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1 Introduction
In the past years, the conjugate boundary value problems at nonresonance have been stud-
ied by many authors [1–13]. The conjugate boundary value problems with specific con-
ditions at resonance have been also investigated (see [14–16] and references therein). For
example, in [14], the authors studied the following conjugate problem with boundary con-
ditions:

(–1)n–kϕ(n)(x) = f
(
x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)

)
, x ∈ [0, 1],

ϕ(i)(0) = ϕ(j)(1) = 0, 1 ≤ i ≤ k – 1, 0 ≤ j ≤ n – k – 1,

ϕ(0) =
∫ 1

0
ϕ(x) dA(x).

Du and Ge [15] investigated the existence of solutions for the (n – 1, 1) conjugate bound-
ary value problems at resonance

x(n)(t) = f
(
x, x(t), x′(t), . . . , x(n–1)(t)

)
+ e(t), a.e. t ∈ [0, 1],

x(0) =
m–2∑

i=1

αix(ξi), x′(0) = x′′(0) = · · · = x(n–2)(0) = 0, x(1) = x(η).
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Using Mawhin’s continuation theorem [17], Zhao and Liang [18] studied the existence
of solutions for the second-order nonlinear boundary value problem

⎧
⎨

⎩
x′′(t) = f (t, x(t), x′(t)), 0 < t < 1,

Γ1(x) = 0, Γ2(x) = 0,

where Γ1(x) and Γ2(x) are linear bounded operators. Their results generalize a number of
recent works such as multipoint and integral boundary value problems.

Motivated by the literature cited, we study the following conjugate boundary value prob-
lems with functional boundary conditions at resonance and dim Ker L = 1:

⎧
⎪⎪⎨

⎪⎪⎩

(–1)n–kϕ(n)(x) = f (x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)), x ∈ [0, 1],

ϕ(i)(0) = ϕ(j)(1) = 0, 0 ≤ i ≤ k – 1, 1 ≤ j ≤ n – k – 1,

Γ (ϕ(x)) = 0,

(1.1)

where 1 ≤ k ≤ n – 1, n ≥ 2, Γ : Cn–1[0, 1] → R is a linear bounded functional with reso-
nance condition Γ (Φ(x)) = 0, where

Φ(x) =
(n – 1)!

(k – 1)!(n – k – 1)!

∫ x

0
tk–1(1 – t)n–k–1 dt. (1.2)

This paper is a generalization of two-, three-, and multipoint integral boundary value
problems.

The framework of this paper is as follows. In Sect. 2, we give some notations and facts
of the coincidence degree theory. In Sect. 3, we investigate problem (1.1). In Sect. 4, we
give examples illustrating our main results.

2 Preliminaries
We give some theoretical foundations.

Definition 2.1 Let X and Y be real Banach spaces. A linear operator L : dom L ⊂ X → Y
is said to be a Fredholm operator of index zero if

(i) Im L is a closed subset of Y , and
(ii) dim Ker L = codim Im L < +∞.

Let L be a Fredholm operator of index zero. Let P : X → X and Q : Y → Y be continuous
projectors such that Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, and Y = Im L ⊕ Im Q.
It follows that L|dom L∩Ker P : dom L ∩ Ker P → Im L is reversible. We denote the inverse of
the mapping L|dom L∩Ker P by KP . Let Ω be an open bounded subset of X such that dom L ∩
Ω �= ∅. The mapping N : X → Y is called L-compact on Ω if QN(Ω) is bounded and KP(I –
Q)N : Ω → X is compact.

Theorem 2.2 (see [17] Mawhin continuation theorem) Let L : dom L ⊂ X → Y be a Fred-
holm operator of index zero, and let N : X → Y be L-compact on Ω . Assume that the fol-
lowing conditions are satisfied:

(i) Lx �= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂Ω] × (0, 1);
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(ii) Nx /∈ Im L for every x ∈ Ker L ∩ ∂Ω ;
(iii) deg(QN |Ker L,Ω ∩ Ker L, 0) �= 0, where Q : Y → Y is a continuous projection such

that Im L = Ker Q.
Then the equation Lx = Nx has at least one solution in dom L ∩ Ω .

