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Abstract
In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems:

{
–(a + b

∫
R3 |∇u|2 dx)�u + V(x)u + φu = f (u), x ∈R

3,

–�φ = u2, x ∈R
3,

where a, b are positive constants, V ∈ C(R3,R+). By using constraint variational
method and the quantitative deformation lemma, we obtain a least-energy
sign-changing (or nodal) solution ub to this problem, and study the energy property
of ub. Moreover, we investigate the asymptotic behavior of ub as the parameter b ↘ 0.

Keywords: Sign-changing solution; Nonlocal term; Variation methods

1 Introduction
In this paper, we discuss the existence and asymptotic behavior of sign-changing solutions
for the Kirchhoff–Schrödinger–Poisson systems

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u + φu = f (u), x ∈R

3,

–�φ = u2, x ∈R
3,

(1.1)

where a, b > 0, V ∈ C(R3,R+) such that H ⊂ H1(R3) and the embedding

H ↪→ Lq(
R

3), 2 < q < 6,

is compact, denoting by H1
r (R3) the set of radially symmetric functions in the Sobolev

space H1(R3), we define

H :=

⎧⎨
⎩H1

r (R3) = {u ∈ H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,

{u ∈ D1,2(R3) :
∫
R3 (a|∇u|2 + V (x)u2) dx < +∞}, if V (x) is not a constant.

with the norm

‖u‖2 =
∫
R3

(
a|∇u|2 + V (x)u2)dx.
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As for f , we assume that f ∈ C1(R,R) and satisfy the following assumptions:
(f1) f (s) = 0(|s|) as s → 0;
(f2) lims→∞ f (s)

s6 = 0;
(f3) lims→∞ F(s)

s4 = +∞, where F(s) =
∫ s

0 f (t) dt;
(f4) f (s)

|s|3 is an increasing function of s ∈ R\{0}.
It is noticed that, to avoid involving too much details for checking the compactness,

assumptions on V were first introduced in [60].
The nonlocal operator (a + b

∫
R3 |∇u|2 dx)� comes from the Kirchhof–Dirichlet prob-

lem ⎧⎨
⎩–(a + b

∫
Ω

|∇u|2 dx)�u = f (u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(1.2)

where Ω ⊂R
N is a bounded domain or Ω = R

N , a > 0, b > 0 and u satisfies some boundary
conditions. Problem (1.2) is related to the following stationary analog of the equation of
Kirchhoff type:

utt –
(

a + b
∫

Ω

|∇u|2 dx
)

�u = f (x, u), (1.3)

which was introduced by Kirchhoff [22] as a generalization of the well-known D’Alembert
wave equation

ρ
∂2u
∂t2 –

(
p0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = f (x, u), (1.4)

for free vibration of elastic strings.
Kirchhoff’s model takes into account the changes in length of the string produced by

transverse vibrations, so the nonlocal term appears. For more mathematical and physical
background of Kirchhoff-type problems, we refer the reader to [8, 40, 50].

After the pioneer work of Lions [28], a lots of interesting results to problem (1.2) or
similar problems were obtained in last decades; see for example [14–19, 24, 26, 32, 34, 36,
37, 41, 43, 45, 51, 52, 57, 59, 64, 65]. For the sake of space, many interesting results we do
not cite here.

Especially, many authors pay their attention to find sign-changing solutions to problem
(1.2) or similar problems and indeed some interesting results were obtained. For example,
Zhang et al. [65] used the method of invariant sets of descent flow to obtain the existence
of sign-changing solution of problem (1.2). It is noticed that, combining constraint varia-
tional methods and the quantitative deformation lemma, Shuai [45] studied the existence
and asymptotic behavior of least-energy sign-changing solution to problem (1.2). Soon
afterwards, under some more weak assumptions on f (especially, a Nehari type mono-
tonicity condition been removed), Tang and Cheng [51] improved and generalized some
results obtained in [45]. For more results on sign-changing solutions for Kirchhoff-type
equations, we refer the reader to [14, 15, 17, 32, 34, 36, 43, 52] and the references therein.

When a = 1, b = 0, system (1.1) reduces to the Schrödinger–Poisson system
⎧⎨
⎩–�u + V (x) + φ(x)u = f (u), x ∈R

3,

–�φ = u2, x ∈R
3.

(1.5)
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System (1.5) comes from the time-dependent Schrödinger–Poisson equation, which de-
scribes quantum (nonrelativistic) particles interacting with the electromagnetic field gen-
erated by the motion. For more details of the mathematical and physical background of
the system (1.5), we refer the reader to [6, 7] and the references therein. In the past several
decades, there has been increasing attention toward systems (1.5) or similar problems, and
the existence of positive solutions, multiple solutions, bound state solutions, multi-bump
solutions, semiclassical state solutions has been investigated; see for example [3–6, 9, 25,
29, 33, 35, 42, 44, 48, 49, 54, 55, 58, 67].

For sign-changing solutions, Alves and Souto [1] proved that system (1.5) possesses a
least-energy sign-changing solution in which R

3 be replaced by bounded domains with
smooth boundary. Soon afterwards, Alves, Souto and Soares [2] improved and general-
ized results obtained in [1] to on whole space R

3. Via a constraint variational method
combining the Brouwer degree theory, Wang and Zhou [60] investigated the existence of
least-energy sign-changing solutions for the system (1.5) when f (u) = |u|p–1u, p ∈ (3, 5). By
using the constraint variation methods and the quantitative deformation lemma, Shuai
and Wang [46] studied the existence and the asymptotic behavior of least-energy sign-
changing solution for system (1.5). Latter, under some more weak assumptions on f , Chen
and Tang [11] improve and generalize some results obtained in [46]. For the other work on
a sign-changing solution of system (1.5) or similar problems, we refer the reader to [5, 20,
21, 27, 30, 56, 68] and the references therein. It is noticed that there are some interesting
results, for example [10, 13, 53, 61], considered sign-changing solutions for other nonlocal
problems.

