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Abstract
In this paper, a new class of order cones in the space of continuous functions is
introduced. The result unifies some previous work in studying the existence of
solutions for differential equations using the compression cone techniques and fixed
point theorems. It is shown that the method is more adaptable, particularly in dealing
with changing sign Green’s functions. Applications are illustrated by examples.
Limitations of such a new method are also discussed.
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1 Introduction
Recently, it has been shown that the following Hammerstein integral equation has impor-
tant applications in the rapidly developing field of machine learning [2]:

Nu(s) :=
∫ T

0
g(t, s)f

(
s, u(s)

)
ds. (1)

In fact, existence of fixed points for (1) has interesting applications in computing sys-
tems. As shown in Fig. 1, g is a continuous impulse response, u is the continuous out-
put, and f is a controller that generates continuous input from the previous feedback.
Convergence of the system is governed by fixed points of the corresponding integral op-
erator. Other applications of the integral equation include models of a chemical reactor
[7], a thermostat [23], and circuit design [3].

It is known that equation (1) can be seen as an inverse of a differential equation subject to
certain boundary conditions. The Green’s function of the boundary value problem (BVP)
becomes the kernel of the integral operator. The so-called “compression cone” principle
can be used to study existence of fixed points for the integral equation, and therefore the
conclusion of existence of solutions for the BVP. For some recent work in higher-order
BVPs, we refer to [5, 16, 20, 27] and the references therein. First, the definition of order
cone in an abstract Banach space is given below.

Definition 1.1 ([25], p. 276) Let X be a Banach space and K be a subset of X. Then K is
called an order cone iff:
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Figure 1 Iterative machine learning un(t) =
∫
Ω g(s, t)f (s,un–1(s))ds

(i) K is closed, nonempty, and K �= {0};
(ii) a, b ∈R, a, b ≥ 0, x, y ∈ K ⇒ ax + by ∈ K ;

(iii) x ∈ K and –x ∈ K ⇒ x = 0.

As a typical example, the following well-known Guo–Krasnoselskii’s fixed point theo-
rem is a result of cone compression and expansion.

Theorem 1.2 ([10]) Let K ⊂ X be a cone of the real Banach space X. Suppose that Ω1 and
Ω2 are two bounded open sets in X such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2\Ω1) →
K be completely continuous. If either

(a) ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2, or
(b) ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2 and ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω1

holds, then T has at least one fixed point in K ∩ (Ω2\Ω1).

To construct the cone in a space such as C[0, T], usually a positive Green’s function for
the BVP is required to ensure a positive kernel for the integral operator. Consequently, it
leads to existence of positive solutions for the original BVP [12, 17, 21, 23, 24, 26]. Chang-
ing sign solutions have drawn relatively less attention. In the literature [13, 14, 22], Webb
and Infante proved the existence of changing sign solutions when the Green’s function is
only positive in a subinterval so that the cone can be defined as follows:

KWI :=
{

u ∈ C[0, T] : min
t∈[a,b]

u(t) ≥ δ‖u‖
}

,

where δ > 0 is obtained from the Green’s function. In [18], Ma used the following cone for
changing sign Green’s functions:

KM :=
{

u ∈ C[0, T] : u(t) ≥ 0 ∀t ∈ [0, T],
∫ T

0
u(t) dt ≥ δ‖u‖

}
.

Generally speaking, comparing to positive Green’s functions, it is more difficult to con-
struct a suitable cone when the kernel of the integral operator is not positive. In this paper,
a bounded linear functional L is used to define a new type of cones in dealing with chang-
ing sign Green’s functions for differential equations:

K :=
{

u ∈ C[0, T] : L(u) ≥ δ‖u‖}. (2)
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The idea of construction is a generalization of the previous work. For example, KM can be
directly obtained by taking L(u) =

∫ T
0 u(t) dt, while KWI can be written as union of a family

of cones defined as (2)

KWI =
⋂

τ∈[a,b]

Kτ ,

where Kτ = {u ∈ C[0, T] : Lτ (u) ≥ δ‖u‖} and Lτ (u) = u(τ ).
The new class of cones allows us to deal with differential equations with broader types

of Green’s functions. Roughly speaking, instead of requiring an upper bound and a lower
bound for a given Green’s function, such L introduces a different measurement with partial
order. We only require Green’s functions to be ‘positive’ in the sense of the new measure-
ment.

Applying the generalized cone and fixed point index theory, we obtain new existence
results of (1). The sub-linear and super-linear cases are also discussed along with examples
to illustrate their applications.

2 Main result
Consider the existence of a fixed point for the integral equation

Nu(s) :=
∫ T

0
g(t, s)f

(
s, u(s)

)
ds,

where u ∈ C[0, T] with standard norm ‖u‖ = maxt∈[0,T]{|u(t)|}.
Let L be a collection of bounded linear functionals L : C[0, T] → R with norm ‖L‖∗ =

max{u∈C[0,1],‖u‖=1}{|Lu|}. We will use the following two sets of assumptions for the kernel g
and the nonlinear function f respectively.

(H1) Assume that g : [0, T] × [0, T] →R is continuous and satisfies the Lipschitz condi-
tion with respect to s. There exist a non-trivial L ∈ L, positive measurable function
Ω with

∫ T
0 Ω(s) ds < ∞, and a constant δ > 0 such that, for any given s∗ ∈ [0, T],

(H1a) maxt∈[0,T]{|g(t, s∗)|} ≤ Ω(s∗);
(H1b) δΩ(s∗) ≤ k(s∗), where k is defined as k(s∗) = Lg(t, s∗).

