0

)

= (1 – σ )K–σ (t)K ′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2

+ ε

(
p
2

– τ

)
(g ◦ ∇u)(t) + εpK(t) – ε

(
f
(
ut(t)

)
, u(t)

)
Γ1

+ ε

{(
p
2

– 1
)

–
(

p
2

– 1 +
1

4τ

)∫ t

0
g(s) ds

}∥∥∇u(t)
∥∥2 – εpδ̂h0.

From (2.11), we see that

L′(t) ≥ (1 – σ )K–σ (t)K ′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2

+ ε

[
(1 – τ ) + (1 – δ̂)

(
p
2

– 1
)]

(g ◦ ∇u)(t) + εpK(t) – ε
(
f
(
ut(t)

)
, u(t)

)
Γ1

+ ε

[
(1 – δ̂)

(
p
2

– 1
)

–
{

(1 – δ̂)
(

p
2

– 1
)

+
1

4τ

}∫ t

0
g(s) ds

]∥∥∇u(t)
∥∥2 (3.8)

for some τ with 0 < τ < 1 + (1 – δ̂)( p
2 – 1). Using (2.10), (3.8) can be rewritten by

L′(t) ≥ (1 – σ )K–σ (t)K ′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2

+ εc1(g ◦ ∇u)(t) + εc2
∥∥∇u(t)

∥∥2 + εpK(t) – ε
(
f
(
ut(t)

)
, u(t)

)
Γ1

, (3.9)
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where

c1 = (1 – τ ) + (1 – δ̂)
(

p
2

– 1
)

> 0,

and

c2 = (1 – δ̂)
(

p
2

– 1
)

–
{

(1 – δ̂)
(

p
2

– 1
)

+
1

4τ

}∫ t

0
g(s) ds > 0.

Let us put Γ11 = {x ∈ Γ1 : |ut(x, t)| ≤ 1} and Γ12 = {x ∈ Γ1 : |ut(x, t)| > 1}. Then we obtain
the inequalities which are given in [21]:

∫
Γ11

f
(
ut(x, t)

)
u(x, t) dx ≤ ηp–1

p
∥∥u(t)

∥∥p
p,Γ1

+
(p – 1)|Γ1|

pη

(
ξ–1(1)

) p
p–1 , η > 0,

and
∫

Γ12

f
(
ut(x, t)

)
u(x, t) dx ≤ μm

m
∥∥u(t)

∥∥m
p,Γ1

+
(m – 1)
mμ

m
m–1

K ′(t), μ > 0.

Inserting these into (3.9), we obtain

L′(t) ≥
{

(1 – σ )K–σ (t) –
ε(m – 1)
mμ

m
m–1

}
K ′(t)

+ ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2 + εc1(g ◦ ∇u)(t)

+ εc2
∥∥∇u(t)

∥∥2 + εpK(t) –
εηp–1

p
∥∥u(t)

∥∥p
p,Γ1

–
ε(p – 1)|Γ1|

pη

(
ξ–1(1)

) p
p–1 –

εμm

m
∥∥u(t)

∥∥m
p,Γ1

. (3.10)

Adding and subtracting εθK(t) in the right-hand side of (3.10) and applying (2.7) and
(2.12), we get

L′(t) ≥
{

(1 – σ )K–σ (t) –
ε(m – 1)
mμ

m
m–1

}
K ′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

–
θ

ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2

+ ε

(
c1 –

θ

2

)
(g ◦ ∇u)(t) + ε

{
c2 –

θ

2

(
1 –

∫ t

0
g(s) ds

)}∥∥∇u(t)
∥∥2 + ε(p – θ )K(t)

+ ε

(
θ

p
–

ηp–1

p

)∥∥u(t)
∥∥p

p,Γ1
–

εμm

m
∥∥u(t)

∥∥m
p,Γ1

+ εθ δ̂h0

–
ε(p – 1)|Γ1|

pη

(
ξ–1(1)

) p
p–1 . (3.11)

Now, we choose μ = (kK–σ (t))– m–1
m , k > 0 will be specified later. Using (2.13), (2.14), and

(3.4), the seventh term in the right-hand side of (3.11) is estimated as

–
εμm

m
∥∥u(t)

∥∥m
p,Γ1

= –
εk1–m

m
Kσ (m–1)(t)

∥∥u(t)
∥∥m

p,Γ1

≥ –
εk1–m

m
pσ (m–1)

0
∥∥u(t)

∥∥σp(m–1)+m
p,Γ1

≥ –εC2k1–m∥∥u(t)
∥∥p

p,Γ1
, (3.12)
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where C2 = C0pσ (m–1)
0
m . From (3.11) and (3.12), we obtain

