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Abstract
This paper is concerned with the impact of the parameter on the existence of
different types of solutions for a class of nonlinear fractional integral boundary value
problems with a parameter that causes the sign of Green’s function associated with
the BVP to change. By using the Guo–Krasnoselskii fixed point theorem, the
Leray–Schauder nonlinear alternative, and the analytic technique, we give the range
of the parameter for the existence of strong positive solutions, strong negative
solutions, negative solutions, and sign-changing solutions for the boundary value
problem. Some examples are given to illustrate our main results.
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1 Introduction and preliminaries
Fractional differential equations are recognized as adequate mathematical models to study
some materials and processes that have memory and hereditary properties. Much effort
has been devoted to this topic in the last ten years. As a result, this theory has become
an important area of investigation in differential equation theories. For a small sample of
such work, we refer the reader to the monographs [1–4] and the papers [5–18].

Because of the extensive application in mathematics and the applied science, fractional
boundary value problems with parameters have attracted considerable attention and ob-
tained some interesting results; see, for instance, the works of Bai [19], Song and Bai [20],
Jiang [21], Sun et al. [22], Zhai and Xu [23], and Zhang and Liu [24] on the eigenvalue
problems; the works of Jia and Liu [25], Wang and Liu [26], Su et al. [27], and Li et al. [28]
on the problems with disturbance parameters in the boundary conditions; and the work
of Wang and Guo [29] on the eigenvalue problems with a disturbance parameter in the
boundary conditions.

At the same time, we also notice that another type of fractional integral boundary value
problems with μ in the boundary conditions has received much attention; see [30–33]
and the references therein. Bashir Ahmad et al. [30] studied the fractional boundary value
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problem given by

⎧
⎨

⎩

Dq
0+ x(t) = f (t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = μ
∫ η

0 x(s) ds, 0 < η < 1,

where μ ∈ � and μ �= 2
η2 , and obtained the existence and uniqueness results of solutions by

using Banach’s fixed point theorem, Krasnoselskii’s fixed point theorem, and the Leray–
Schauder degree theory. Zhang et al. [31] applied fixed point index theory to investigate
the existence of positive solutions for the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + h(t)f (t, x(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

x(0) = x′(0) = x′′(0) = 0,

x(1) = μ
∫ η

0 x(s) ds, 0 ≤ μηα

α
< 1, 0 < η ≤ 1.

He [32] discussed the existence of positive solutions for the fractional differential equa-
tions

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ x(t) + f (t, x(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

x′′(0) = x′′′(0) = 0,

x′(0) = x(1) = μ
∫ 1

0 x(s) ds, 0 < μ < 2

by the Leray–Schauder nonlinear alternative and a fixed-point theorem in cones. Wang et
al. [33] investigated the existence of positive solutions for the problem given by

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ x(t) + λf (t, x(t)) = 0, 0 < t < 1, n < α ≤ n + 1, n ≥ 2, n ∈ N ,

x(0) = x′′(0) = x′′′(0) = · · · = x(n)(0) = 0,

x(1) = μ
∫ 1

0 x(s) ds, 0 < μ < 2

by the Guo–Krasnoselskii fixed point theorem.
We notice that the letter μ in [30–33] is essentially treated as a constant rather than a pa-

rameter, especially it is required to guarantee the nonnegativity of corresponding Green’s
function in [31–33]. In fact, when the above μ is a parameter, it is inevitable that it has
great influence on the property of Green’s function associated with the boundary value
problem. It is well known that the property of Green’s function is crucial to studying the
property of solutions for boundary value problems. Thus, it is natural to ask what effect
the parameter μ has on properties of solutions. This is a very significant topic, but to the
best of author’s knowledge, there are no papers reported on it.

Motivated by the above-mentioned works, in this paper we will study the following frac-
tional integral boundary value problem (BVP) with a parameter μ:

⎧
⎨

⎩

CDα
0+ x(t) + f (t, x(t)) = 0, 0 < t < 1,

x′(0) = 0, x(1) = μ
∫ 1

0 x(s) ds,
(1)

where CDα
0+ is the Caputo fractional derivative of order α, 1 < α < 2; f ∈ C([0, 1] ×

�,�+),�+ = [0, +∞) and μ > 0.
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Different from the literature [30–33], the purpose of this paper is to divide the range of
the parameter μ for the existence of strong positive solutions, strong negative solutions,
negative solutions, and sign-changing solutions for BVP (1). The main tools used in this
paper are the Guo–Krasnoselskii fixed point theorem, the Leray–Schauder nonlinear al-
ternative, and the analytic technique.

The Guo–Krasnoselskii fixed point theorem has been extensively applied to discuss the
existence and multiplicity of positive solutions for boundary value problems, see for in-
stance [26, 32], and [33]. However, to our knowledge, there are no papers to apply this
theorem to study the existence of solutions for problems such as BVP (1) where the sign
of its corresponding Green’s function is changing. So, this fixed point theorem may be the
first time to be applied to discuss the existence of various solutions for such problems.

The paper is organized as follows. In Sect. 2, we establish the integral equation and the
operator equation equivalent to BVP (1). In particular, we present some properties of the
corresponding Green’s function. In Sect. 3, we give the range of the parameter μ on the
existence of strong positive solutions, strong negative solutions, negative solutions, and
sign-changing solutions for BVP (1). These results show the impact of the parameter μ on
the existence of different types of solutions. Finally, two examples are given to illustrate
our main results.

A function x is called a solution of BVP (1) if x ∈ AC2[0, 1],C Dα
0+ x(t) ∈ C[0, 1] and satis-

fies BVP (1). Let x be a solution of BVP (1), x is called a strong positive solution (strong
negative solution) if x(t) > 0(x(t) < 0) for t ∈ [0, 1]; x is called a negative solution if x(t) ≤ 0
and x(t) �≡ 0 for t ∈ [0, 1]; x is called a non-positive solution if x(t) ≤ 0 for t ∈ [0, 1]; and x
is called a sign-changing solution if there exist t1, t1 ∈ [0, 1] such that x(t1)x(t2) < 0.

To be clear, we present some basic notations and results from fractional calculus theory.

Definition 1.1 ([1–4]) Let x : (0, +∞) → R be a function and α > 0. The Riemann–
Liouville fractional integral of order α of x is defined by

Iα
0+ x(t) =

1
Γ (α)

∫ t

0
(t – s)α–1x(s) ds,

provided that the integral exists. The Caputo fractional derivative of order α of x is defined
by

CDα
0+ x(t) =

1
Γ (n – α)

∫ t

0
(t – s)n–α–1x(n)(s) ds,

provided that the right-hand side is pointwise defined on (0, +∞), where n = [α]+1, n–1 <
α < n, and Γ (α) denotes the gamma function. If α = n, then CDα

0+ x(t) = x(n)(t).

