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Abstract
This paper studies the Cauchy problem to a class of coupled nonlinear parabolic
systems and investigates the asymptotic behavior of solutions to the problem. The
blow-up theorem of Fujita type is established by the integral estimation and suitable
supersolutions. Moreover, the critical Fujita exponent determined by the diffusion and
the spatial dimension is given.
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1 Introduction
We investigate the asymptotic behavior of solutions to the Cauchy problem of the coupled
nonlinear parabolic systems by the following initial value problem:

∂u
∂t

= �um + vp, x ∈R
n, t > 0, (1)

∂v
∂t

= �vm +
(|x| + 1

)2(q–p)/(p–m)uq, x ∈ R
n, t > 0, (2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈R
n, (3)

where q ≥ p > m > 1 and 0 ≤ u0, v0 ∈ C0(Rn) are nontrivial.
The related studies trace back to 1966, when Fujita [5] first investigated the Cauchy prob-

lem of the semilinear equation

∂u
∂t

= �u + up, x ∈R
n, t > 0,

and showed that the problem does not have any nontrivial global nonnegative solution if
1 < p < pc = 1 + 2/n, whereas there exist both nontrivial global (with small initial data) and
non-global nonnegative (with large initial data) solutions when p > pc = 1 + 2/n. Then, it
was proved that p = pc belongs to the blow-up case by Hayakawa [10], Weissler [11], and
Kobayashi [21]. We call pc the critical Fujita exponent and the similar results as the blow-
up theorem of Fujita type. There have been many various extensions of Fujita’s results
thence, such as different types of parabolic equations, kinds geometries of domains, dif-
ferent nonlinear reactions, nonhomogeneous boundaries, etc. One can refer to the survey
papers [1, 2, 4, 8, 9, 12, 13, 17, 22, 23, 25] and the references therein.
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The critical Fujita exponent for the Cauchy problem of

∂u
∂t

= �um + up, x ∈ R
n, t > 0

was investigated by Galaktionov et al. in [6, 7], where p > m > 1. It was proved that pc =
m + 2/n. The Cauchy problem

∂u
∂t

= �um + |x|σ up, x ∈R
n, t > 0

with σ > –2 was considered by Qi [15] who proved that pc = m + (2 + σ )/n. The authors in
[19] considered the Cauchy problem

|x|λ1
∂u
∂t

= �um + |x|λ2 up, x ∈R
n, t > 0, (4)

where p > m ≥ 1 and 0 ≤ λ1 ≤ λ2 < p(λ1 + 1) – 1. It was proved that if m < p ≤ pc = m +
(2 + λ2)/(n + λ1), then every nontrivial solution of equation (4) blows up in a finite time. If
p > pc, there exist both nontrivial global and non-global solutions, with small and large u0,
respectively, to the initial-value problem (4). Martynenko and Tedeev [14] considered the
Cauchy problem of the following equation with an inhomogeneous density and a source
term:

ρ(x)
∂u
∂t

= div
(
um–1|∇u|q–1∇u

)
+ up, x ∈R

n, t > 0,

where q > 0, m + q – 2 > 0, p > m + q – 1, and ρ(x) = |x|λ or ρ(x) = (|x| + 1)λ, λ ≤ 0. Under
some restrictions on the parameters, the authors researched if any nontrivial solution to
the Cauchy problem blows up in a finite time and established a sharp universal estimate
of the solution near the blow-up point.

In 1991, Escobedo and Herrero [3] investigated the following coupled systems:

∂u
∂t

= �u + vp,
∂v
∂t

= �v + uq, x ∈R
n, t > 0,

where p, q > 0, and showed that a Fujita curve is

(pq)c = 1 +
2
n

max{p + 1, q + 1}.

If 1 < pq ≤ (pq)c, any nonnegative nontrivial solution blows up in a finite time, whereas if
pq > (pq)c, there exist both nontrivial nonnegative global solution (with small initial data)
and nonnegative blow-up solution (with large initial data). In [16], the authors studied the
following Newton-filtration system:

∂u
∂t

= �um + vp,
∂v
∂t

= �vm + uq, x ∈R
n, t > 0 (5)

with 0 < m < 1, p, q ≥ 1, and pq > 1. It was proved that the critical Fujita exponent is

(pq)c = m2 +
2
n

max{p + m, q + m}.
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However, for the case m > 1, the Cauchy problem of (5) does not have any results. The
main difficulty is that it has a finite velocity of the disturbance propagation, but the prop-
agation velocities of two equations may be different, that is why we choose the two special
equations.