For u ∈ H , let φu be unique solution of –	φ = u2 in D1,2(R3), then

φu(x) =
1

4π

∫
R3

u2(y)
|x – y| dy. (1.6)

Using the expression of (1.6), we see that the system (1.1) is merely a single equation on
u:

–
(

a + b
∫
R3

|∇u|2 dx
)

�u + V (x)u + φu(x)u = f (u). (1.7)

So, the energy functional associated with system (1.1) is defined by

Ib(u) :=
1
2

∫
R3

(
a|∇u|2 + V (x)u2)dx +

b
4

(∫
R3

|∇u|2 dx
)2

+
1
4

∫
R3

φu(x)u2 dx

–
∫
R3

F(u) dx. (1.8)

Moreover, under our conditions, Ib ∈ C1(H ,R), and we have

〈
I ′

b(u),ψ
〉
=

∫
R3

(
a∇u∇ψ + V (x)uψ

)
dx + b

∫
R3

|∇u|2 dx
∫
R3

∇u∇ψ dx

+
∫
R3

φuuψ dx –
∫
R3

f (u)ψ dx, (1.9)

for any u,ψ ∈ H .
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The weak solutions of system (1.1) are critical points of Ib. Moreover, we call u a sign-
changing solution to (1.1) if u is a solution of (1.1) with u± �= 0, where

u+(x) = max
{

u(x), 0
}

, u–(x) = min
{

u(x), 0
}

.

For system (1.1) contains both nonlocal operator and nonlocal nonlinear term, the
study of system (1.1) become technically complicated. In recent years, there were some
scholars paying attention to system (1.1) or similar problems; see [12, 23, 31, 38, 63, 66]
and the references therein. However, to the best of our knowledge, few papers consid-
ered sign-changing solutions to system (1.1) or similar problems. Via gluing the function
methods, Deng and Yang [12] studied the sign-changing solutions for system (1.1) with
f (u) = |u|p–2u, p ∈ (4, 6). But they did not study the energy property and asymptotic be-
havior of this solution.

Inspired by the work mentioned above, in this paper, we seek the least-energy sign-
changing solutions to system (1.1). As in [1, 11, 17, 45, 46, 59], we first try to seek a mini-
mizer of the energy functional Ib over the following constraint:

Mb =
{

u ∈ H : u± �= 0,
〈
I ′

b(u), u+〉
=

〈
I ′

b(u), u–〉
= 0

}
,

and then will prove that the minimizer is a sign-changing solution of system (1.1).
The following are the main results of this paper.

Theorem 1.1 If the assumptions (f1)–(f4) hold, then the problem (1.1) has a least-energy
sign-changing solution ub, which has precisely two nodal domains.

Theorem 1.2 Under the assumptions of Theorem 1.1,

Ib(ub) > 2cb

where cb := infu∈Nb Ib(u), Nb := {u ∈ H\{0} : 〈I ′
b(u), u〉 = 0} and ub is the least-energy sign-

changing solution in H obtained in Theorem 1.1. In particular, cb is achieved either by a
positive or a negative function.

Theorem 1.3 If the assumptions of Theorem 1.1 hold, then, for any sequence {bn} with
bn → 0 as n → ∞, there exists a subsequence, still denoted by {bn}, such that ubn → u0

strongly in H as n → ∞, where u0 is a least-energy sign-changing solution in H of the prob-
lem

⎧⎨
⎩–a	u + V (x)u + φu = f (u), x ∈R

3,

–�φ = u2, x ∈R
3,

(1.10)

which changes sign only once.

2 Some technical lemmas
In this section, we prove some technical lemmas related to the existence of sign-changing
solutions of system (1.1).
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Lemma 2.1 Assume that (f1)–(f4) hold, if u ∈ H with u± �= 0, then:
(i) There exists a unique pair (su, tu) of positive numbers such that suu+ + tuu– ∈Mb.

(ii) The vector (su, tu) is the unique maximum point of the function ϕ: R+ ×R+ →R

defined as ϕ(s, t) = Ib(su+ + tu–).

Proof (i) Having fixed u ∈ H with u± �= 0, let

g(s, t) =
〈
I ′

b
(
su+ + tu–)

, su+〉
=

∫
R3

[
a∇(

su+ + tu–)∇(
su+)

+ V (x)
(
su+ + tu–)

su+]
dx

+ b
∫
R3

∣∣∇(
su+ + tu–)∣∣2 dx

∫
R3

∇(
su+ + tu–)∇(

su+)
dx

+
∫
R3

φsu++tu–
(
su+ + tu–)(

su+)
dx –

∫
R3

f
(
su+ + tu–)

su+ dx

= s2∥∥u+∥∥2 + b
∫
R3

(
s2∣∣∇u+∣∣2 + t2∣∣∇u–∣∣2)dx

∫
R3

s2∣∣∇u+∣∣2 dx

+
∫
R3

s4φu+
∣∣u+∣∣2 dx +

∫
R3

s2t2φu–
∣∣u+∣∣2 dx –

∫
R3

f
(
su+)

tu+ dx

= s2∥∥u+∥∥2 + bs4
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ bs2t2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s4
∫
R3

φu+
∣∣u+∣∣2 dx + s2t2

∫
R3

φu–
∣∣u+∣∣2 dx –

∫
R3

f
(
su+)

su+ dx, (2.1)

h(s, t) =
〈
I ′

b
(
su+ + tu–)

, tu–〉
= t2∥∥u–∥∥2 + b

∫
R3

(
s2∣∣∇u+∣∣2 + t2∣∣∇u–∣∣2)dx

∫
R3

t2∣∣∇u–∣∣2 dx

+
∫
R3

t4φu–
∣∣u–∣∣2 dx +

∫
R3

s2t2φu+
∣∣u–∣∣2 dx –

∫
R3

f
(
tu–)

tu– dx

= t2∥∥u–∥∥2 + bt4
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ bt2s2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ t4
∫
R3

φu–
∣∣u–∣∣2 dx + t2s2

∫
R3

φu+
∣∣u–∣∣2 dx –

∫
R3

f
(
tu–)

tu– dx. (2.2)