Lemma 1.2 ([1–4]) If x ∈ Cn[0, 1], then

Iα
0+

CDα
0+ x(t) = x(t) + c0 + c1t + c2t2 + · · · + cn–1tn–1,

where n is the smallest integer greater than or equal to α.
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Lemma 1.3 ([1]) If x ∈ ACn[0, 1], then the Caputo fractional derivative CDα
0+ x(t) exists

almost everywhere on [0, 1], where

ACn[0, 1] =
{

x ∈ Cn–1[0, 1]|x(n–1) is absolutely continuous
}

and n is the smallest integer greater than or equal to α.

In the rest of this section, we present some notations on cone theory and some known
results on fixed points theory. For details on cone theory, see [34] and [35].

Let E be a real Banach space and θ be the zero element of E. Recall that a nonempty
closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P,λ ≥ 0 ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒
x = θ . Obviously, if P is a cone in E, then –P = {x ∈ E|–x ∈ P} is a cone of E, also.

Lemma 1.4 ([34, 35] (Guo–Krasnoselskii)) Let P be a cone in a real Banach space E
and Ω1, Ω2 be bounded open subsets in E with θ ∈ Ω1,Ω1 ⊂ Ω2. Assume that T : P ∩
(Ω2\Ω1) → P is a completely continuous operator such that

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2, or
(ii) ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

Lemma 1.5 ([36]) Let E be a Banach space, X be a convex set of E, D be a relatively open
subset of X, and θ ∈ D. Suppose that T : D → X is a continuous, compact map, then either
(i) T has a fixed point in D, or (ii) there exist u ∈ ∂D and λ ∈ (0, 1) with u = λTu.

According to the fixed point index theory, it is easy to see the following result.

Lemma 1.6 Let P be a cone in a real Banach space E and Ω be bounded open subsets in
E with θ ∈ Ω . Assume that T : P ∩ Ω → P is a completely continuous operator such that
‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω , then T has a fixed point in P ∩ Ω .

2 Green’s function and equivalent equation
In this section, we apply Lemmas 1.2 and 1.3 to obtain the integral equation and the opera-
tor equation equivalent to BVP (1) and present the properties of its corresponding Green’s
function.

Lemma 2.1 For any given μ �= 1, xμ is a solution of BVP (1) if and only if xμ ∈ C[0, 1] is a
solution of the following integral equation:

xμ(t) =
∫ 1

0
Gμ(t, s)f

(
s, xμ(s)

)
ds, (2)

where

Gμ(t, s) = G0(t, s) +
μ

1 – μ

∫ 1

0
G0(τ , s) dτ , (3)

G0(t, s) =
1

Γ (α)

⎧
⎨

⎩

(1 – s)α–1 – (t – s)α–1, 0 ≤ s < t ≤ 1,

(1 – s)α–1, 0 ≤ t ≤ s < 1.
(4)
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Proof If x ∈ C[0, 1] is a solution of (1), from Lemma 1.2 we get

x(t) = –Iα
0+ f

(
t, x(t)

)
+ c0 + c1t,

x′(t) = –Iα–1
0+ f

(
t, x(t)

)
+ c1.

By y(t) we denote f (t, x(t)), then y(t) is continuous on [0, 1]. Since
∫ 1

0 (1 – s)α–2 ds is conver-
gent, x′(0) = 0, and x(1) = μ

∫ 1
0 x(s) ds, we obtain c1 = 0 and c0 = Iα

0 y(1) + μ
∫ 1

0 x(s) ds, which
means that

x(t) =
∫ 1

0
G0(t, s)y(s) ds + μ

∫ 1

0
x(s) ds. (5)

Moreover,

∫ 1

0
x(s) ds =

1
1 – μ

∫ 1

0

∫ 1

0
G0(τ , s)y(s) dτ ds.

Substituting the value into (5), we can obtain that the solution x ∈ C[0, 1] satisfies (2).
On the other hand, if x ∈ C[0, 1] is the solution of (2), then

x(t) =
1

Γ (α)

(∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds –

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

)

+ μ

∫ 1

0
x(s) ds,

x′(t) = –
1

Γ (α – 1)

∫ t

0
(t – s)α–2f

(
s, x(s)

)
ds.

It is easy to see that x′ ∈ AC[0, 1] and x ∈ AC2[0, 1]. From Lemma 1.3 we obtain that CDα
0+ x

exists almost everywhere on [0, 1]. Note that

x′′(t) = –
d
dt

(
1

Γ (α – 1)

∫ t

0
(t – s)α–2f

(
s, x(s)

)
ds

)

= –
d
dt

Iα–1
0+ f

(
t, x(t)

)
,

we conclude that

CDα
0+ x(t) = I2–α

0+ x′′(t) = –I1–(α–1)
0+

d
dt

Iα–1
0+ f

(
t, x(t)

)

= –CDα–1
0+ Iα–1

0+ f
(
t, x(t)

)
= –f

(
t, x(t)

)
,

and x is the solution of BVP (1). The proof is complete. �

Remark 2.2 It follows from (3) and (4) that

Gμ(t, s) =
1

Γ (α)

⎧
⎨

⎩

1
1–μ

[(1 – s)α–1 – μ

α
(1 – s)α] – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

1
1–μ

[(1 – s)α–1 – μ

α
(1 – s)α], 0 ≤ t ≤ s ≤ 1.

(6)

Lemma 2.3 Gμ(t, s) is continuous on [0, 1]× [0, 1] for every μ �= 1; and Gμ(t, s) is monotone
decreasing with respect to t for every s ∈ [0, 1] and μ �= 1. Moreover,

(i) for 0 < μ < 1,

0 ≤ μ(α – 1)
(1 – μ)Γ (α + 1)

(1 – s)α–1 ≤ Gμ(t, s) ≤ 1
(1 – μ)Γ (α)

(1 – s)α–1, t, s ∈ [0, 1];
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(ii) for 1 < μ < α,

–μ

(μ – 1)Γ (α)
(1 – s)α–1 ≤ Gμ(t, s) ≤ –(α – μ)

(μ – 1)Γ (α + 1)
(1 – s)α–1 ≤ 0, t, s ∈ [0, 1];

(iii) for μ = α,

–μ

(μ – 1)Γ (α)
(1 – s)α–1 ≤ Gμ(t, s) ≤ –μs

(μ – 1)Γ (α)
(1 – s)α–1 ≤ 0, t, s ∈ [0, 1];

(iv) for μ > α, Gμ(0, 0) > 0, Gμ(1, 0) < 0, and

μ(1 – α – s)
Γ (α + 1)(μ – 1)

(1 – s)α–1 ≤ Gμ(t, s) ≤ μ(1 – s – α
μ

)
Γ (α + 1)(μ – 1)

(1 – s)α–1, t, s ∈ [0, 1].