L′(t) ≥
{

(1 – σ ) –
εk(m – 1)

m

}
K–σ (t)K ′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

–
θ

ρ + 2

)∥∥ut(t)
∥∥ρ+2

ρ+2

+ ε

(
c1 –

θ

2

)
(g ◦ ∇u)(t) + ε

(
c2 –

θ

2

)∥∥∇u(t)
∥∥2

+ ε

(
θ

p
–

ηp–1

p
– C2k1–m

)∥∥u(t)
∥∥p

p,Γ1

+ ε(p – θ )K(t) + εθ δ̂h0 –
ε(p – 1)|Γ1|

pη

(
ξ–1(1)

) p
p–1 . (3.13)

We take θ such that

0 < θ < min{2c1, 2c2}, (3.14)

then we can choose η > 0 sufficiently small so that θ – ηp–1 > 0. And then, we select k > 0
large enough such that

θ

p
–

ηp–1

p
– C2k1–m > 0,

and then take ε > 0 with

(1 – σ ) –
εk(m – 1)

m
> 0, K1–σ (0) +

ε

ρ + 1

∫
Ω

|u1|ρu1u0 dx +
ε

2
‖∇u0‖2 > 0.

Condition (3.1) gives that

θ δ̂h0 –
(p – 1)|Γ1|

pη

(
ξ–1(1)

) p
p–1 > 0. (3.15)

Using (3.13)–(3.15) and 2c1 < p, we have

L′(t) ≥ C
(∥∥ut(t)

∥∥ρ+2
ρ+2 +

∥∥∇u(t)
∥∥2 +

∥∥u(t)
∥∥p

p,Γ1
+ K(t)

)
, (3.16)

here and in the sequel C denotes a generic positive constant. By arguments similar to those
in [18], we get

(
L(t)

) 1
1–σ ≤ C

(
K(t) +

∥∥ut(t)
∥∥ρ+2

ρ+2 +
∥∥∇u(t)

∥∥2 +
∥∥u(t)

∥∥p
p,Γ1

)
. (3.17)

Indeed, using Young’s inequality and

∣∣∣∣
∫

Ω

∣∣ut(t)
∣∣ρut(t)u(t) dx

∣∣∣∣ ≤ ∥∥ut(t)
∥∥ρ+1

ρ+2

∥∥u(t)
∥∥

ρ+2,

we obtain

(∣∣∣∣
∫

Ω

∣∣ut(t)
∣∣ρut(t)u(t) dx

∣∣∣∣
) 1

1–σ ≤ C
(∥∥ut(t)

∥∥ ρ+1
1–σ γ

ρ+2 +
∥∥u(t)

∥∥ 1
1–σ β

ρ+2

)
, (3.18)



Lee et al. Boundary Value Problems         (2019) 2019:67 Page 10 of 11

where 1
γ

+ 1
β

= 1. By using (3.4) and taking γ = (1–σ )(ρ+2)
ρ+1 > 1, we get β

1–σ
= ρ+2

(1–σ )(ρ+2)–(ρ+1) .
Since K is an increasing function, from (2.13) and (3.2), we have

∥∥u(t)
∥∥ β

1–σ

ρ+2 ≤ B
β

1–σ
1

∥∥∇u(t)
∥∥ β

1–σ ≤ (B2
1M)

β
2(1–σ )

K(0)
K(t) ≤ p0(B2

1M)
β

2(1–σ )

K(0)
∥∥u(t)

∥∥p
p,Γ1

, (3.19)

where B1 is the embedding constant. Similarly, from (2.13) and (3.2), we obtain

∥∥∇u(t)
∥∥ 2

1–σ ≤ M
1

1–σ ≤ p0M 1
1–σ

K(0)
∥∥u(t)

∥∥p
p,Γ1

. (3.20)

From (3.3), (3.18)–(3.20), we find that (3.17) holds. Combining (3.16) and (3.17), we con-
clude that

L′(t) ≥ C
(
L(t)

) 1
1–σ for t ≥ 0.

Consequently, L(t) blows up in time T∗ ≤ 1–σ

cσ (L(0))
σ

1–σ
. Furthermore, we have

lim
t→T∗–

(∥∥ut(t)
∥∥ρ+2

ρ+2 +
∥∥∇u(t)

∥∥2 +
∥∥u(t)

∥∥p
p,Γ1

)
= ∞.

This leads to a contradiction with (3.2). Thus the solution of (1.1)–(1.4) blows up in finite
time. �

4 Conclusions
In this paper, we study the blow-up of solutions for the quasilinear viscoelastic wave equa-
tion with strong damping and boundary nonlinear damping. In recent years, there has
been published much work concerning the wave equation with nonlinear boundary damp-
ing. But as far as we know, there was no blow-up result of solutions to the viscoelastic
wave equation with nonlinear boundary damping and source terms. Therefore, we prove
a finite time blow-up result of solution with positive initial energy as well as nonpositive
initial energy. Moreover, we generalize the earlier result under a weaker assumption on
the damping term.
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