In this paper, it is proved that the critical Fujita exponent to the problem can be for-
mulated as pc = m + 2/n. The main methods are inspired by [15, 19, 20, 24, 26]. We
can prove that there are the blow-up solutions by using the integral estimation method.
And the existence of nontrivial global solutions is shown by constructing self-similar su-
persolutions. For the system coupled by reactions, solutions to one equation may influ-
ence another equation. In order to guarantee the existence of the self-similar supersolu-
tions, we set perturbation term (|x| + 1)μ. Specifically, this ensures that the self-similar
supersolutions to systems (1)–(3) of u(x, t) = (t + 1)–α1 U((t + 1)–β1 (|x| + 1)) and v(x, t) =
(t + 1)–α2 V ((t + 1)–β2 (|x| + 1)) have the same support, i.e., β1 = β2. The determination of μ

depends on the definition of the supersolutions. By simple calculation, α1 = α2 = 1/(p – 1),
β1 = β2 = (p – m)/(2(p – 1)), and μ = α(q – p)/β . Thus, we select (|x| + 1) to the power of
2(q – p)/(p – m).

The paper is organized as follows. Section 2 lists some preliminaries such as the defi-
nition of solution, the well-posedness of problem (1)–(3). Then, several useful auxiliary
lemmas are given. At last, we obtain the blow-up theorems of Fujita type for problem (1)–
(3).

2 Preliminaries
In the following, we define the subsolutions, supersolutions, as well as solutions to prob-
lem (1)–(3).

Definition 2.1 Let 0 < T ≤ +∞. A pair of nonnegative functions (u, v) is called a super
(sub) solution to problem (1)–(3) in (0, T) if

u, v ∈ C
(
[0, T), Lm

loc
(
R

n)) ∩ L∞
loc

(
0, T ; L∞(

R
n)),

and for any 0 ≤ ϕ, ψ ∈ C2,1(Rn × [0, T)) vanishing when t near T or |x| being sufficiently
large, the following integral identities are satisfied:

∫ T

0

∫

Rn
u(x, t)

∂ϕ

∂t
(x, t) dx dt +

∫ T

0

∫

Rn
um(x, t)�ϕ(x, t) dx dt

+
∫ T

0

∫

Rn
vp(x, t)ϕ(x, t) dx dt +

∫

Rn
u0(x)ϕ(x, 0) dx ≤ (≥)0,

∫ T

0

∫

Rn
v(x, t)

∂ψ

∂t
(x, t) dx dt +

∫ T

0

∫

Rn
vm(x, t)�ψ(x, t) dx dt

+
∫ T

0

∫

Rn

(|x| + 1
)μuq(x, t)ψ(x, t) dx dt +

∫

Rn
v0(x)ψ(x, 0) dx ≤ (≥)0,

where μ = 2(q – p)/(p – m). When it is both a supersolution and a subsolution, (u, v) is
called a solution to problem (1)–(3) in (0, T).
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Definition 2.2 A solution (u, v) to problem (1)–(3) is said to blow up in a finite time 0 <
T < +∞, which is called blow-up time, if

∥
∥u(·, t)

∥
∥

L∞(Rn) +
∥
∥v(·, t)

∥
∥

L∞(Rn) → +∞ as t → T–.

Otherwise, (u, v) is said to be global.

Next, we will give the existence theorem and the comparison principle to problem (1)–
(3).

Theorem 2.1 (Local existence theorem) When 0 ≤ u0, v0 ∈ L1
loc(Rn)∩L∞(Rn), the Cauchy

problem (1)–(3) admits at least one solution locally in time.