We will show that there exists r ∈ (0, R) such that

g(r, t) > 0, h(s, r) > 0, ∀s, t ∈ [r, R], (2.3)

and

g(R, t) < 0, h(s, R) < 0, ∀s, t ∈ [r, R], (2.4)

where R > 0 is a constant.
By assumption (f1) and (f2), for any ε > 0, there exists a positive constant Cε such that

f (s)s ≤ εs2 + Cε|s|6, for all s ∈R. (2.5)
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Then we have

g(s, t) ≥ s2∥∥u+∥∥2 + bs4
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ bs2t2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s4
∫
R3

φu+
∣∣u+∣∣2 dx + s2t2

∫
R3

φu–
∣∣u+∣∣2 dx – ε

∫
R3

∣∣su+∣∣2 dx

– Cε

∫
R3

∣∣su+∣∣6 dx

≥ s2∥∥u+∥∥2 + s4
∫
R3

φu+
∣∣u+∣∣2 dx + s2t2

∫
R3

φu–
∣∣u+∣∣2 dx – C1εs2∥∥u+∥∥2

– C2Cεs6
∫
R3

∣∣u+∣∣6 dx

≥ (1 – C1ε)s2∥∥u+∥∥2 + s4
∫
R3

φu+
∣∣u+∣∣2 dx + s2t2

∫
R3

φu–
∣∣u+∣∣2 dx

– C3s6
∫
R3

∣∣u+∣∣6 dx, (2.6)

where C1, C2, C3 are positive constants.
On the other hand, since u+ �= 0, there exists a constant δ > 0 such that meas{x ∈R

3, u+ >
δ} > 0. In addition, by (f3) and (f4), we deduce that, for any L > 0, there exists T > 0 such
that f (ω)

ω3 > L for all ω > T . Therefore, for s > T
δ

, we have

∫
R3

f
(
su+)

su+ dx ≥
∫

{u+(x)>δ}
f (su+)
(su+)3

(
su+)4 dx ≥ Ls4

∫
{u+(x)>δ}

(
u+)4 dx. (2.7)

Choose L sufficiently large so that

L
∫

{u+(x)>δ}

(
u+)4 dx

> 2
(

3b
2

(∫
R3

∣∣∇u+∣∣2 dx
)2

+
b
2

(∫
R3

∣∣∇u–∣∣2 dx
)2

+
∫
R3

φu
∣∣u+∣∣2 dx

)
.

Suppose t ≤ s, we have

g(s, t) ≤ s2∥∥u+∥∥2 + bs4
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ bs2t2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s4
∫
R3

φu+
∣∣u+∣∣2 dx + s2t2

∫
R3

φu–
∣∣u+∣∣2 dx – Ls4

∫
{u+(x)>δ}

(
u+)4 dx

≤ s2∥∥u+∥∥2 +
b
2

s4
(∫

R3

∣∣∇u+∣∣2 dx
)2

+
b
2

t4
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ s4
∫
R3

φu+
∣∣u+∣∣2 dx

+ s2t2
∫
R3

φu–
∣∣u+∣∣2 dx + bs4

(∫
R3

∣∣∇u+∣∣2 dx
)2

– Ls4
∫

{u+(x)>δ}

(
u+)4 dx

≤ s2∥∥u+∥∥2 +
3b
2

s4
(∫

R3

∣∣∇u+∣∣2 dx
)2

+
b
2

s4
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ s4
∫
R3

φu
∣∣u+∣∣2 dx

– Ls4
∫

{u+(x)>δ}

(
u+)4 dx
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= s4
(

3b
2

(∫
R3

∣∣∇u+∣∣2 dx
)2

+
b
2

(∫
R3

∣∣∇u–∣∣2 dx
)2

+
∫
R3

φu
∣∣u+∣∣2 dx – L

∫
{u+(x)>δ}

(
u+)4 dx

)

+ s2∥∥u+∥∥2. (2.8)

Similarly, we derive that

h(s, t) ≥ (1 – C4ε)t2∥∥u–∥∥2 + t4
∫
R3

φu–
∣∣u–∣∣2 dx + s2t2

∫
R3

φu+
∣∣u–∣∣2 dx

– C6t5
∫
R3

∣∣u–∣∣6 dx (2.9)

and

h(s, t) ≤ t4
(

3b
2

(∫
R3

∣∣∇u–∣∣2 dx
)2

+
b
2

(∫
R3

∣∣∇u+∣∣2 dx
)2

+
∫
R3

φu
∣∣u–∣∣2 dx – L

∫
{u–(x)>δ}

(
u–)4 dx

)
+ t2∥∥u–∥∥2, (2.10)

if s ≤ t.
Hence, in view of (2.6), (2.8), (2.9), (2.10) and Miranda’s theorem [39], there exists some

point (su, tu) such that g(su, tu) = h(su, tu) = 0. That is, suu+ + tuu– ∈Mb.
We now prove that the pair (su, tu) is unique and consider two situations.
Case 1. u ∈Mb.
If u ∈Mb, we have

〈
I ′

b(u), u+〉
=

〈
I ′

b(u), u–〉
= 0.

That is,

∥∥u+∥∥2 + b
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+
∫
R3

φu+
∣∣u+∣∣2 dx +

∫
R3

φu–
∣∣u+∣∣2 dx =

∫
R3

f
(
u+)

u+ dx, (2.11)

∥∥u–∥∥2 + b
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+
∫
R3

φu–
∣∣u–∣∣2 dx +

∫
R3

φu+
∣∣u–∣∣2 dx =

∫
R3

f
(
u–)

u– dx. (2.12)

We prove that (su, tu) = (1, 1) is the only pair of numbers so that suu+ + tuu– ∈Mb.
Suppose that (s̃u, t̃u) is another pair of numbers so that s̃uu+ + t̃uu– ∈Mb. According to

the definition of Mb, it is easy to obtain

s̃2
u
∥∥u+∥∥2 + bs̃4

u

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs̃2
ut̃2

u

∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s̃4
u

∫
R3

φu+
∣∣u+∣∣2 dx + s̃2

ut̃2
u

∫
R3

φu–
∣∣u+∣∣2 dx =

∫
R3

f
(
s̃uu+)

s̃uu+ dx (2.13)
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and

t̃2
u
∥∥u–∥∥2 + bt̃4

u

(∫
R3

∣∣∇u–∣∣2 dx
)2

+ bt̃2
us̃2

u

∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ t̃4
u

∫
R3

φu–
∣∣u–∣∣2 dx + t̃2

us̃2
u

∫
R3

φu+
∣∣u–∣∣2 dx =

∫
R3

f
(
t̃uu–)

t̃uu– dx. (2.14)