Let X = Cn–1[0, 1] with norm ‖x‖ = max{‖x‖∞,‖x′‖∞, . . . ,‖x(n–1)‖∞}, where ‖x‖∞ =
maxt∈[0,1] |x(t)|, and let Y = L1[0, 1] with norm ‖u‖1 =

∫ 1
0 |u(t)|dt.

3 Solvability of problem (1.1)
We define the operator L by

Lϕ(x) = (–1)n–kϕ(n)(x)

with

dom L =
{
ϕ ∈ X : ϕ(i)(0) = ϕ(j)(1) = 0,

0 ≤ i ≤ k – 1, 1 ≤ j ≤ n – k – 1,ϕ(n) ∈ Y ,Γ
(
ϕ(x)

)
= 0

}
.

Define the operator N : X → Y as

(Nϕ)(x) = f
(
x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)

)
.

So, problem (1.1) becomes Lϕ = Nϕ.
To obtain our main results, we impose the following conditions:
(H1) Γ (

∫ 1
0 k(x, y) dy) �= 0, where

k(x, y) =

⎧
⎨

⎩

1
(k–1)!(n–k–1)!

∫ x(1–y)
0 tk–1(t + y – x)n–k–1 dt, 0 ≤ x ≤ y ≤ 1;

1
(k–1)!(n–k–1)!

∫ y(1–x)
0 tn–k–1(t + x – y)k–1 dt, 0 ≤ y ≤ x ≤ 1.

(3.1)

(H2) f : [0, 1] × R
n → R satisfies the Carathéodory conditions, that is, f (·, u) is measur-

able for each fixed u ∈R
n, and f (t, ·) is continuous for a.e. t ∈ [0, 1]. In addition, we

assume that sup{|f (t, x)| : x ∈ D0} < +∞ for any compact set D0 ∈R
n.

(H3) There exist functions r(x), qi(x) ∈ L1[0, 1] with
∑n

i=1 ‖qi‖1 < 1 such that

∣
∣f (x, y1, y2, . . . , yn)

∣
∣ ≤

n∑

i=1

qi(x)|yi| + r(x) for x ∈ [0, 1] and yi ∈R.

(H4) There exists a constant M > 0 such that if |ϕ(n–1)(x)| > M for all x ∈ [0, 1], then

Γ

(∫ 1

0
k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y), . . . ,ϕ(n–1)(y)

)
dy

)
�= 0.

(H5) There is a constant a0 > 0 such that if |c| > a0, then either

cΓ
(∫ 1

0
k(x, y)N

(
cΦ(y)

)
dy

)
< 0 (3.2)
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or

cΓ
(∫ 1

0
k(x, y)N

(
cΦ(y)

)
dy

)
> 0. (3.3)

We now state our main results.

Theorem 3.1 If (H1)–(H5) are satisfied, then the functional boundary value problem (1.1)
has at least one solution in X.

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2 Assume that (H1) holds. Then the operator L : dom L ⊂ X → Y is a Fredholm
operator of index zero, and the linear continuous projectors P : X → X and Q : Y → Y can
be defined by

(Pϕ)(x) = ϕ(1)Φ(x), Qu =
Γ (

∫ 1
0 k(x, y)u(y) dy)

Γ (
∫ 1

0 k(x, y) dy)
.

Furthermore, the linear operator KP = (L|dom L∩Ker P)–1 : Im L → dom L ∩ Ker P is defined as
follows:

(KPu)(x) =
∫ 1

0
k(x, y)u(y) dy.