Theorem 2.2 (Comparison principle) For t ∈ (0, T), let (u∗, v∗) and (u∗∗, v∗∗) be two solu-
tions to system (1) and (2) with nonnegative initial data u∗

0(x), v∗
0(x) and u∗∗

0 (x), v∗∗
0 (x),

respectively. If (u∗
0(x), v∗

0(x)) ≤ (u∗∗
0 (x), v∗∗

0 (x)) a.e. in R
n, then (u∗, v∗) ≤ (u∗∗, v∗∗) a.e. in

R
n × (0, T).

As to the proofs of Theorems 2.1 and 2.2, one can see [18, 19] and the references therein.

3 Blow-up theorems of Fujita type
In this section, we establish the blow-up theorems of Fujita type for problem (1)–(3).

Firstly, we consider the case p < pc.

Theorem 3.1 Assume that m < p < pc = m + 2/n. Then any nontrivial solution to problem
(1)–(3) blows up in a finite time.

Proof Let

ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ |x| ≤ 1,

cos 1
2 (|x| – 1)π , 1 < |x| < 2,

0, |x| ≥ 2.

For l > 1, set

ψl(x) = ψ

(
x
l

)
, x ∈R

n.

Then

∣
∣∇ψl(x)

∣
∣ ≤ C

l
,

∣
∣�ψl(x)

∣
∣ ≤ C

l2 ,
|�ψl(x)|

ψl
≤ C

l2 , ∀x ∈ B2l\Bl,

where C > 0 is a constant independent of l, and Br is the ball in R
n with radius r and center

at the origin. Let (u, v) be a nontrivial solution to problem (1)–(3) in (0, +∞). Owing to
Definition 2.1, we can obtain, for any t ∈ (0, +∞),

d
dt

∫

Rn
u(x, t)ψl(x) dx ≥

∫

B2l

um(x, t)�ψl(x) dx +
∫

Rn
vp(x, t)ψl(x) dx,
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d
dt

∫

Rn
v(x, t)ψl(x) dx ≥

∫

B2l

vm(x, t)�ψl(x) dx +
∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

in the distribution sense. Thus,

d
dt

wl(t) ≥ –
∫

B2l

um(x, t)
∣∣�ψl(x)

∣∣dx + lθ
∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

– lθ
∫

B2l

vm(x, t)
∣
∣�ψl(x)

∣
∣dx +

∫

Rn
vp(x, t)ψl(x) dx, (6)

where

wl(t) =
∫

Rn

(
u(x, t) + lθ v(x, t)

)
ψl(x) dx, t > 0

and θ is to be determined. Using the Hölder inequality, one gets

∫

B2l

um(x, t)
∣
∣�ψl(x)

∣
∣dx

=
∫

B2l\Bl

um(x, t)
∣
∣�ψl(x)

∣
∣dx

≤
(∫

B2l\Bl

(|x| + 1
)–mμ/(q–m)∣∣�ψl(x)

∣∣q/(q–m)
ψ

–m/(q–m)
l (x) dx

)(q–m)/q

×
(∫

B2l\Bl

(|x| + 1
)μuq(x, t)ψl(x) dx

)m/q

≤ C′
1ln–2–(n+μ)m/q

(∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

)m/q

and
∫

B2l

vm(x, t)
∣∣�ψl(x)

∣∣dx

=
∫

B2l\Bl

vm(x, t)
∣
∣�ψl(x)

∣
∣dx

≤
(∫

B2l\Bl

∣∣�ψl(x)
∣∣p/(p–m)

ψ
–m/(p–m)
l (x) dx

)(p–m)/p

×
(∫

B2l\Bl

vp(x, t)ψl(x) dx
)m/p

≤ C′′
1 ln–2–mn/p

(∫

Rn
vp(x, t)ψl(x) dx

)m/p

,

where C′
1, C′′

1 > 0 independent of l. Combining these inequalities with (6), we obtain

d
dt

wl(t) ≥
(∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

)m/q

×
(

lθ
(∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

)(q–m)/q

– C1ln–2–m(n+μ)/q
)
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+
(∫

Rn
vp(x, t)ψl(x) dx

)m/p

×
((∫

Rn
vp(x, t)ψl(x) dx

)(p–m)/p

– C1ln–2–mn/p+θ

)
(7)

with C1 = max{C′
1, C′′

1 }. It leads to

∫

Rn
u(x, t)ψl(x) dx ≤

(∫

Rn

(|x| + 1
)–μ/(q–1)