Moreover, there exist σ1,σ2 ∈ (0, 1) with σ1 < σ2 and 0 < γ < 1 such that Gμ(t, s) ≤ 0 for
(t, s) ∈ [σ1,σ2] × [0, 1], and

min
σ1≤t≤σ2

∣
∣Gμ(t, s)

∣
∣ ≥ μ

Γ (α + 1)(μ – 1)

⎧
⎨

⎩

γ , 0 ≤ s ≤ σ2,

|1 – s – α
μ
|(1 – s)α–1, σ2 < s ≤ 1.

(7)

Proof For μ �= 1, it is obvious from (6) that

Gμ(1, s) ≤ Gμ(t, s) ≤ Gμ(s, s), t, s ∈ [0, 1], (8)

where

Gμ(1, s) =
μ(α – 1 + s)

(1 – μ)Γ (α + 1)
(1 – s)α–1, s ∈ [0, 1],

Gμ(s, s) = Gμ(0, s) =
μ( α

μ
– 1 + s)

(1 – μ)Γ (α + 1)
(1 – s)α–1, s ∈ [0, 1].

In addition, note that Gμ(s, s) = –s
(μ–1)Γ (α) (1 – s)α–1 for μ = α, then it is easy to verify con-

clusions (i), (ii), and (iii). Next, let us prove conclusion (iv).
When μ > α, it is easy to check that Gμ(0, 0) = 1

(1–μ))Γ (α) (1 – μ

α
) > 0, Gμ(1, 0) =

μ

(1–μ))Γ (α) (1 – 1
α

) < 0. Let

gμ(s) =
(

1 –
α

μ
– s

)

(1 – s)α–1 and g(s) = (1 – α – s)(1 – s)α–1, s ∈ [0, 1].

From (6), Gμ(t, s) can be written as follows:

Gμ(t, s) =
1

Γ (α)

⎧
⎨

⎩

μ

α(μ–1) gμ(s) – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,
μ

α(μ–1) gμ(s), 0 ≤ t ≤ s ≤ 1.
(9)

Moreover,

μ

Γ (α + 1)(μ – 1)
g(s) ≤ Gμ(t, s) ≤ μ

Γ (α + 1)(μ – 1)
gμ(s), t, s ∈ [0, 1]. (10)
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Since

g ′
μ(s) = (1 – s)α–2α

(

s – 1 +
α – 1

μ

)

and g ′(s) = α(1 – s)α–2(s – 2 + α),

it is easy to check that g(s) ≤ 0 and g(s) ≤ gμ(s) for s ∈ [0, 1], and

gμ(s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 and monotone decreasing on [0, 1 – α
μ

],

= 0 for s = 1 – α
μ

,

< 0 and monotone decreasing on (1 – α
μ

, 1 – α–1
μ

],

= – 1
μ

( α–1
μ

)α–1 for s = 1 – α–1
μ

(the minimal value of gμ),

< 0 and monotone increasing on [1 – α–1
μ

, 1);

g(s)

⎧
⎪⎪⎨

⎪⎪⎩

< 0 and monotone decreasing on [0, 2 – α],

= –(α – 1)α–1 for s = 2 – α (the minimal value of g),

< 0 and monotone increasing on [2 – α, 1).

Thus, we obtain that |gμ(s)|, |g(s)| < 1 for s ∈ [0, 1] and |gμ(s)| ≤ |g(s)| for s ∈ [1 – α–1
μ

, 1].
This, together with (10), leads to

∣
∣Gμ(t, s)

∣
∣ ≤ μ

Γ (α + 1)(μ – 1)

⎧
⎨

⎩

1, 0 ≤ s ≤ 1 – α–1
μ

,

|g(s)|, 1 – α–1
μ

< s ≤ 1,
∀t ∈ [0, 1], (11)

and

∣
∣Gμ(t, s)

∣
∣ ≤ μ

Γ (α + 1)(μ – 1)
, ∀(t, s) ∈ [0, 1] × [0, 1]. (12)

Set σ1 = μ–α

μ–1 = 1 – α–1
μ–1 and σ2 = 1 – α–1

μ
, then 1 – α

μ
< σ1 < σ2 < 1. For any given t ∈ [σ1,σ2],

by (9) we have

Gμ(t, s) =
1

Γ (α)

⎧
⎨

⎩

μ

α(μ–1) gμ(s) – (t – s)α–1, 0 ≤ s ≤ t,
μ

α(μ–1) gμ(s), t ≤ s ≤ 1.
(13)

In particular, we claim that Gμ(σ1, s) ≤ 0 for s ∈ [0, 1]. Indeed, it is evident that

Gμ(σ1, 0) = –
μ – α

Γ (α + 1)(μ – 1)

(

α

(
μ – 1
μ – α

)2–α

– 1
)

< 0,

Gμ(σ1,σ1) = –
μ – α

Γ (α + 1)(μ – 1)2

(
α – 1
μ – 1

)α–1

< 0,

and Gμ(σ1, 1) = 0. This, together with

∂2Gμ(σ1, s)
∂s2 > 0, s ∈ [0,σ1) ∪ (σ1, 1), (14)
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yields that Gμ(σ1, s) ≤ 0 for 0 ≤ s ≤ 1. Moreover, for any σ1 ≤ t ≤ σ2, we have

Gμ(σ2, s) ≤ Gμ(t, s) ≤ Gμ(σ1, s) ≤ 0, 0 ≤ s ≤ 1.

This, together with (10) and (13), yields that, for any σ1 ≤ t ≤ σ2,

μ

Γ (α + 1)(μ – 1)
g(s) ≤ Gμ(t, s) ≤ Gμ(σ1, s) ≤ 0, 0 ≤ s ≤ σ2,

and

Gμ(t, s) =
μ

Γ (α + 1)(μ – 1)
gμ(s), σ2 < s ≤ 1.