Without loss of generality, we can suppose that 0 < s̃u ≤ t̃u. Thus, from (2.13), we get

s̃2
u
∥∥u+∥∥2 + bs̃4

u

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs̃4
u

∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s̃4
u

∫
R3

φu+
∣∣u+∣∣2 dx + s̃4

u

∫
R3

φu–
∣∣u+∣∣2 dx

≤ s̃2
u
∥∥u+∥∥2 + bs̃4

u

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs̃2
ut̃2

u

∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+ s̃4
u

∫
R3

φu+
∣∣u+∣∣2 dx + s̃2

ut̃2
u

∫
R3

φu–
∣∣u+∣∣2 dx

=
∫
R3

f
(
s̃uu+)

s̃uu+ dx.

So,

1
s̃2

u

∥∥u+∥∥2 + b
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx

+
∫
R3

φu+
∣∣u+∣∣2 dx +

∫
R3

φu–
∣∣u+∣∣2 dx ≤

∫
R3

f (s̃uu+)
s̃3

u
u+ dx. (2.15)

Combining (2.15) with (2.11), we get

(
s̃–2

u – 1
)∥∥u+∥∥2 ≤

∫
R3

(
f (x, s̃uu+)
(s̃uu+)3 –

f (x, u+)
(u+)3

)(
u+)4 dx. (2.16)

If s̃u < 1, the left side of the above inequality is positive, which is absurd because the right
side is negative by condition (f4).

Therefore, we obtain 1 ≤ s̃u ≤ t̃u.
Similarly, by (2.12), (2.14) and 0 < s̃u ≤ t̃u, one has

(
t̃–2
u – 1

)∥∥u–∥∥2 ≥
∫
R3

(
f (x, t̃uu–)
(t̃uu–)3 –

f (x, u–)
(u–)3

)(
u–)4 dx. (2.17)

Thanks to (f4), we must have t̃u ≤ 1.
So, s̃u = t̃u = 1.
Case 2. u /∈Mb.
If u /∈Mb, then there exists a pair of positive numbers (su, tu) such that suu+ +tuu– ∈Mb.

Assume that there exists another pair of positive numbers (s′
u, t′

u) such that s′
uu+ + t′

uu– ∈
Mb. Define v := suu+ + tuu– and v′ := s′

uu+ + t′
uu–, we get

s′
u

su
v+ +

t′
u

tu
v– = s′

uu+ + t′
uu– = v′ ∈Mb.
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Thanks to v ∈Mb, we find that su = s′
u and tu = t′

u.
(ii) From (i), we know that (su, tu) is the unique critical point of ϕ in R+ × R+. By the

hypothesis (f3), we conclude that ϕ(s, t) → –∞ uniformly as |(s, t)| → ∞, so it is sufficient
to show that a maximum point cannot be achieved on the boundary of (R+,R+). If we may
suppose that (0, t̄) is a maximum point of ϕ, it is easy to deduce that

ϕ′
s(s, t̄) =

(
Ib

(
su+ + t̄u–))′

s

= s
∫
R3

a
∣∣∇u+∣∣2 + V (x)

∣∣u+∣∣2 dx

+ s3
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ st̄2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx + s3
∫
R3

φu+
∣∣u+∣∣2 dx

+
1
2

st̄2
∫
R3

φu+
∣∣u–∣∣2 dx +

1
2

t̄2s
∫
R3

φu–
∣∣u+∣∣2 dx

–
∫
R3

f
(
su+)

u+ dx

> 0,

for s small enough.
That is, ϕ(s, t̄) is an increasing function with respect to s if s is small enough.
From the above discussion, we know that the pair (0, t̄) is not a maximum point of ϕ in

R+ ×R+. �

Next, we consider the minimization problem

mb := inf
{

Ib(u) : u ∈Mb
}

. (2.18)

Lemma 2.2 Assume that (f1)–(f4) hold, then mb > 0 is achieved.

Proof Firstly, we prove mb > 0.
For every u ∈Mb, we have 〈I ′

b(u), u〉 = 0. So, according to (2.5) and the Sobolev embed-
ding, we have

‖u‖2 ≤
∫
R3

(
a|∇u|2 + V (x)u2)dx + b

(∫
R3

|∇u|2 dx
)2

+
∫
R3

φu|u|2 dx =
∫
R3

f (u)u dx

≤ ε

∫
R3

|u|2 dx + Cε

∫
R3

|u|6 dx

≤ εC1‖u‖2 + C2‖u‖6. (2.19)

Selecting ε = 1
2C1

, it is easy to see that there exists a constant α > 0 such that ‖u‖2 ≥ α.
On the other hand, we obtain, by the condition (f5),

H(t) := f (t)t – 4F(t) ≥ 0, t ∈R, (2.20)

and H(t) is increasing when t > 0 and decreasing when t < 0.
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Then we have

Ib(u) = Ib(u) –
1
4
〈
I ′

b(u), u
〉 ≥ 1

4
‖u‖2 ≥ 1

4
α.

That is, mb ≥ 1
4α > 0.

In the following, we prove that mb is achieved.
Let {un} ⊂Mb be so that Ib(un) → mb. Then {un} is bounded in H . And there exists ub ∈

H such that u±
n converges to u±

b weakly in H . Since un ∈ Mb, we can get 〈I ′
b(un), u±

n 〉 = 0,
i.e.,

∥∥u±
n
∥∥2 + b

∫
R3

|∇un|2 dx
∫
R3

∣∣∇u±
n
∣∣2 dx +

∫
R3

φun

∣∣u±
n
∣∣2 dx =

∫
R3

f
(
u±

n
)
u±

n dx. (2.21)

Analogous to the discussion in (2.19), there exists β > 0 such that ‖u±
n ‖2 ≥ β for all n ∈N.