ψl(x) dx
)(q–1)/q

×
(∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

)1/q

and

∫

Rn
v(x, t)ψl(x) dx ≤

(∫

Rn
ψl(x) dx

)(p–1)/p(∫

Rn
vp(x, t)ψl(x) dx

)1/p

,

which imply that

∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx

≥

⎧
⎪⎪⎨

⎪⎪⎩

C′
2(

∫
Rn u(x, t)ψl(x) dx)ql–qn+n+μ, if – qn + n + μ < 0,

C3(
∫
Rn u(x, t)ψl(x) dx)q(ln l)–(q–1), if – qn + n + μ = 0,

C4(
∫
Rn u(x, t)ψl(x) dx)q, if – qn + n + μ > 0

(8)

and

∫

Rn
vp(x, t)ψl(x) dx ≥ C′′

2 l–np+n
(∫

Rn
v(x, t)ψl(x) dx

)p

, (9)

where C′
2, C′′

2 , C3, C4 > 0 are the constants independent of l.
For the case –qn + n + μ < 0, one can select

θ =
q – p
p + 1

n –
μ

p + 1
=

q – p
p + 1

(
n –

2
p – m

)
.

It follows from (7), (8), and (9) that

d
dt

wl(t) ≥
(

C′
2l–qn+n+μ

(∫

Rn
u(x, t)ψl(x) dx

)q)m/q(
–C1ln–2–m(n+μ)/q

+ C′(q–m)/q
2 l(–qn+n+μ)(q–m)/q+θ

(∫

Rn
u(x, t)ψl(x) dx

)q–m)

+
(

C′′
2 l–np+n

(∫

Rn
v(x, t)ψl(x) dx

)p)m/p(
–C1ln–2–mn/p+θ

+ C
′′(p–m)/p
2 l(–np+n)(p–m)/p

(∫

Rn
v(x, t)ψl(x) dx

)p–m)
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≥ –Cln–2–mn–(m–1)θwm
l (t) + C2l–qn+n+μ+θ

(∫

Rn
u(x, t)ψl(x) dx

)q

+ C2l–np+n–pθ

(∫

Rn
lθ v(x, t)ψl(x) dx

)p

, (10)

where C2 = min{C′
2, C′′

2 }, C = max{C1C′
2, C1C′′

2 }.
Set

Λ =
–p2qn – p2n + pqmn + pmn + 2pq – 2p2

(p + 1)(p – m)
+ n.

Note that –qn + n + μ + θ = –np + n – pθ = Λ. So, for any t > 0,

d
dt

wl(t) ≥ –Cln–2–mn–(m–1)θwm
l (t)

+ C2lΛ
((∫

Rn
u(x, t)ψl(x) dx

)q

+
(∫

Rn
lθ v(x, t)ψl(x) dx

)p)

≥ wm
l (t)

(
–Cln–2–mn–(m–1)θ + 2–pC2lΛ · min

{
wp–m

l (t), wq–m
l (t)

})
. (11)

Owing to p < pc, we get

n – 2 – mn – (m – 1)θ < Λ.

Recalling wl(0) is a nondecreasing function of l ∈ (0, +∞) with sup{wl(0) : l ∈ (0, +∞)} > 0,
we have

Cln–2–mn–(m–1)θ ≤2–(p+1)C2lΛ · min
{

wp–m
l (0), wq–m

l (0)
}

. (12)

Then (11) and (12) yield

d
dt

wl(t) ≥ 2–(p+1)C2lΛ · min
{

wp
l (t), wq

l (t)
}

, t > 0.

Since q ≥ p > m > 1, there exists a constant 0 < T < +∞ such that

wl(t) =
∫

Rn

(
u(x, t) + lθ v(x, t)

)
ψl(x) dx → +∞ as t → T–.