In addition, noting (14) and the following inequality

Gμ(σ1,σ1) =
μ

Γ (α + 1)(μ – 1)
gμ(σ1) >

μ

Γ (α + 1)(μ – 1)
gμ(σ2) = Gμ(σ1,σ2),

we obtain that

min
σ1≤t≤σ2

∣
∣Gμ(t, s)

∣
∣ = min

σ1≤t≤σ2

(
–Gμ(t, s)

)
=

μ

Γ (α + 1)(μ – 1)
∣
∣gμ(s)

∣
∣, σ2 < s ≤ 1,

and

min
σ1≤t≤σ2

∣
∣Gμ(t, s)

∣
∣ = min

σ1≤t≤σ2

(
–Gμ(t, s)

)

≥ min
{∣
∣Gμ(σ1, 0)

∣
∣,

∣
∣Gμ(σ1,σ1)

∣
∣,

∣
∣Gμ(σ1,σ2)

∣
∣
}

= min
{∣
∣Gμ(σ1, 0)

∣
∣,

∣
∣Gμ(σ1,σ1)

∣
∣
}

=
μγ

Γ (α + 1)(μ – 1)
, 0 ≤ s ≤ σ2,

where

γ = min

{
μ – α

μ

(

α

(
μ – 1
μ – α

)2–α

– 1
)

,
μ – α

μ(μ – 1)

(
α – 1
μ – 1

)α–1}

, (15)

and 0 < γ < 1. So, (7) holds. This completes the proof.
Set E = C[0, 1], the Banach space of all continuous functions on [0, 1] with the norm

‖x‖ = max{|x(t)||t ∈ [0, 1]}. Let

P =
{

x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]
}

,

then P and –P are cones in E. In addition, we set

P1μ =
{

x ∈ P
∣
∣x(t) ≥ μ(α – 1)

α
‖x‖, t ∈ [0, 1]

}

, 0 < μ < 1,

P2μ =
{

x ∈ –P
∣
∣–x(t) ≥ α – μ

αμ
‖x‖, t ∈ [0, 1]

}

, 1 < μ < α,
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and

Kμ =
{

x ∈ C[0, 1]
∣
∣
∣–x(t) ≥ γ

μα
‖x‖,σ1 ≤ t ≤ σ2

}

, μ > α,

where σ1 = 1 – α–1
μ–1 , σ2 = 1 – α–1

μ
, and γ is given as (15). �

Lemma 2.4 P1μ ⊂ P, P2μ ⊂ –P, and Kμ are all cones in E.

Proof It is clear that P1μ ⊂ P and P2μ ⊂ –P are cones in E. Next we prove that Kμ is a cone
in E. Indeed, it is easy to verify that (i) Kμ is a nonempty closed convex subset in E; and (ii)
λ ≥ 0 and x ∈ Kμ ⇒ λx ∈ Kμ. So, we only need to show that if x ∈ Kμ and –x ∈ Kμ, then
x = θ . If otherwise, we have ‖x‖ > 0. This, together with x ∈ Kμ and –x ∈ Kμ, implies that
–x(t) ≥ γ

μα
‖x‖ > 0 and –(–x(t)) = x(t) ≥ γ

μα
‖x‖ > 0 for σ1 ≤ t ≤ σ2, this is a contradiction.

So, Kμ is a cone in E. The proof is complete. �

Define the operator Tμ : C[0, 1] → C[0, 1] by

(Tμx)(t) =
∫ 1

0
Gμ(t, s)f

(
s, x(s)

)
ds, x ∈ C[0, 1]. (16)

For any μ �= 1, it is clear by Lemma 2.1 that xμ is a solution of BVP (1) ⇔ xμ is a fixed point
of Tμ in E.

Lemma 2.5 The operator Tμ : E → E is completely continuous.

Proof The proof is similar to that of Lemma 2.2 in [29]. �

Lemma 2.6 (i) Tμ(E) ⊂ P1μ for μ ∈ (0, 1); (ii) Tμ(E) ⊂ P2μ for μ ∈ (1,α); and (iii) Tμ(E) ⊂
Kμ for μ ∈ (α, +∞).

Proof (i) Given μ ∈ (0, 1). It is clear from Lemma 2.3(i) that Tμ(E) ⊂ P. Moreover, for any
x ∈ P, we have

‖Tμx‖ ≤ 1
(1 – μ)Γ (α)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds.

This, together with Lemma 2.3(i), yields that

(Tμx)(t) ≥ μ(α – 1)
(1 – μ)Γ (α + 1)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds

≥ μ(α – 1)
α

‖Tμx‖, t ∈ [0, 1],

which implies that Tμ(P) ⊂ P1μ. Consequently, we have Tμ(E) ⊂ P1μ.
(ii) Given μ ∈ (1,α). Arguing similarly as above (i), we can obtain Tμ(E) ⊂ P2μ.
(iii) Given μ ∈ (α, +∞). For any x ∈ E, from (11), we have

‖Tμx‖ ≤ μ

(μ – 1)Γ (α + 1)

(∫ σ2

0
f
(
s, x(s)

)
ds +

∫ 1

σ2

∣
∣g(s)

∣
∣f

(
s, x(s)

)
ds

)

.
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On the other hand, since

min
s∈[σ2,1]

|1 – s – α
μ
|

|1 – α – s| ≥ 1
αμ

,

we have |gμ(s)| ≥ 1
αμ

|g(s)| for s ∈ [σ2, 1]. This, together with Lemma 2.3(iv), yields that

–(Tμx)(t) ≥ μ

(μ – 1)Γ (α + 1)

(

γ

∫ σ2

0
f
(
s, x(s)

)
ds +

∫ 1

σ2

∣
∣gμ(s)

∣
∣f

(
s, x(s)

)
ds

)

≥ μ

(μ – 1)Γ (α + 1)

(

γ

∫ σ2

0
f
(
s, x(s)

)
ds +

1
μα

∫ 1

σ2

∣
∣g(s)

∣
∣f

(
s, x(s)

)
ds

)

≥ γ

μα
‖Tμx‖, ∀σ1 ≤ t ≤ σ2.

This gives that Tμ(E) ⊂ Kμ. The proof is complete. �

Throughout this paper, we always use the following denotations:

Ωr =
{

x ∈ E|‖x‖ < r
}

, ∂Ωr =
{

x ∈ E|‖x‖ = r
}

, Ωr = Ωr ∪ ∂Ωr , r > 0,

and

f 0 = lim sup
|x|→0

max
t∈[0,1]

f (t, x)
|x| , f0 = lim inf|x|→0

min
t∈[0,1]

f (t, x)
|x| ,

f ∞ = lim sup
|x|→∞

max
t∈[0,1]

f (t, x)
|x| , f∞ = lim inf|x|→∞ min

t∈[0,1]

f (t, x)
|x| .

3 Existence results of various types of solutions
In this section, we first discuss the property of solutions for BVP (1) and then give the
interval of the parameter μ on the existence of at least one strong positive solution, strong
negative solution, non-positive solution, negative solution, and sign-changing solution.