Thanks to (f1) and (f2), for any δ > 0, there is a positive constants Cδ such that

f (s)s ≤ δs2 + δ|s|6 + Cδ|s|p, for all s ∈ R.

So, by un ∈Mb, we have

β ≤ ∥∥u±
n
∥∥2 <

∫
R3

f
(
u±

n
)
u±

n dx ≤ δ

∫
R3

∣∣u±
n
∣∣2 dx + Cδ

∫
R3

∣∣u±
n
∣∣p dx + δ

∫
R3

∣∣u±
n
∣∣6 dx.

In view of the boundedness of {un}, there exists C1 > 0 that satisfies

β ≤ δC1 + Cδ

∫
R3

∣∣u±
n
∣∣p dx.

Choosing δ = β

2C1
, from the above equality, we can obtain

∫
R3

∣∣u±
n
∣∣p dx ≥ β

2C2
> 0.

So, according to the compactness embedding H ↪→ Lq(R3) for 2 < q < 2∗, we have

∫
R3

∣∣u±
b
∣∣p dx ≥ β

2C2
. (2.22)

That is, u±
b �= 0.

By Lemma 2.1, there exists (sub , tub ) ∈ (0,∞) × (0,∞) such that

ūb := sub u+
b + tub u–

b ∈Mb.

We assert that

0 < sub , tub ≤ 1.
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In fact, by (f1), (f2) and the compactness lemma of Strauss [47] we see that

lim
n→∞

∫
R3

f
(
u±

n
)
u±

n dx =
∫
R3

f
(
u±

b
)
u±

b dx,

lim
n→∞

∫
R3

F
(
u±

n
)

dx =
∫
R3

F
(
u±

b
)

dx.
(2.23)

Since the embedding H ↪→ D1,2 is continuous and we have weak semicontinuity of the
norm, we have

∥∥u±
b
∥∥2 + b

∫
R3

|∇ub|2 dx
∫
R3

∣∣∇u±
b
∣∣2 dx

≤ lim
n→∞ inf

(∥∥u±
n
∥∥2 + b

∫
R3

|∇un|2 dx
∫
R3

∣∣∇u±
n
∣∣2 dx

)
. (2.24)

By (1.6) and the Hardy–Littlewood–Sobolev inequality, we have

lim
n→∞ inf

∫
R3

φun

∣∣u±
n
∣∣2 dx =

∫
R3

φub

∣∣u±
b
∣∣2 dx. (2.25)

Therefore, thanks to {un} ⊂Mb, (2.23), (2.24) and (2.25), we obtain

∥∥u±
b
∥∥2 + b

∫
R3

|∇ub|2 dx
∫
R3

∣∣∇u±
b
∣∣2 dx +

∫
R3

φub

∣∣u±
b
∣∣2 dx ≤

∫
R3

f
(
u±

b
)
u±

b dx.

That is,

〈
I ′

b(ub), u±
b
〉 ≤ lim inf

n→∞
〈
I ′

b(un), u±
n
〉

= 0. (2.26)

Suppose that sub ≥ tub > 0, thanks to sub u+
b + tub u–

b ∈Mb, we have

s2
ub

∥∥u+
b
∥∥2 + bs4

ub

(∫
R3

∣∣∇u+
b
∣∣2 dx

)2

+ bs4
ub

∫
R3

∣∣∇u+
b
∣∣2 dx

∫
R3

∣∣∇u–
b
∣∣2 dx

+ s4
ub

∫
R3

φu+
b

∣∣u+
b
∣∣2 dx + s4

ub

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx

≥ s2
ub

∥∥u+∥∥2 + bs4
ub

(∫
R3

∣∣∇u+
b
∣∣2 dx

)2

+ bs2
ub

t2
u

∫
R3

∣∣∇u+
b
∣∣2 dx

∫
R3

∣∣∇u–
b
∣∣2 dx

+ s4
ub

∫
R3

φu+
b

∣∣u+
b
∣∣2 dx + s2

ub
t2
ub

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx

=
∫
R3

f
(
sub u+

b
)
sub u+

b dx. (2.27)

Combining (2.26) and (2.27), we have

(
1

s2
ub

– 1
)∥∥u+

b
∥∥2 ≥

∫
R3

(
f (sub u+

b )
(sub u+

b )3 –
f (u+

b )
(u+

b )3

)(
u+

b
)4 dx.

If sub > 1, the left-hand side of this inequality is negative. But from (f4), the right-hand side
of this inequality is positive. So, we have sub ≤ 1.
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From the above discussions and (2.20), we get

mb ≤ Ib(ūb) = Ib(ūb) –
1
4
〈
I ′

b(ūb), ūb
〉

=
1
4
∥∥sub u+

b
∥∥2 +

1
4
∥∥tub u–

b
∥∥2 +

1
4

∫
R3

(
f
(
sub u+

b
)
sub u+

b – 4F
(
sub u+

b
))

dx

+
1
4

∫
R3

(
f
(
tub u–

b
)
tub u–

b – 4F
(
tub u–

b
))

dx

≤ 1
4
‖ub‖2 +

1
4

∫
R3

(
f (ub)ub – 4F(ub)

)
dx

≤ lim
n→∞ inf

(
Ib(un) –

1
4
〈
I ′

b(un), un
〉)

= mb.

It follows from the above fact that sub = tub = 1. Then ūb = ub and Ib(ub) = mb. The proof
if finished. �

3 Proof of main results

Proof of Theorem 1.1 We just prove that the minimizer ub for (2.18) is indeed a sign-
changing solution of system (1.1), i.e., I ′

b(ub) = 0.
Since ub ∈ Mb, we have I ′

b(ub)u+
b = 0 = I ′

b(ub)u–
b . By (ii) of Lemma 2.1, for (s, t) ∈ (R+ ×

R+) and (s, t) �= (1, 1), we obtain

Ib
(
su+

b + tu–
b
)

< Ib
(
u+

b + u–
b
)

= mb. (3.1)