Owing to supp ψl(x) = B2l , we find that

∥∥u(·, t)
∥∥

L∞(Rn) +
∥∥v(·, t)

∥∥
L∞(Rn) → +∞ as t → T–,

that is, (u, v) blows up in a finite time.
For the case –qn + n + μ = 0, select θ = 0. It follows from (7), (8), and (9) that

d
dt

wl(t) ≥
(

C3(ln l)–(q–1)
(∫

Rn
u(x, t)ψl(x) dx

)q)m/q

×
(

–C1ln–2–m(n+μ)/q + C(q–m)/q
3 (ln l)–(q–1)(q–m)/q

(∫

Rn
u(x, t)ψl(x) dx

)q–m)
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+
(

C′′
2 l–np+n

(∫

Rn
v(x, t)ψl(x) dx

)p)m/p

×
(

–C1ln–2–mn/p

+
(
C′′

2
)(p–m)/pl(–np+n)(p–m)/p

(∫

Rn
v(x, t)ψl(x) dx

)p–m)
. (13)

Owing to n–2–m(n+μ)/q < 0, n–2–mn/p < (–np+n)(p–m)/p, and wl is a nondecreasing
function of l, there exist δ′, δ′′ > 0, l � 1 such that

d
dt

wl(t) ≥ (
C3(ln l)–(q–1))m/q

(∫

Rn
u(x, t)ψl(x) dx

)m

×
(

1
2

C(q–m)/q
3 (ln l)–(q–1)(q–m)/q

(∫

Rn
u(x, t)ψl(x) dx

)q–m)

+
(
C′′

2 l–np+n)m/p
(∫

Rn
v(x, t)ψl(x) dx

)m

×
(

1
2
(
C′′

2
)(p–m)/pl(–np+n)(p–m)/p

(∫

Rn
v(x, t)ψl(x) dx

)p–m)

≥ δ′
(∫

Rn
u(x, t)ψl(x) dx

)q

+ δ′′
(∫

Rn
v(x, t)ψl(x) dx

)q

≥ 2–pδ · min
{

wp
l (t), wq

l (t)
}

,

where δ = min{δ′, δ′′}. Thus, there exists a constant 0 < T < +∞ such that (u, v) blows up
in a finite time.

For the case –qn + n + μ > 0, we still select θ = 0. By a similar argument as the case
–qn + n + μ = 0, we can also prove that any nontrivial solution blows up in a finite time. �

Turn to the case p > pc. To prove the existence of a nontrivial global solution to problem
(1)–(3), we research self-similar supersolutions to system (1) and (2) of the following form:

u(x, t) =
U((t + 1)–β (|x| + 1))

(t + 1)α
, v(x, t) =

V ((t + 1)–β (|x| + 1))
(t + 1)α

, (14)

where (x, t) ∈R
n × [0, +∞),

α =
1

p – 1
, β =

p – m
2(p – 1)

.

If U , V ∈ C1([0, +∞)) with Um, V m ∈ C1([0, +∞)) satisfy

(
Um)′′(r) +

n – 1
r

· |x| + 1
|x|

(
Um)′(r) + βrU ′(r) + αU(r) + V p(r) ≤ 0, (15)

(
V m)′′(r) +

n – 1
r

· |x| + 1
|x|

(
V m)′(r) + βrV ′(r) + αV (r) + rμUq(r) ≤ 0 (16)

for any r > 0, x ∈R
n, then (14) implies that (u, v) is a supersolution to system (1) and (2).
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Lemma 3.1 Let p > pc and

U(r) = V (r) =
(
η – Ar2)1/(m–1)

+ , r ≥ 0, (17)

where s+ = max{0, s} and η > 0 is sufficiently small, while

A =
m – 1

4m(p – 1)

(
1
n

+
p – m

2

)
.

Then there exists sufficiently small η > 0 such that (u, v) given by (14) and (17) is a super-
solution to the system of (1) and (2).

Proof A simple computation can lead to

(
Um)′′(r) +

n – 1
r

(
Um)′(r) + βrU ′(r) + αU(r)

=
(

2A
m – 1

(
2Am
m – 1

– β

)
r2U1–m(r) +

(
α –

2Amn
m – 1

))
U(r), 0 < r <

(
η

A

)1/2

.

By the definition of A, we choose η1 > 0 sufficiently small, and when 0 < η < η1, we obtain

(
Um)′′(r) +

n – 1
r

(
Um)′(r) + βrU ′(r) + αU(r) < 0, 0 < r <

(
η

A

)1/2

.