Lemma 3.1 If xμ is a solution of BVP (1) for μ �= 1, then xμ(t) is decreasing with respect to
t for t ∈ [0, 1].

Proof It follows from (6) and (16) that

xμ(t) =
∫ 1

0
Gμ(s, s)f

(
s, xμ(s)

)
ds –

1
Γ (α)

∫ t

0
(t – s)α–1f

(
s, xμ(s)

)
ds; (17)

moreover,

x′
μ(t) = –

α – 1
Γ (α)

∫ t

0
(t – s)α–2f

(
s, xμ(s)

)
ds ≤ 0, t ∈ [0, 1],

which implies that the solution xμ(t) is decreasing on [0, 1]. This ends the proof. �

According to Lemma 2.6 and Lemma 2.3(iii), we can obtain the following result.
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Lemma 3.2 If xμ is a solution of BVP (1) for μ �= 1, then xμ ∈ P1μ, xμ ∈ P2μ, xμ ∈ –P, and
xμ ∈ Kμ for μ ∈ (0, 1), μ ∈ (1,α), μ = α, and μ ∈ (α, +∞), respectively.

The following conditions will be used.
(L1) f0 = +∞, f ∞ = 0;
(L2) f 0 = 0, f∞ = +∞;
(H) f (t, 0) �≡ 0 on [0, 1].

It is interesting to point out that (H) is independent of f0 = +∞. For example, let f (t, x) =
(t + 1)

√|x|, then f0 = lim inf|x|→0 mint∈[0,1]
f (t,x)
|x| = +∞, but f (t, 0) ≡ 0. So f0 = +∞ � (H).

On the other hand, let f (t, x) = t + x2, then f (t, 0) = t �≡ 0, but f0 = 0. This means that (H) �
f0 = +∞.

For any given x ∈ C[0, 1], set

ILx =
{

μ ∈ (α, +∞)
∣
∣
∣μ

∫ 1

0
(1 – s)αf

(
s, x(s)

)
ds < α

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds

}

,

IEx =
{

μ ∈ (α, +∞)
∣
∣
∣μ

∫ 1

0
(1 – s)αf

(
s, x(s)

)
ds = α

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds

}

,

IGx =
{

μ ∈ (α, +∞)
∣
∣
∣μ

∫ 1

0
(1 – s)αf

(
s, x(s)

)
ds > α

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds

}

,

then ILx ∪ IEx ∪ IGx = (α, +∞).

Theorem 3.3 Suppose that (L1) holds. Then BVP (1) has at least one solution xμ for
any μ �= 1; in particular, xμ is a strong positive solution, a strong negative solution, a
non-positive solution, a negative solution, and a sign-changing solution for μ ∈ (0, 1),
μ ∈ (1,α) ∪ ILxμ , μ = α, μ ∈ IExμ , and μ ∈ IGxμ , respectively.

Proof We prove all the statements in four steps.
(i) Given μ ∈ (0, 1). According to Lemma 2.6, we only need to find a fixed point of Tμ in

P1μ. Since f0 = +∞, there exists r1 > 0 such that

f (t, x) ≥ (1 – μ)α2Γ (α + 1)
μ2(α – 1)2 x, ∀x ∈ [0, r1], t ∈ [0, 1].

This, together with Lemma 2.3(i) and the definition of P1μ, leads to

(Tμx)(t) ≥ α2

μ(α – 1)

∫ 1

0
(1 – s)α–1x(s) ds ≥ ‖x‖, ∀x ∈ P1μ ∩ ∂Ωr1 ,

which means that

‖Tμx‖ ≥ ‖x‖, ∀x ∈ P1μ ∩ ∂Ωr1 .

On the other hand, it follows from f ∞ = 0 that there exists l1 > 0 such that

f (t, x) ≤ (1 – μ)Γ (α + 1)x, x ≥ l1, t ∈ [0, 1]. (18)
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Set R1 > max{ α
(α–1)μ l1, 2r1}, then it is easy to see that

min
t∈[0,1]

x(t) ≥ μ(α – 1)
α

R1 > l1, x ∈ P1μ ∩ ∂ΩR1 .

Moreover, it follows from Lemma 2.3(i) and (18) that

(Tμx)(t) ≤ 1
Γ (α)(1 – μ)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds ≤ ‖x‖, x ∈ P1μ ∩ ∂ΩR1 ,

which implies that

‖Tμx‖ ≤ ‖x‖, x ∈ P1μ ∩ ∂ΩR1 .

Therefore, it follows from Lemma 1.4 that BVP (1) has at least one solution xμ ∈ P1μ with
r1 ≤ ‖xμ‖ ≤ R1. This, together with the definition of P1μ, implies that xμ is a strong positive
solution.

(ii) Given μ ∈ (1,α). From Lemma 2.6 we only need to find a fixed point of Tμ in P2μ. By
f0 = +∞, there exists r2 > 0 such that

f (t, x) ≥ (μ – 1)α2μΓ (α + 1)
(α – μ)2 |x|, x ∈ [–r2, 0], t ∈ [0, 1],

which together with Lemma 2.3(ii) and the definition of P2μ gives

–(Tμx)(t) ≥ α2μ

α – μ

∫ 1

0
(1 – s)α–1∣∣x(s)

∣
∣ds ≥ ‖x‖, x ∈ P2μ ∩ ∂Ωr2 .

This means that

‖Tμx‖ ≥ ‖x‖, x ∈ P2μ ∩ ∂Ωr2 .

In addition, it follows from f ∞ = 0 that there exists l2 > 0 such that

f (t, x) ≤ (μ – 1)Γ (α + 1)
μ

|x|, x ≤ –l2, t ∈ [0, 1]. (19)

Set R2 > max{ αμ

α–μ
l2, 2r2}, then it is easy to see that

–x(t) ≥ α – μ

αμ
R2 > l2, ∀t ∈ [0, 1], x ∈ P2μ ∩ ∂ΩR2 .

This together with Lemma 2.3(ii) and (19) leads to

∣
∣(Tμx)(t)

∣
∣ ≤ α

∫ 1

0
(1 – s)α–1∣∣x(s)

∣
∣ds ≤ ‖x‖, x ∈ P2μ ∩ ∂ΩR2 ,

which implies that

‖Tμx‖ ≤ ‖x‖, x ∈ P2μ ∩ ∂ΩR2 .
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Therefore, applying Lemma 1.4, we obtain that BVP (1) has at least one solution xμ ∈ P2μ

with r2 < ‖xμ‖ ≤ R2. This, together with the definition of P2μ, implies that xμ is a strong
negative solution.