If I ′
b(ub) �= 0, then exist δ > 0 and λ > 0 such that ‖I ′

b(v)‖ ≥ λ for all ‖v – ub‖ ≤ 3δ.
Choose σ ∈ (0, min{1/2, δ/

√
2‖u‖}). Let Ω = (1 – σ , 1 + σ ) × (1 – σ , 1 + σ ) and η(s, t) :=

su+
b + tu–

b , (s, t) ∈ Ω . From (ii) of Lemma 2.1, one has

m̄b := max
∂Ω

Ib ◦ η < mb. (3.2)

For ε := min{(mb – m̄b)/2,λδ/8} and Sδ := B(ub, δ). By Lemma 2.3 of [62], there exists a
deformation ξ such that:

(a) ξ (1, u) = u if u /∈ I–1
b ([mb – 2ε, mb + 2ε]) ∩ S2δ ;

(b) ξ (1, Imb+ε

b ∩ s) ⊂ Imb–ε

b ;
(c) Ib(ξ (1, u)) ≤ Ib(u) for all u ∈ H .
Firstly, we need to prove that

max
(s,t)∈Ω̄

Ib
(
ξ
(
1,η(s, t)

))
< mb. (3.3)

By Lemma 2.1, we know Ib(η(s, t)) ≤ mb < mb + ε, which shows that

η(s, t) ∈ Imb+ε

b .

At the same time, we have

∥∥η(s, t) – ub
∥∥2 ≤ 2

(
(s – 1)2∥∥u+

b
∥∥2 + (t – 1)2∥∥u–

b
∥∥2) ≤ 2σ‖ub‖2 ≤ δ2,

that is, η(s, t) ∈ Sδ , ∀(s, t) ∈ Ω̄ .
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Therefore, according to (b), we have Ib(ξ (1,η(s, t))) < m – ε. Hence, (3.3) holds.
In the following, we show that ξ (1,η(D)) ∩Mb �= ∅, which contradicts the definition of

mb.
Let us set ψ(s, t) := ξ (1,η(s, t)) and

Ψ0(s, t) :=
(〈

I ′
b
(
η(s, t)

)
, u+

b
〉
,
〈
I ′

b
(
η(s, t)

)
, u–

b
〉)

=
(〈

I ′
b
(
su+

b + tu–
b
)
, u+

b
〉
,
〈
I ′

b
(
su+

b + tu–
b
)
, u–

b
〉)

:=
(
ϕ1(s, t),ϕ2(s, t)

)
,

Ψ1(s, t) :=
(

1
s
〈
I ′

b
(
ψ(s, t)

)
,ψ+(s, t)

〉
,

1
t
〈
I ′

b
(
ψ(s, t)

)
,ψ–(s, t)

〉)
.

By direct calculation, we have

∂ϕ1(s, t)
∂s

∣∣∣∣
(1,1)

=
∥∥u+

b
∥∥2 + 3b

(∫
RN

∣∣∇u+
b
∣∣2 dx

)2

+ b
∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx

+ 3
∫
R3

φu+
b

∣∣u+
b
∣∣2 dx +

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx –

∫
R3

f ′(u+
b
)(

u+
b
)2 dx, (3.4)

∂ϕ1(s, t)
∂t

∣∣∣∣
(1,1)

= 2b
∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx + 2

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx, (3.5)

∂ϕ2(s, t)
∂s

∣∣∣∣
(1,1)

= 2b
∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx + 2

∫
R3

φu+
b

∣∣u–
b
∣∣2 dx, (3.6)

∂ϕ2(s, t)
∂t

∣∣∣∣
(1,1)

=
∥∥u–

b
∥∥2 + 3b

(∫
RN

∣∣∇u–
b
∣∣2 dx

)2

+ b
∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx

+ 3
∫
R3

φu–
b

∣∣u–
b
∣∣2 dx +

∫
R3

φu+
b

∣∣u–
b
∣∣2 dx –

∫
R3

f ′(u–
b
)(

u–
b
)2 dx. (3.7)

Let

M =

[
∂ϕ1(s,t)

∂s |(1,1)
∂ϕ2(s,t)

∂s |(1,1)
∂ϕ1(s,t)

∂t |(1,1)
∂ϕ2(s,t)

∂t |(1,1)

]
.

By condition (f5), for s �= 0, we have

f ′(s)s2 – 3f (s)s > 0.

Then

∂ϕ1(s, t)
∂s

∣∣∣∣
(1,1)

< –2
∥∥u+

b
∥∥2 – 2b

∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx – 2

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx,

∂ϕ2(s, t)
∂t

∣∣∣∣
(1,1)

< –2
∥∥u–

b
∥∥2 – 2b

∫
RN

∣∣∇u+
b
∣∣2 dx

∫
RN

∣∣∇u–
b
∣∣2 dx – 2

∫
R3

φu+
b

∣∣u–
b
∣∣2 dx.

Therefore, we have

det M > 0.
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Since Ψ0(s, t) is a C1 function and (1, 1) is the unique isolated zero point of Ψ0, by using
degree theory, we deduce that deg(Ψ0, D, 0) = 1. So, combining (3.2) with (a), we know
that g = h on ∂D. Consequently, we get deg(Ψ1, D, 0) = 1. Hence, Ψ1(s0, t0) = 0 for some
(s0, t0) ∈ D, such that

ξ
(
1,η(s0, t0)

)
= ψ(s0, t0) ∈Mb,

which is a contradiction according to (3.3).
From the above discussion, we conclude that ub is a sign-changing solution for problem

(1.1).
Finally, we prove that ub has exactly two nodal domains. By contradiction, we suppose

that ub has at least three nodal domains Ω1, Ω2, Ω3. Without loss generality, we can sup-
pose that ub > 0 a.e. in Ω1 and ub < 0 a.e. in Ω2. Define

ubi := χΩi ub, i = 1, 2, 3,

where

χΩi =

⎧⎨
⎩1, x ∈ Ωi,

0, x ∈R
N\Ωi,

and ubi �= 0 and 〈I ′(ub), ubi〉 = 0 for i = 1, 2, 3.
Let v := ub1 + ub2 , then v+ = ub1 and v– = ub2 , i.e., v± �= 0. Then there exists a unique pair

(sv, tv) of positive numbers such that

svub1 + tvub2 ∈Mb.