Owing to (Um)′(r) = – 2Amr
m–1 U(r) ≤ 0, then, for 0 < r < ( η

A )1/2,

(
Um)′′(r) +

n – 1
r

· |x| + 1
|x|

(
Um)′(r) + βrU ′(r) + αU(r)

=
(
Um)′′(r) +

n – 1
r

(
Um)′(r) + βrU ′(r) + αU(r) +

n – 1
r

· 1
|x|

(
Um)′(r) < 0. (18)

Similarly, for each 0 < η < η1, we have

(
V m)′′(r) +

n – 1
r

· |x| + 1
|x|

(
V m)′(r) + βrV ′(r) + αV (r) < 0, (19)

where 0 < r < ( η

A )1/2. The definitions of U , V imply that

rμUq–1(r) ≤ A–μ/2η[(p–1)(q–m)]/[(m–1)(p–m)], V p–1(r) ≤ η(p–1)/(m–1),

where 0 < r < ( η

A )1/2. Together with (18) and (19), for sufficiently small 0 < η2 < η1 and when
0 < η < η2 < η1, we get (15) and (16). Since U , V ∈ C1([0, +∞)), (u, v) is given by (14) and
(17) which is a supersolution to system (1) and (2). �

Theorem 3.2 Let p > pc. Then there exist both nontrivial global and blow-up solutions to
problem (1)–(3).

Proof The comparison principle and Lemma 3.1 yield that problem (1)–(3) with small
initial data admits a nontrivial global solution. Next, let us show the existence of a blow-
up solution to problem (1)–(3) with large initial data.
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Fix l > 0 and let (u, v) be the solution to problem (1)–(3). Set

w̃l(t) =
∫

Rn

(
u(x, t) + v(x, t)

)
ψl(x) dx, t ≥ 0.

From the first half of the proof of Theorem 3.1, we know that when –qn + n + μ < 0, we
use the Hölder inequality to get

d
dt

w̃l(t)

≥ –C1ln–2–mn
((∫

Rn
u(x, t)ψl(x) dx

)m

+
(∫

Rn
v(x, t)ψl(x) dx

)m)

+
∫

Rn

(|x| + 1
)μuq(x, t)ψl(x) dx +

∫

Rn
vp(x, t)ψl(x) dx

≥ –C1ln–2–mnw̃m
l (t) + C′

2l–qn+n+μ

(∫

Rn
u(x, t)ψl(x) dx

)q

+ C′′
2 l–np+n

(∫

Rn
v(x, t)ψl(x) dx

)p

≥ w̃m
l (t)

(
–C1ln–2–mn + 2–pC2 · min

{
w̃p–m

l (t), w̃q–m
l (t)

})
, t ≥ 0, (20)

where C2 = min{C′
2l–np+n, C′′

2 l–qn+n+μ} is a positive constant that depends only on n, p, q,
and l. If (u0, v0) is so large that

C1ln–2–mn ≤ 2–(p+1)C2 · min
{

w̃p–m
l (0), w̃q–m

l (0)
}

,

then (20) leads to

d
dt

w̃l(t) ≥ 2–(p+1)C2 · min
{

w̃p
l (t), w̃q

l (t)
}

, t > 0.

By the same method above, one can show that (u, v) must blow up in a finite time. Similarly,
we can prove that blow-up solutions to problem (1)–(3) with large initial data exist when
–qn + n + μ ≥ 0. �

Acknowledgements
The authors would like to thank the referees for their valuable comments and suggestions which improved the original
manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11571137, 11601182, and
11801211), by the Department of Science and Technology of Jilin Province (20180520213JH), and by the Education
Department of Jilin Province (JJKH20180114KJ).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed to each part of this study equally and approved the final version of the manuscript.