Proof From (–1)n–kϕ(n)(x) = h1(x) and ϕ(i)(0) = 0, 0 ≤ i ≤ k – 1, we have

ϕ(x) =
n–1∑

m=k

am

m!
xm +

(–1)n–k

(n – 1)!

∫ x

0
(x – y)n–1h1(y) dy, 0 ≤ x ≤ 1. (3.4)

Now we will give Ker L and Im L.
Taking ϕ(x) ∈ dom L with Lϕ = 0, we obtain ϕ(x) =

∑n–1
m=k

am
m! xm. This, together with

ϕ(j)(1) = 0, 1 ≤ j ≤ n – k – 1, implies that [7]

ϕ(x) =
n–k–1∑

j=0

(n – 1)!(–1)j(k + j)!xk+j

(k – 1)!j!(n – k – j – 1)!(k + j)
ϕ(1)

=
(n – 1)!

(n – k – 1)!(k – 1)!

n–k–1∑

j=0

Cj
n–k–1(–1)jxk+j

k + j
ϕ(1). (3.5)

Since
∑n–k–1

j=0
Cj

n–k–1(–1)jxk+j

k+j =
∫ x

0 tk–1(1 – t)n–k–1 dt, we get

ϕ(x) = ϕ(1)
(n – 1)!

(k – 1)!(n – k – 1)!

∫ x

0
tk–1(1 – t)n–k–1 dt = ϕ(1)Φ(x).

It follows from Γ (Φ(x)) = 0 that Ker L = {cΦ(x), c ∈R}.
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To prove that

Im L =
{

u ∈ Y : Γ
(∫ 1

0
k(x, y)u(y) dy

)
= 0

}
,

take u ∈ Im L. Then there exists ϕ ∈ dom L such that u = Lϕ ∈ Y . From (3.5) and ϕ(j)(1) = 0,
1 ≤ j ≤ n – k – 1, we have

ϕ(x) = ϕ(1)Φ(x)

+
n–k–1∑

j=0

∫ 1

0

xk+j

(k – 1)!j!(n – k – j – 1)!

j∑

i=0

Ci
j (–1)j–iyn–k–1–j(1 – y)k+i

k + i
u(y) dy

+
∫ x

0

(–1)n–k

(n – 1)!
(x – y)n–1u(y) dy.

It follows from [7] and (3.5) that

n–k–1∑

j=0

∫ 1

0

xk+j

(k – 1)!j!(n – k – j – 1)!

j∑

i=0

Ci
j (–1)j–iyn–k–1–j(1 – y)k+i

k + i
u(y) dy

+
∫ x

0

(–1)n–k

(n – 1)!
(x – y)n–1u(y) dy =

∫ 1

0
k(x, y)u(y) dy.

So, we obtain

ϕ(x) = ϕ(1)Φ(x) +
∫ 1

0
k(x, y)u(y) dy. (3.6)

Furthermore, ϕ ∈ dom L implies Γ (ϕ(x)) = Γ (
∫ 1

0 k(x, y)u(y) dy) + ϕ(1)Γ (Φ(x)) = 0. This,
together with Γ (Φ(x)) = 0, means that Γ (

∫ 1
0 k(x, y)u(y) dy) = 0. So, we obtain that Im L ⊂

{u : Γ (
∫ 1

0 k(x, y)u(y) dy) = 0}.
On the other hand, if u ∈ Y satisfies Γ (

∫ 1
0 k(x, y)u(y) dy) = 0, then take

ϕ(x) =
∫ 1

0
k(x, y)u(y) dy.

Then we conclude that

Lϕ = (–1)n–kϕ(n)(x) = u(x),

ϕ(i)(0) = ϕ(j)(1) = 0, 0 ≤ i ≤ k – 1, 1 ≤ j ≤ n – k – 1,

and

Γ
(
ϕ(x)

)
= Γ

(∫ 1

0
k(x, y)u(y) dy

)
= 0,

that is, ϕ ∈ dom L, and hence u ∈ Im L. In conclusion,

Im L =
{

u : Γ
(∫ 1

0
k(x, y)u(y) dy

)
= 0

}
.
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Define the operators P : X → X and Q : Y → Y by

(Pϕ)(x) = ϕ(1)Φ(x), Qu =
Γ (

∫ 1
0 k(x, y)u(y) dy)

Γ (
∫ 1

0 k(x, y) dy)
.