Hence, we have

Ib(svub1 + tvub2 ) ≥ mb. (3.8)

Thanks to 〈I ′
b(ub), ubi〉 = 0, we obtain 〈I ′

b(v), v±〉 < 0.
Similar to the proof of Lemma 2.2, we have

(sv, tv) ∈ (0, 1] × (0, 1].

So, by (2.20), we have

0 =
1
4
〈
I ′

b(ub), ub3

〉

=
1
4
‖ub3‖2 +

b
4

(∫
R3

|∇ub3 |2 dx
)2

+
b
4

∫
R3

|∇ub1 |2 dx
∫
R3

|∇ub3 |2 dx

+
b
4

∫
R3

|∇ub2 |2 dx
∫
R3

|∇ub3 |2 dx +
1
4

∫
R3

φub u2
b3 dx –

1
4

∫
R3

f (ub3 )ub3 dx

≤ 1
4
‖ub3‖2 +

b
4

(∫
R3

|∇ub3 |2 dx
)2

+
b
4

∫
R3

|∇ub1 |2 dx
∫
R3

|∇ub3 |2 dx
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+
b
4

∫
R3

|∇ub2 |2 dx
∫
R3

|∇ub3 |2 dx +
1
4

∫
R3

φub u2
b3 dx –

∫
R3

F(ub3 ) dx

< Ib(ub3 ) +
b
4

∫
R3

|∇ub1 |2 dx
∫
R3

|∇ub3 |2 dx +
b
4

∫
R3

|∇ub2 |2 dx
∫
R3

|∇ub3 |2 dx

+
1
4

∫
R3

φub1
u2

b3 dx +
1
4

∫
R3

φub2
u2

b3 dx.

Consequently, from the above inequality, we obtain

mb ≤ Ib(svub1 + tvub2 )

= Ib(svub1 + tvub2 ) –
1
4
〈
I ′

b(svub1 + tvub2 ), svub1 + tvub2

〉
=

s2
v‖ub1‖2 + t2

v ‖ub2‖2

4
+

∫
R3

(
1
4

f (svub1 )svub1 – F(svub1 )
)

dx

+
∫
R3

(
1
4

f (tvub2 )tvub2 – F(tvub2 )
)

dx

≤ ‖ub1‖2 + ‖ub2‖2

4

+
∫
R3

(
1
4

f (ub1 )ub1 – F(ub1 )
)

dx +
∫
R3

(
1
4

f (ub2 )ub2 – F(ub2 )
)

dx

= Ib(ub1 + ub2 ) –
1
4
〈
I ′

b(ub1 + ub2 ), ub1 + ub2

〉
< Ib(ub1 ) + Ib(ub2 ) + Ib(ub3 ) +

1
4

∫
R3

φub2
u2

b1 dx +
1
4

∫
R3

φub3
u2

b1 dx

+
1
4

∫
R3

φub1
u2

b2 dx +
1
4

∫
R3

φub3
u2

b2 dx +
1
4

∫
R3

φub1
u2

b3 dx +
1
4

∫
R3

φub2
u2

b3 dx

+
b
2

∫
R3

|∇ub1 |2 dx
∫
R3

|∇ub3 |2 dx +
b
2

∫
R3

|∇ub2 |2 dx
∫
R3

|∇ub3 |2 dx

+
b
2

∫
R3

|∇ub1 |2 dx
∫
R3

|∇ub2 |2 dx

= Ib(ub)

= mλ,

which is impossible. Thus, ub has exactly two nodal domains. �

Proof of Theorem 1.2 Similar to the proof of Lemma 2.2, for each b > 0, there exists vb ∈Nb

so that Ib(vb) = cb > 0. By standard arguments, it is easy to see that the critical points of
Ib on Nb are critical points of Ib in H , that is, I ′

b(vb) = 0. Therefore, v0 is a ground-state
solution of (1.1).

According to Theorem 1.1, problem (1.1) has a sign-changing solution ub which changes
sign only once. Let ub = u+

b + u–
b , as in the proof of Lemma 2.1, there exist unique su+

b
> 0

and tu–
b

> 0 such that

su+
b
u+

b ∈Nb, tu–
b
u–

b ∈Nb.
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Thanks to 〈I ′
b(u+

b ), u+
b〉 < 0, 〈I ′

b(u–
b ), u–

b 〉 < 0, and similar to proof in Lemma 2.2, we obtain
su+

b
∈ (0, 1) and tu–

b
∈ (0, 1).

Thus, by (ii) of Lemma 2.1, one has

2cb ≤ Ib
(
su+

b
u+

b
)

+ Ib
(
tu–

b
u–

b
) ≤ Ib

(
su+

b
u+

b + tu–
b
u–

b
)

< Ib
(
u+

b + u–
b
)

= mb.

It follows that cb > 0, which cannot be achieved by a sign-changing function. �

Lastly, we shall analyze the asymptotic behavior of ub as b → 0. In the following, we
regard b > 0 as a parameter in problem (1.1).

Proof of Theorem 1.3 For any b > 0, let ub ∈ H be the least-energy sign-changing solution
of (1.1) obtained in Theorem 1.1. We shall proceed through three steps to complete the
proof.

Step 1. If bn → 0 as n → ∞, then {ubn} is bounded in H .
Choose a nonzero function η ∈ C∞

c (R3) with η± �= 0. In view of (f3), for any b ∈ [0, 1],
there is a pair (λ1,λ2) ∈ (R+ ×R+) independent of b, such that

〈
I ′

b
(
λ1η

+ + λ2η
–)

,λ1η
+〉

< 0

and

〈
I ′

b
(
λ1η

+ + λ2η
–)

,λ2η
–〉

< 0.