(iii) Given μ = α. It is obvious in view of Lemma 2.3(iii) that Tμ(E) ⊂ –P. So, we only
need to find a fixed point of Tμ in –P. It follows from f ∞ = 0 that there exists l3 > 0 such
that

f (t, x) ≤ Γ (α)(α – 1)|x|, x ≤ –l3. (20)

We assert that there exists R3 > 0 such that

x �= λTμx, ∀λ ∈ (0, 1), x ∈ (–P) ∩ ∂ΩR3 . (21)

In order to prove, the assertion we consider two cases.
Case 1. The function f is bounded on [0, 1] × (–∞, 0], that is, there exists M > 0 such

that f (t, x) ≤ M for t ∈ [0, 1] and x ∈ (–∞, 0]. Take R3 > M
(α–1)Γ (α) , then (21) holds. Suppose,

to the contrary, that there exist x̄ ∈ (–P) ∩ ∂ΩR3 and λ̄ ∈ (0, 1) such that x̄ = λ̄Tμx̄, that is,

x̄(t) = λ̄

∫ 1

0
Gμ(t, s)f

(
s, x̄(s)

)
ds, t ∈ [0, 1].

This, together with μ = α, implies that

∣
∣x̄(t)

∣
∣ ≤ λ̄Mα

(α – 1)Γ (α)

∫ 1

0
(1 – s)α–1 ds <

M
(α – 1)Γ (α)

< R3, t ∈ [0, 1],

which implies that R3 < R3, this is a contradiction.
Case 2. f is an unbounded function on [0, 1] × (–∞, 0]. In this case, we can take R3 > l3

such that

f (t, x) ≤ f (t, –R3), t ∈ [0, 1], x ∈ [–R3, 0]. (22)

Moreover, (21) holds. Suppose, to the contrary, that there exist x̄ ∈ (–P) ∩ ∂ΩR3 and λ̄ ∈
(0, 1) such that x̄ = λ̄Tμx̄, Then, by (20) and (22), we have

∣
∣x̄(t)

∣
∣ ≤ λ̄α

(α – 1)Γ (α)

∫ 1

0
(1 – s)α–1f (s, –R3) ds ≤ λ̄R3 < R3, t ∈ [0, 1],

which implies that R3 < R3, this is a contradiction.
Consequently, applying Lemma 1.5, we obtain that BVP (1) has at least one solution xμ ∈

(–P) ∩ ΩR3 , that is, the solution xμ(t) ≤ 0 for t ∈ [0, 1]. So, xμ is a non-positive solution.
(iv) Given μ > α. Similarly, we only need to find a fixed point of Tμ in Kμ. It follows from

f0 = ∞ that there exists r4 > 0 such that

f (t, x) ≥ Γ (α + 1)μ(μ – 1)2α

γ 2(α – 1)
|x|, ∀t ∈ [0, 1] and |x| < r4. (23)
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For x ∈ Kμ ∩ ∂Ωr4 , it follows from (23), (7), and the definition of Kμ that

∣
∣(Tμx)(t)

∣
∣ =

∫ 1

0

(
–Gμ(t, s)

)
f
(
s, x(s)

)
ds

≥ Γ (α + 1)μ(μ – 1)2α

γ 2(α – 1)

∫ σ2

σ1

min
t∈[σ1,σ2]

∣
∣Gμ(t, s)

∣
∣
∣
∣x(s)

∣
∣ds

≥ μ2(μ – 1)α
γ (α – 1)

∫ σ2

σ1

∣
∣x(s)

∣
∣ds ≥ μ(μ – 1)(σ2 – σ1)

α – 1
‖x‖

= ‖x‖, ∀σ1 ≤ t ≤ σ2,

which implies that

‖Tμx‖ ≥ ‖x‖, x ∈ Kμ ∩ ∂Ωr4 .

On the other hand, it follows from f ∞ = 0 that there exists l4 > 0 such that

f (t, x) ≤ Γ (α + 1)(μ – 1)
μ

|x|, |x| ≥ l4, t ∈ [0, 1]. (24)

In order to show that there exists R4 > r4 > 0 such that, for any x ∈ Kμ ∩ ∂ΩR4 ,

∣
∣(Tμx)(t)

∣
∣ ≤ ‖x‖, ∀t ∈ [0, 1], (25)

there are two cases to be considered.
Case 1. f is bounded on [0, 1] × (–∞, +∞), that is, there exists M > 0 such that

f (t, x) ≤ M, (t, x) ∈ [0, 1] × (–∞, +∞).

Take R4 ≥ max{ Mμ

(μ–1)Γ (α+1) , 2r4}, then for any x ∈ Kμ ∩ ∂ΩR4 , it is easy to see from (12) that

∣
∣(Tμx)(t)

∣
∣ ≤ Mμ

(μ – 1)Γ (α + 1)
≤ R4 = ‖x‖, t ∈ [0, 1],

that is, (25) holds.
Case 2. f (t, x) is unbounded on [0, 1] × (–∞, +∞). We can choose R4 > max{l4, 2r4} such

that

f (t, x) ≤ f (t, –R4) or f (t, x) ≤ f (t, R4), t ∈ [0, 1], x ∈ [–R4, R4].

This, together with (24), leads to

f (t, x) ≤ Γ (α + 1)(μ – 1)
μ

R4, t ∈ [0, 1], x ∈ [–R4, R4].

Moreover, for any x ∈ Kμ ∩ ∂ΩR4 , we have

∣
∣(Tμx)(t)

∣
∣ ≤ μ

(μ – 1)Γ (α + 1)

∫ 1

0
f
(
s, x(s)

)
ds ≤ R4 = ‖x‖, t ∈ [0, 1],

that is, (25) holds.
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Noting that (25) implies that ‖Tμx‖ ≤ ‖x‖ for any x ∈ Kμ ∩ ∂ΩR4 , it follows from
Lemma 1.4 that BVP (1) has a solution xμ with r4 < ‖xμ‖ < R4. It is easy to check that

xμ(1) ≤ x(σ2) ≤ –
(μ – 1)γ

μ
‖xμ‖ < 0. (26)

In particular, when μ ∈ ILxμ , from the definition of ILxμ we have

xμ(0) =
μ

∫ 1
0 (1 – s)αf (s, xμ(s)) ds – α

∫ 1
0 (1 – s)α–1f (s, xμ(s)) ds

(μ – 1)Γ (α + 1)
< 0,

this together with Lemma 3.1 and (26) leads to xμ(t) < 0 for t ∈ [0, 1], that is, xμ is a strong
negative solution. Similarly, when μ ∈ IExμ , we can obtain that xμ(t) ≤ 0 and xμ(t) �≡ 0 for
t ∈ [0, 1], that is, xμ is a negative solution; and when μ ∈ IGxμ , we can obtain xμ(0) > 0, this
together with (26) means that xμ is a sign-changing solution. The proof is complete. �

Corollary 3.4 Suppose that (H) holds. If f ∞ = 0, then BVP (1) has at least one non-zero
solution xμ for any μ �= 1. Furthermore, this solution xμ is a strong positive solution, a
strong negative solution, a negative solution, and a sign-changing solution for μ ∈ (0, 1),
μ ∈ (1,α] ∪ ILxμ , μ ∈ IExμ , and μ ∈ IRxμ , respectively.