Clearly, P and Q are projectors such that Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P
and Y = Im L ⊕ Im Q.

Obviously, Im L is a closed subspace of Y , and dim Ker L = codim Im L < +∞, that is, L is
a Fredholm operator of index zero.

We now prove that KPu ∈ dom L ∩ Ker P, u ∈ Im L.
For any u ∈ Im L, we have Γ (

∫ 1
0 k(x, y)u(y) dy) = 0. Since k(1, y) = 0, we have KPu(1) = 0,

that is, KPu(x) ∈ Ker P. In addition, it is easy to see that

(KPu)(i)(0) = 0, 0 ≤ i ≤ k – 1; (KPu)(j)(1) = 0, 1 ≤ j ≤ n – k – 1.

Therefore KPu ∈ dom L ∩ Ker P, u ∈ Im L.
Next, we will prove that KP is the inverse of L|dom L∩Ker P .
Since KPu(x) =

∫ 1
0 k(x, y)u(y) dy for u ∈ Im L, it is clear that

LKPu(x) = (–1)n–k
(∫ 1

0
k(x, y)u(y) dy

)(n)

= u(x).

For each v ∈ dom L ∩ Ker P, by (3.6) we get

KPLv(x) =
∫ 1

0
k(x, y)Lv(y) dy = v(x) – v(1)Φ(x) = v(x).

This implies that KPLv = v. So KP = (L|dom L∩Ker P)–1. The proof is completed. �

Lemma 3.3 N is L-compact on Ω if dom L ∩ Ω �= ∅, where Ω is a bounded open subset
of X.

Proof Based on (H3) and the definitions of Q, KP , and k(x, y), we can see that QN is
bounded and there exists g(x) ∈ L1[0, 1] such that |(I – Q)Nϕ| ≤ g(x), a.e. x ∈ [0, 1], ϕ ∈ Ω .
Hence KP(I – Q)N(Ω) is bounded. Now we will prove that KP(I – Q)N(Ω) is compact.

For 0 ≤ x1 < x2 ≤ 1 and ϕ ∈ Ω , we have

∣
∣(KP(I – Q)Nϕ

)(n–1)(x1) –
(
KP(I – Q)Nϕ

)(n–1)(x2)
∣
∣

=
∣
∣∣∣

(∫ 1

0
k(x, y)(I – Q)Nϕ(y) dy

)(n–1)

(x1) –
(∫ 1

0
k(x, y)(I – Q)Nϕ(y) dy

)(n–1)

(x2)
∣
∣∣∣

=
∣
∣∣
∣

∫ x1

0
(I – Q)Nϕ(y) dy –

∫ x2

0
(I – Q)Nϕ(y) dy

∣
∣∣
∣

=
∣∣∣
∣

∫ x2

x1

(I – Q)Nϕ(y) dy
∣∣∣
∣ ≤

∫ x2

x1

∣∣g(y)
∣∣dy.

Considering the absolute continuity of the integral of g(x), we know that {(KP(I –
Q)Nϕ)(n–1) : ϕ ∈ Ω} is equicontinuous on [0, 1]. Since KP(I – Q)N(Ω) ⊂ X is bounded,



Jiang et al. Boundary Value Problems         (2019) 2019:69 Page 7 of 11

{(KP(I – Q)Nϕ)(i) : ϕ ∈ Ω , i = 0, 1, . . . , n – 3, n – 2} are also equicontinuous on [0, 1] by the
mean value theorem. It follows from the Lebesgue dominated convergence theorem and
conditions (H2) and (H3) that KP(I – Q)N : Ω → X is a continuous operator. Therefore, by
the Ascoli–Arzelà theorem, KP(I – Q)N : Ω → X is compact. Thus N is L-compact. The
proof is completed. �

Lemma 3.4 The set

Ω1 =
{
ϕ ∈ dom L \ Ker L : Lϕ = λNϕ,λ ∈ [0, 1]

}

is bounded if (H1)–(H4) are satisfied.