Hence, according to Lemma 2.1 and similar to the proof in Lemma 2.2, for any b ∈ [0, 1],
there exists a unique pair (sη(b), tη(b)) ∈ (0, 1] × (0, 1] so that

η̄ := sη(b)λ1η
+ + tη(b)λ2η

– ∈Mb. (3.9)

Thus, for any b ∈ [0, 1], we have

Ib(ub) ≤ Ib(η̄) = Ib(η̄) –
1
4
〈
I ′

b(η̄), η̄
〉

=
1
4
‖η̄‖2 +

1
4

∫
R3

(
f (η̄)η̄ – 4F(η̄)

)
dx

≤ 1
4
‖η̄‖2 +

1
4

∫
R3

(
C1η̄

2 + C2η̄
6)dx

≤ 1
4
∥∥λ1η

+∥∥2 +
1
4
∥∥λ2η

–∥∥2 +
1
4

∫
R3

(
C1λ

2
1
∣∣η+∣∣2 + C1λ

2
2
∣∣η–∣∣2)dx

+
1
4

∫
R3

(
C2λ

6
1
∣∣η+∣∣6 + C2λ

6
2
∣∣η–∣∣6)dx

:= C∗, (3.10)

where C∗ does not depend on b. So, letting n → ∞, it follows that

C∗ + 1 ≥ Ibn (ubn ) = Ibn (ubn ) –
1
4
〈
I ′

bn (ubn ), ubn

〉 ≥ 1
4
‖ubn‖2, (3.11)
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which implies that {ubn} is bounded in H .
Step 2. Problem (1.10) possesses one sign-changing solution u0.
Since {ubn} is bounded in H according to Claim 1, going if necessary to a subsequence,

there exists u0 ∈ H such that

ubn ⇀ u0 in H ,

ubn → u0 in Lq(
R

3) for q ∈ (2, 6), (3.12)

ubn → u0 a.e. in R
3.

We assert that u0 is a weak solution of (1.10). In fact, because ubn is the sign-changing
solution of (1.1) with b = bn, then, by (3.12), we have

‖ubn – u0‖2 =
〈
I ′

bn (ubn ) – I ′
0(u0), ubn – u0

〉
– bn

∫
R3

|∇ubn |2 dx
∫
R3

∇ubn (∇ubn – ∇u0) dx

–
∫
R3

φubn ubn (ubn – u0) dx +
∫
R3

f (ubn )(ubn – u0) dx

–
∫
R3

f (u0)(ubn – u0) dx → 0, as n → ∞.

So, u0 �= 0 and u0 changes sign only once.
Step 3. Problem (1.10) possesses a least-energy sign-changing solution v0. Furthermore,

there exists a unique pair (sbn , tbn ) ∈ [0,∞) × [0,∞) such that sbn v+
0 + tbn v–

0 ∈ Mbn and
(sbn , tbn ) → (1, 1) as n → ∞.

With a similar argument to the proof of Theorem 1.1, we see that (1.10) possesses a
least-energy sign-changing solution v0 (for the existence of v0, we also refer to [46]), where
Iλ

0 (v0) = cλ
0 and (Iλ

0 )′(v0) = 0.
Hence, by Lemma 2.1, it is easy to see that there uniquely exists the pair (sbn , tbn ) ∈

(0,∞) × (0,∞) such that sbn v+
0 + tbn v–

0 ∈Mbn . Then we have

(sbn )2∥∥v+
0
∥∥2 + bn(sbn )4

(∫
R3

∣∣∇v+
0
∣∣2 dx

)2

+ bn(sbn tbn )2
∫
R3

∣∣∇v+
0
∣∣2 dx

∫
R3

∣∣∇v–
0
∣∣2 dx

+ (sbn )4
∫
R3

φv+
0

∣∣v+
0
∣∣2 dx + (sbn tbn )2

∫
R3

φv–
0

∣∣v+
0
∣∣2 dx

=
∫
R3

f
(
sbn v+

0
)
sbn v+

0 dx, (3.13)

(tbn )2∥∥v–
0
∥∥2 + bn(tbn )4

(∫
R3

∣∣∇v–
0
∣∣2 dx

)2

+ bn(tbn sbn )2
∫
R3

∣∣∇v+
0
∣∣2 dx

∫
R3

∣∣∇v–
0
∣∣2 dx

+ (tbn )4
∫
R3

φv–
0

∣∣v–
0
∣∣2 dx + (tbn sbn )2

∫
R3

φv+
0

∣∣v–
0
∣∣2 dx

=
∫
R3

f
(
tbn v–

0
)
sbn v–

0 dx. (3.14)
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According to (f3), (f4) and bn → 0 as n → ∞, {sbn} and {tbn} are bounded. Up to a sub-
sequence, suppose that sbn → s0 and tbn → t0, then it follows from (3.13) and (3.14) that

s2
0
∥∥v+

0
∥∥2 + s4

0

∫
R3

φv+
0

∣∣v+
0
∣∣2 dx + s2

0t2
0

∫
R3

φv–
0

∣∣v+
0
∣∣2 dx+ =

∫
Ω

f
(
x, s0v+

0
)
s0v+

0 dx (3.15)

and

t2
0
∥∥v–

0
∥∥2 + t4

0

∫
R3

φv–
0

∣∣v–
0
∣∣2 dx + s2

0t2
0

∫
R3

φv+
0

∣∣v–
0
∣∣2 dx =

∫
Ω

f
(
x, t0v–

0
)
t0v–

0 dx. (3.16)

Thanks to v0 being a sign-changing solution of problem (1.10), we get

∥∥v+
0
∥∥2 +

∫
R3

φv+
0

∣∣v+
0
∣∣2 dx +

∫
R3

φv–
0

∣∣v+
0
∣∣2 dx =

∫
Ω

f
(
x, v+

0
)
v+

0 dx (3.17)

and

∥∥v–
0
∥∥2 +

∫
R3

φv–
0

∣∣v–
0
∣∣2 dx +

∫
R3

φv+
0

∣∣v–
0
∣∣2 dx =

∫
Ω

f
(
x, v–

0
)
v–

0 dx. (3.18)

Then, by (3.15)–(3.18), it is easy to see that (s0, t0) = (1, 1).
Now, we prove that u0 is a least-energy sign-changing solution of (1.10) in H which

changes sign only once. According to Lemma 2.1, we derive that

I0(v0) ≤ I0(u0) = lim
n→∞ Ibn (ubn ) = lim

n→∞ Ibn

(
u+

bn + u–
bn

)
≤ lim

n→∞ Ibn

(
sbn v+

0 + tbn v–
0
)

= I0
(
v+

0 + v–
0
)

= I0(v0). (3.19)

The proof is thus complete. �
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