Leng et al. Boundary Value Problems         (2019) 2019:68 Page 11 of 11

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 November 2018 Accepted: 31 March 2019

References
1. Andreucci, D., Cirmi, G., Leonardi, S., Tedeev, A.: Large time behavior of solutions to the Neumann problem for a

quasilinear second order degenerate parabolic equation in domains with noncompact boundary. J. Differ. Equ. 174,
253–288 (2001)

2. Deng, K., Levine, H.: The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl. 243, 85–126
(2000)

3. Escobedo, M., Herrero, M.: Boundedness and blow up for a semilinear reaction–diffusion system. J. Differ. Equ. 89,
176–202 (1991)

4. Fira, M., Kawohl, B.: Large time behavior of solutions to a quasilinear parabolic equation with a nonlinear boundary
condition. Adv. Math. Sci. Appl. 11, 113–126 (2001)

5. Fujita, H.: On the blowing up of solutions of the Cauchy problem for ut =�u + u1+α . J. Fac. Sci., Univ. Tokyo, Sect. I 13,
109–124 (1966)

6. Galaktionov, V.: Blow-up for quasilinear heat equations with critical Fujita’s exponents. Proc. R. Soc. Edinb. A 124,
517–525 (1994)

7. Galaktionov, V., Kurdjumov, S., Mikhailov, A., Samarskii, A.: On unbounded solutions of the Cauchy problem for the
parabolic equation ∂u/∂ t = ∇(uσ∇u) + uβ . Dokl. Akad. Nauk SSSR 252, 1362–1364 (1980)

8. Guo, W., Lei, M.: Critical Fujita curves for a coupled reaction-convection-diffusion system with singular coefficients.
J. Jilin Univ. Sci. 54, 183–188 (2016)

9. Guo, W., Wang, X., Zhou, M.: Asymptotic behavior of solutions to a class of semilinear parabolic equations. Bound.
Value Probl. 2016, 68 (2016)

10. Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 49,
503–525 (1973)

11. Kobayashi, K., Siaro, T., Tanaka, H.: On the blowing up problem for semilinear heat equations. J. Math. Soc. Jpn. 29,
407–424 (1977)

12. Levine, H., Zhang, Q.: The critical Fujita number for a semilinear heat equation in exterior domains with
homogeneous Neumann boundary values. Proc. R. Soc. Edinb., Sect. A 130(3), 591–602 (2000)

13. Li, H., Wang, X., Nie, Y., He, H.: Asymptotic behavior of solutions to a degenerate quasilinear parabolic equation with a
gradient term. Electron. J. Differ. Equ. 2015, 295 (2015)

14. Martynenko, A., Tedeev, A.: Cauchy problem for a quasilinear parabolic equation with a source term and an
inhomogeneous density. Comput. Math. Math. Phys. 47(2), 238–248 (2007)

15. Qi, Y.: The critical exponents of parabolic equations and blow-up in R
n . Proc. R. Soc. Edinb., Sect. A 128(1), 123–136

(1998)
16. Qi, Y., Levine, H.: The critical exponent of degenerate parabolic systems. Z. Angew. Math. Phys. 44, 249–265 (1993)
17. Qi, Y., Wang, M.: Critical exponents of quasilinear parabolic equations. J. Math. Anal. Appl. 267, 264–280 (2002)
18. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser

Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (2007)
19. Wang, C., Zheng, S.: Critical Fujita exponents of degenerate and singular parabolic equations. Proc. R. Soc. Edinb.,

Sect. A 136(2), 415–430 (2006)
20. Wang, C., Zheng, S., Wang, Z.: Critical Fujita exponents of a class of quasilinear equations with homogeneous

Neumann boundary data. Nonlinearity 20, 1343–1359 (2007)
21. Weissler, F.: Existence and non-existence of global solutions for semilinear equation. Isr. J. Math. 6(1), 85–126 (2000)
22. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Methods Appl. Sci. 25, 911–925 (2002)
23. Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. World Scientific, River Edge (2001)
24. Zheng, S., Wang, C.: Large time behaviour of solutions to a class of quasilinear parabolic equations with convection

terms. Nonlinearity 21(9), 2179–2200 (2008)
25. Zhou, M., Li, H., Guo, W., Zhou, X.: Critical Fujita exponents to a class of non-Newtonian filtration equations with fast

diffusion. Bound. Value Probl. 2016, 146 (2016)
26. Zhou, Q., Nie, Y., Han, X.: Large time behavior of solutions to semilinear parabolic equations with gradient. J. Dyn.

Control Syst. 22(1), 191–205 (2016)


	Asymptotic behavior of solutions to a class of coupled nonlinear parabolic systems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Blow-up theorems of Fujita type
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