Proof Take ϕ ∈ Ω1. Then Nϕ ∈ Im L, and thus we have

Γ

(∫ 1

0
k(x, y)f

(
y,ϕ(y),ϕ′(y), . . . ,ϕ(n–1)(y)

)
dy

)
= 0. (3.7)

This, together with (H4), means that there exists x0 ∈ [0, 1] such that |ϕ(n–1)(x0)| ≤ M. It
follows from ϕ(i)(0) = ϕ(j)(1) = 0, 0 ≤ i ≤ k – 1, 1 ≤ j ≤ n – k – 1, that there exists at least one
point xi ∈ [0, 1] such that ϕ(i)(xi) = 0, i = 0, 1, 2, . . . , n–2. Thus we get ϕ(i)(x) =

∫ x
xi

ϕ(i+1)(t) dt,
i = 0, 1, 2, . . . , n – 2. So,

∥∥ϕ(i)∥∥∞ ≤ ∥∥ϕ(i+1)∥∥
1 ≤ ∥∥ϕ(i+1)∥∥∞, i = 0, 1, 2, . . . , n – 2. (3.8)

From (H3), (3.8), and

ϕ(n–1)(x) = ϕ(n–1)(x0) +
∫ x

x0

ϕ(n)(t) dt

= ϕ(n–1)(x0) + λ

∫ x

x0

(–1)n–kf
(
t,ϕ(t),ϕ′(t), . . . ,ϕ(n–1)(t)

)
dt

we get

∣
∣ϕ(n–1)(x)

∣
∣ ≤ M +

n∑

i=1

‖qi‖1
∥
∥ϕ(i–1)∥∥∞ + ‖r‖1 ≤ M +

n∑

i=1

‖qi‖1
∥
∥ϕ(n–1)∥∥∞ + ‖r‖1. (3.9)

Therefore we obtain that

∥∥ϕ(n–1)∥∥∞ ≤ M + ‖r‖1

1 –
∑n

i=1 ‖qi‖1
.

So, Ω1 is bounded. The proof of of Lemma 3.4 is completed. �

Lemma 3.5 The set

Ω2 = {ϕ : ϕ ∈ Ker L, Nϕ ∈ Im L}

is bounded if (H1)–(H3) and (H5) hold.



Jiang et al. Boundary Value Problems         (2019) 2019:69 Page 8 of 11

Proof Let ϕ ∈ Ω2. Then ϕ(x) ≡ cΦ(x) and Nϕ ∈ Im L. So, we get

cΓ
(∫ 1

0
k(x, y)f

(
y, cΦ(y), . . . , cΦ (n–1)(y)

)
dy

)
= 0.

According to (H5), we have |c| ≤ a0, that is, Ω2 is bounded. �

Lemma 3.6 The set

Ω3 =
{
ϕ ∈ Ker L : λJϕ + α(1 – λ)QNϕ = 0,λ ∈ [0, 1]

}

is bounded if conditions (H1)–(H3) and (H5) are satisfied, where J : Ker L → Im Q is the
linear isomorphism given by J(cΦ(x)) = c

Γ (
∫ 1

0 k(x,y) dy)
, and

α =

⎧
⎨

⎩
–1 if (3.2) holds;

1 if (3.3) holds.
(3.10)

Proof Suppose that ϕ ∈ Ω3. Then ϕ(x) = cΦ(x) and

λc = –α(1 – λ)Γ
(∫ 1

0
k(x, y)Nϕ(y) dy

)
.