Proof According to Lemma 1.5, Lemma 1.6, and the proof of Theorem 3.3, we obtain that
BVP (1) has at least one solution xμ for any μ �= 1.

Next we show that xμ(t) �≡ 0 on [0, 1]. Suppose, to the contrary, that xμ(t) ≡ 0 on [0,1],
then we have

xμ(t) =
∫ 1

0
Gμ(t, s)f (s, 0) ds = 0, ∀t ∈ [0, 1],

which implies that

xμ(0) – xμ(1) =
∫ 1

0

(
Gμ(0, s) – Gμ(1, s)

)
f (s, 0) ds = 0.

Since G(0, s) – G(1, s) = 1
Γ (α) (1 – s)α–1 for s ∈ [0, 1], then

∫ 1

0
(1 – s)α–1f (s, 0) ds = 0,

this implies that f (t, 0) ≡ 0 on [0, 1], which contradicts condition (H).
Since xμ(t) �≡ 0 on [0, 1], it is obvious that ‖xμ‖ > 0. Moreover, from Lemma 2.6 we have

xμ(t) ≥ μ(α – 1)
α

‖xμ‖ > 0, t ∈ [0, 1],μ ∈ (0, 1),

and

–xμ(t) ≥ α – μ

αμ
‖xμ‖ > 0, t ∈ [0, 1],μ ∈ (1,α),
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which mean that xμ is a strong positive solution and a strong negative solution for μ ∈ (0, 1)
and μ ∈ (1,α), respectively. In addition, similar to the proof of Theorem 3.3, we obtain
that xμ is a strong negative solution, a negative solution, and a sign-changing solution for
μ ∈ ILxμ , μ ∈ IExμ , and μ ∈ IGxμ , respectively.

Finally, we shall show that xμ is a strong negative solution for μ = α. By view of
Lemma 3.1, we only need to show that xμ(0) < 0. It is evident from Lemma 3.2 that
xμ(0) ≤ 0. If xμ(0) = 0, that is,

∫ 1

0
Gμ(0, s)f

(
s, xμ(s)

)
ds =

μ
∫ 1

0 ((1 – s)α – (1 – s)α–1)f (s, xμ(s)) ds
(μ – 1)Γ (α + 1)

= 0,

which implies that f (t, xμ(t)) = 0 for t ∈ [0, 1]. Moreover,

xμ(t) =
∫ 1

0
Gμ(t, s)f

(
s, xμ(s)

)
ds = 0, ∀t ∈ [0, 1],

this contradicts the fact xμ(t) �≡ 0 on [0, 1]. Hence, we have xμ(0) < 0. The proof is com-
plete. �

Theorem 3.5 Suppose that (L2) holds. Then BVP (1) has the zero solution for every μ �= 1.
In addition, BVP (1) has at least one non-zero solution xμ for any μ �= 1,α; furthermore,
xμ is a strong positive solution, a strong negative solution, a negative solution, and a sign-
changing solution for μ ∈ (0, 1), μ ∈ (1,α) ∪ ILxμ , μ ∈ IExμ , and μ ∈ IRxμ , respectively.

Proof Since f 0 = 0 implies that f (t, 0) = 0 for t ∈ [0, 1], then xμ(t) ≡ 0 is a solution of BVP
(1) for any μ �= 1. In the sequel, we prove the rest of the statements in three steps.

(i) Given μ ∈ (0, 1). In this case, we only need to find a non-zero fixed point of Tμ in P1μ.
It is evident by f 0 = 0 that there exists r1 > 0 such that

f (t, x) ≤ (1 – μ)Γ (α + 1)x, 0 ≤ x ≤ r1, t ∈ [0, 1].

Then, for x ∈ P1μ ∩ ∂Ωr1 , we can obtain that

‖Tμx‖ ≤ 1
(1 – μ)Γ (α)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds ≤ ‖x‖.

On the other hand, by f∞ = +∞ there exists l1 > 0 such that

f (t, x) ≥ (1 – μ)α2Γ (α + 1)
μ2(α – 1)2 x, x ≥ l1. (27)

Set R1 > max{ α
μ(α–1) l1, 2r1}, then for x ∈ P1μ ∩ ∂ΩR1 , we have

x(t) ≥ μ(α – 1)
α

R1 ≥ l1, ∀t ∈ [0, 1].

Moreover, it follows from Lemma 2.3(i), the definition of P1μ, and (27) that

‖Tμx‖ ≥ α2

μ(α – 1)

∫ 1

0
(1 – s)α–1x(s) ds ≥ ‖x‖.
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Therefore, applying Lemma 1.4 we obtain that BVP (1) has a solution xμ with r1 < ‖xμ‖ <
R1; moreover, xμ is a strong positive solution.

(ii) Given 1 < μ < α. In this case, we only need to find a non-zero fixed point of Tμ in
P2μ. By a similar argument as the above (i), there exist r2 > 0 and l2 > 0 such that

f (t, x) ≤ (μ – 1)Γ (α + 1)
μ

|x|, 0 ≥ x ≥ –r2, t ∈ [0, 1] and

f (t, x) ≥ Γ (α + 1)(μ – 1)μα2

(α – μ)2 |x|, x ≤ –l2, t ∈ [0, 1].

Moreover,

‖Tμx‖ ≤ μ

(μ – 1)Γ (α)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds ≤ ‖x‖, ∀x ∈ P2μ ∩ ∂Ωr2 ,

and

‖Tμx‖ ≥ α – μ

Γ (α + 1)(μ – 1)

∫ 1

0
(1 – s)α–1f

(
s, x(s)

)
ds

≥ α2μ

α – μ

∫ 1

0
(1 – s)α–1∣∣x(s)

∣
∣ds

≥ ‖x‖, x ∈ P2μ ∩ ∂ΩR2 ,

where R2 > max{ αμl2
α–μ

, r2}. Therefore, BVP (1) has a solution xμ with r2 ≤ ‖xμ‖ ≤ R2, and
xμ is a strong negative solution.