If λ = 0, then by (H5) we have |c| ≤ a0. If λ = 1, then c = 0. If λ ∈ (0, 1), then taking |c| > a0,
we have

λc2 = –α(1 – λ)cΓ
(∫ 1

0
k(x, y)Nϕ(y) dy

)
< 0,

which contradicts with λc2 > 0. So, Lemma 3.6 holds. �

Now we can prove Theorem 3.1.

Proof of Theorem 3.1 Let Ω be a bounded open subset of X such that {0} ∪ ⋃3
j=1 Ω j ⊂ Ω .

From Lemma 3.3 we know that N is L-compact on Ω . By Lemmas 3.4 and 3.5 we get:
(i) Lϕ �= λNϕ for every (ϕ,λ) ∈ [(dom L \ Ker L) ∩ ∂Ω] × (0, 1);

(ii) Nϕ /∈ Im L for every ϕ ∈ Ker L ∩ ∂Ω .
Finally, we will prove (iii) of Theorem 2.2.
Let H(ϕ,λ) = λJϕ + α(1 – λ)QNϕ. Noting that Ω3 ⊂ Ω , we have H(ϕ,λ) �= 0 for every

ϕ ∈ ∂Ω ∩ Ker L. Thus by the homotopic property of degree we have

deg(QN |Ker L,Ω ∩ Ker L, 0) = deg(αJ ,Ω ∩ Ker L, 0) �= 0.

By Theorem 2.2 the functional boundary value problem (1.1) has at least one solution
in X. The proof of Theorem 3.1 is completed. �
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4 Example
We give two examples to illustrate our main results.

Example 4.1 Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(3)(x) = x – 1 + 1
4 sinϕ(x) + 1

4 sinϕ′(x) + 1
4ϕ′′(x), x ∈ [0, 1],

ϕ(0) = 0, ϕ′(1) = 0,

Γ (ϕ(x)) = ϕ′(0) – 2ϕ(1) = 0.

(4.1)

Obviously, n = 3, k = 1, Φ(x) = 2x – x2, Γ (Φ(x)) = 0, and Ker L = {c(2x – x2), c ∈ R}.
By simple calculation we obtain

Γ

(∫ 1

0
k(x, y) dy

)
= Γ

(∫ x

0

1
2

y2(1 – x)2 dy +
∫ 1

x

[
1
2

x2(1 – y)2 + x(y – x)(1 – y)
]

dy
)

=
1
6

�= 0,

∣∣f
(
x,ϕ(x),ϕ′(x),ϕ′′(x)

)∣∣ ≤ 1
4
|ϕ| +

1
4
∣∣ϕ′∣∣ +

1
4
∣∣ϕ′′∣∣ + 1.

Condition (H3) is satisfied.
Take M = 7. If ϕ′′(x) > 7, then f (x,ϕ(x),ϕ′(x),ϕ′′(x)) > –1– 1

4 – 1
4 + M

4 > 0, and if ϕ′′(x) < –7,
then f (x,ϕ(x),ϕ′(x),ϕ′′(x)) < 1

4 + 1
4 + M

4 < 0. Hence, if |ϕ′′(x)| > M = 7, then

Γ

(∫ 1

0
k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y)

)
dy

)

= Γ

(∫ x

0

1
2

y2(1 – x)2f
(
y,ϕ(y),ϕ′(y),ϕ′′(y)

)
dy

+
∫ 1

x

[
1
2

x2(1 – y)2 + x(y – x)(1 – y)
]

f
(
y,ϕ(y),ϕ′(y),ϕ′′(y)

)
dy

)

=
∫ 1

0
y(1 – y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y)

)
dy �= 0.

Thus (H4) is satisfied.
Finally, take ϕ ∈ Ker L and ϕ(x) = cΦ(x) = c(2x – x2). Set a0 = 3. Then we get

cΓ
(∫ 1

0
k(x, y)N

(
cΦ(y)

)
dy

)
= c

(∫ 1

0
y(1 – y)N

(
cΦ(y)

)
dy

)
< 0, |c| > 3,

since 0 ≤ y(1 – y) ≤ 1, y ∈ [0, 1], and

cN
(
cΦ(y)

) ≤ |c| +
1
4
|c| +

1
4
|c| –

1
2

c2 < 0, |c| > 3.

Therefore condition (H5) is satisfied. It follows from Theorem 3.1 that the boundary value
problem (4.1) has at least one solution.
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Example 4.2 Consider the other boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(4)(x) = x – 1 + 1
5 sinϕ(x) + 1

5 sinϕ′(x) + 1
5 sinϕ′′(x) + 1

5ϕ′′′(x), x ∈ [0, 1],

ϕ(0) = ϕ′(0) = 0, ϕ′(1) = 0,

Γ (ϕ(x)) = 2ϕ( 1
2 ) – ϕ(1) = 0.

(4.2)

Obviously, n = 4, k = 2, Φ(x) = 3x2 – 2x3, Γ (Φ(x)) = 0, and Ker L = {c(3x2 – 2x3), c ∈ R}. It
is not difficult to verify that Γ (

∫ 1
0 k(x, y) dy) = 1

192 �= 0, that is, (H1) holds.
Obviously, f satisfies |f (x,ϕ(x),ϕ′(x),ϕ′′(x),ϕ′′′(x))| ≤ 1

5 |ϕ| + 1
5 |ϕ′| + 1

5 |ϕ′′| + 1
5 |ϕ′′′| + 1,

where q1 = 1
5 , q2 = 1

5 , q3 = 1
5 , q4 = 1

5 , r(x) = 1, which verifies condition (H3).
Take M = 9. If ϕ′′′(x) > 9, then f (x) > –1 – 1

5 – 1
5 – 1

5 + M
5 > 0, and if ϕ′′′(x) < –9, then

f (x) < 3
5 – M

5 < 0.
For convenience, we denote F(y) = f (y,ϕ(y),ϕ′(y),ϕ′′(y),ϕ′′′(y)). Then

Γ

(∫ 1

0
k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y),ϕ′′′(y)

)
dy

)

=
1

24

(∫ 1
2

0

(
–4y3 + 3y2)F(y) dy +

∫ 1

1
2

(
4y3 – 9y2 + 6y – 1

)
F(y) dy

)
�= 0,

provided that ϕ ∈ dom L \ Ker L satisfies |ϕ′′′(x)| > M = 9. Hence (H4) holds.
Finally, for ϕ ∈ Ker L, ϕ(x) = cΦ(x), we denote fc(y) = N(cΦ(y)). Then, for |c| > 2

3 , we have

cΓ
(∫ 1

0
k(x, y)N

(
cΦ(y)

)
dy

)

= c
1

24

(∫ 1
2

0

(
–4y3 + 3y2)fc(y) dy +

∫ 1

1
2

(
4y3 – 9y2 + 6y – 1

)
fc(y) dy

)
< 0,

since 0 < –4y3 + 3y2 < 1
4 , y ∈ (0, 1

2 ), 0 < 4y3 – 9y2 + 6y – 1 < 1
4 , y ∈ ( 1

2 , 1), and

cN
(
cΦ(y)

)

= c
(

y – 1 +
1
5

sin
(
c
(
3y2 – 2y3)) +

1
5

sin
(
c6y – 6cy2) +

1
5

sin(6c – 12cy) +
1
5

(–12)c
)

≤
(

|c| +
3|c|

5
–

12
5

c2
)

=
(

8|c|
5

–
12
5

c2
)

< 0, |c| >
2
3

.

Then condition (H5) is satisfied if a0 = 2
3 . It follows from Theorem 3.1 that problem (4.2)

has at least one solution.
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