(iii) Given μ > α. In this case, we only need to find a non-zero fixed point of Tμ in Kμ.
Clearly, there exists r3 > 0 such that

f (t, x) ≤ (μ – 1)Γ (α + 1)
μ

|x|, |x| ≤ r3, t ∈ [0, 1],

and ‖Tμx‖ ≤ ‖x‖ for x ∈ Kμ ∩ ∂Ωr3 .
In addition, there exists l3 > 0 such that

f (t, x) ≥ αΓ (α + 1)μ(μ – 1)2

(α – 1)γ 2 |x|, |x| ≥ l3, t ∈ [0, 1]. (28)

Set R3 > max{μαl2
γ

, 2r2}, then for x ∈ Kμ ∩ ∂ΩR3 , we have

∣
∣x(t)

∣
∣ = –x(t) ≥ γ

μα
R3 > l3, σ1 ≤ t ≤ σ2;

moreover, it follows from (7) and (28) that, for any σ1 ≤ t ≤ σ2,

∣
∣(Tμx)(t)

∣
∣ ≥

∫ σ2

σ1

∣
∣Gμ(t, s)

∣
∣f

(
s, x(s)

)
ds ≥ α(μ – 1)μ2

(α – 1)γ

∫ σ2

σ1

∣
∣x(s)

∣
∣ds ≥ ‖x‖.

This implies that

‖Tμx‖ ≥ ‖x‖, x ∈ K ∩ ∂ΩR3 .
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Applying Lemma 1.5 we obtain that BVP (1) has a non-zero solution xμ with r3 ≤ ‖xμ‖ ≤
R3. Similar to the proof of Theorem 3.3, we further obtain that xμ is a strong negative
solution, a negative solution, and a sign-changing solution for μ ∈ ILxμ , μ ∈ IExμ , and μ ∈
IGxμ , respectively. The proof is complete. �

Remark 3.6 In particular, let f (t, x) = ϕ(t)ψ(x), where ψ : (–∞, +∞) → [0, +∞) is con-
tinuous, and ϕ : [0, 1] → [0, +∞) is continuous and satisfies ϕ(t) �≡ 0 for t ∈ [0, 1]. If we
replace (L1), (L2), and (H) by the following conditions:

(L1′) ψ0 = lim inf|x|→0
ψ(x)
|x| = +∞,ψ∞ = lim sup|x|→∞

ψ(x)
|x| = 0,

(L2′) ψ0 = lim sup|x|→0
ψ(x)
|x| = 0,ψ∞ = lim inf|x|→∞ ψ(x)

|x| = +∞,
(H′) ψ(0) �= 0,

respectively, then the conclusions of Theorem 3.3, Corollary 3.4, and Theorem 3.5 still
hold.

4 Examples
In the section, we give two concrete examples to illustrate our results.

Example 4.1 In BVP (1), let α = 3
2 and f (t, x) = th(x) + te–t for t ∈ [0, 1] and x ∈ (–∞, +∞),

where

h(x) =

⎧
⎨

⎩

1, |x| ≤ 3,
(1+e3)(|x|+e|x|)
(3+e3)(1+e|x|) , |x| > 3.

Then (H) is satisfied and f ∞ = 0. Therefore, applying Corollary 3.4, we obtain that BVP
(1) has at least one non-zero solution xμ for any μ �= 1. It is evident that |h(x)| ≤ 1 for
x ∈ (–∞, +∞). Moreover, for μ > α, from (12) we have

∣
∣xμ(t)

∣
∣ =

μ

Γ ( 5
2 )(μ – 1)

∫ 1

0

(
sh

(
xμ(s)

)
+ se–s)ds ≤ α

Γ ( 5
2 )(α – 1)

=
4√
π

< 3, t ∈ [0, 1].

Hence, f (t, xμ(t)) = t(1 + e–t). By a calculation we have
∫ 1

0 s(1 – s)1.5(1 + e–s) ds .= 0.189203
and

∫ 1
0 s(1 – s)0.5(1 + e–s) ds .= 0.421468. So, the solution of

μ

∫ 1

0
s(1 – s)1.5(1 + e–s)ds =

3
2

∫ 1

0
s(1 – s)0.5(1 + e–s)ds

is μ
.= 3.341395, which implies that

ILxμ = (1.5, 3.341395), IExμ = {3.341395}, IGxμ = (3.341395, +∞).

Consequently, this solution xμ is a strong positive solution, a strong negative solution,
a negative solution, and a sign-changing solution for μ ∈ (0, 1), μ ∈ (1, 3.341395), μ =
3.341395, and μ ∈ (3.341395, +∞), respectively.

Example 4.2 In BVP (1), let f (t, x) = ϕ(t)ψ(x), ψ(x) = |x|q for (t, x) ∈ [0, 1] × (–∞, +∞),
where q ≥ 0, q �= 1, and ϕ ∈ C[0, 1] with ϕ(t) ≥ 0 and ϕ(t) �≡ 0 for t ∈ [0, 1].
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(i) If q = 0, then ψ(x) = 1. In addition, take ϕ(t) = (1 – t)β , β ≥ 0. It is clear that (H′) and
(L1′) hold. In combination with Remark 3.6 and Corollary 3.4, we obtain that BVP (1) has
at least one non-zero solution xμ for any μ �= 1. It follows by a straightforward calculation
that

ILxμ =
(

α,α +
α

α + β

)

, IExμ =
{

α +
α

α + β

}

, IGxμ =
(

α +
α

α + β
, +∞

)

.

Thus, the solution xμ is a strong positive solution, a strong negative solution, a negative
solution, and a sign-changing solution for μ ∈ (0, 1), μ ∈ (1,α + α

α+β
), μ = α + α

α+β
, and

(α + α
α+β

, +∞), respectively.
(ii) If 0 < q < 1, then (L1′) holds. In combination with Remark 3.6 and Theorem 3.3, we

obtain that BVP (1) has at least one solution xμ for every μ �= 1; furthermore, xμ is a strong
positive solution, a strong negative solution, a non-positive solution, a negative solution,
and a sign-changing solution for μ ∈ (0, 1), μ ∈ (1,α) ∪ ILxμ , μ = α, μ ∈ IExμ , and μ ∈ IRxμ ,
respectively.

(iii) If q > 1, then (L2′) holds. In combination with Remark 3.6 and Theorem 3.5, we
obtain that BVP (1) has the zero solution for every μ �= 1. In addition, BVP (1) has at least
one non-zero solution xμ for every μ �= 1,α; furthermore, xμ is a strong positive solution,
a strong negative solution, a negative solution, and a sign-changing solution for μ ∈ (0, 1),
μ ∈ (1,α) ∪ ILxμ , μ ∈ IExμ , and μ ∈ IRxμ , respectively.
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