(H2) Assume that f : [0, T] ×R →R+ is continuous and M = 1∫ T
0 k(s) ds

.
(H2a) There exists 0 < r < ∞ such that inf 0≤t≤T

–r≤x≤r
{f (t, x)} ≥ ‖L‖∗rM.

(H2b) There exists 0 < R < ∞, R �= r, such that sup 0≤t≤T
–R≤x≤R

{f (t, x)} < δRM.
Denote

K :=
{

u ∈ C[0, T] : L(u) ≥ δ‖u‖}, Kr :=
{

u ∈ C[0, T] : L(u) ≥ δ‖u‖,‖u‖ ≤ r
}

.

It is clear that Kr ⊆ K ⊆ C[0, T]. We will prove that K is a convex cone of C[0, T]. Further-
more, choose Q > max{r, R} to be large enough, define f̃ : [0, T] ×R →R+

f̃ (t, x) =

⎧⎪⎪⎨
⎪⎪⎩

f (t, x) |x| ≤ Q,

f (t, Q) x > Q,

f (t, –Q) x < –Q.
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Since f is continuous, f̃ is clearly bounded. Define Ñ =
∫ T

0 g(t, s)f̃ (s, u(s)) ds. The main re-
sult is given below.

Theorem 2.1 If (H1), (H2) are satisfied, and
∫ T

0 Lg(t, s) ds > 0, then N has at least one non-
trivial fixed point.

To prove Theorem 2.1, we have the following Lemmas 2.2, 2.3, and 2.4 from the prop-
erties of fixed point index [8]. Let K be a cone in a Banach space X.

Lemma 2.2 If there exists e ∈ K\{0} s.t. x �= Nx + λe for all x ∈ ∂KR and all λ > 0, then the
fixed point index i(N , KR, K) = 0 [13].

Lemma 2.3 Let N : K → K be a completely continuous mapping. If Nu �= μu for all u ∈ ∂Kr

and all μ ≥ 1, then the fixed point index i(N , Kr , K) = 1 [6].

Lemma 2.4 Let P be an open set and N : P → S be a compact mapping. If i(N , P, S) �= 0,
then N has at least one fixed point in P [15].

In addition, the new Lemma 2.5 shows that f̃ carries out the same fixed point properties
as those of f .

Lemma 2.5 If f satisfies the conditions of (H2), then the corresponding f̃ also satisfies (H2).
Moreover, for any u ∈ C[0, 1] such that Ñ(u) = u, if ‖u‖ ≤ Q, it also satisfies N(u) = u.

Proof From (H2), f̃ clearly is continuous on [0, T] ×R. For (H2a), we have

inf
0≤t≤T
–r≤x≤r

{
f̃ (t, x)

}
= inf

0≤t≤T
–r≤x≤r

{
f (t, x)

} ≥ ‖L‖∗rM.

Therefore (H2a) is also satisfied by f̃ . The same argument can be made on (H2b). �

Lemma 2.6 If (H1) is satisfied, k defined in (H1) is Lipschitz continuous.

Proof For any given s, s∗ ∈ [0, T],

∣∣k(s) – k
(
s∗)∣∣ =

∣∣L(
g(t, s) – g

(
t, s∗))∣∣ ≤ ‖L‖∗

∣∣g(t, s) – g
(
t, s∗)∣∣ ≤ ‖L‖∗c

∣∣s – s∗∣∣.
Thus k(s) is also Lipschitz continuous. �

The proof of Theorem 2.1 relies on interchanging two bounded linear operators. We first
give Fubini’s theorem and the Riesz representation theorem for the proof of Lemma 2.9.

Theorem 2.7 (Fubini’s theorem [1]) Let g ∈ Ω1 × Ω2 → R be a measurable function such
that

∫
Ω1×Ω2

∣∣g(ω1,ω2)
∣∣dP < ∞,

where P = P1 × P2. Then
(a) For almost all ω1 ∈ Ω1, g(ω1,ω2) is an integrable function of ω2.
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(b) For almost all ω2 ∈ Ω2, g(ω1,ω2) is an integrable function of ω1.
(c) There exists an integrable function h : Ω1 →R such that

∫
Ω2

g(ω1,ω2) dP2 = h(ω1)
a.s. (i.e., except for a set of ω1 of zero P1-measure for which

∫
Ω2

g(ω1,ω2) dP2 is
undefined or finite).

(d) There exists an integrable function h : Ω2 →R such that
∫
Ω1

g(ω1,ω2) dP2 = h(ω2)
a.s. (i.e., except for a set of ω1 of zero P2-measure for which

∫
Ω1

g(ω1,ω2) dP2 is
undefined or finite).

(e) We have
∫

Ω1

[∫
Ω2

g(ω1,ω2) dP2

]
dP1 =

∫
Ω2

[∫
Ω1

g(ω1,ω2) dP1

]
dP2

=
∫

Ω1×Ω2

g(ω1,ω2) dP.

Theorem 2.8 (Riesz representation theorem [19]) A functional F defined on C[a, b] is lin-
ear and continuous if and only if there exists a function g ∈ BV (bounded variation func-
tion) such that

F(f ) =
∫ b

a
f dg for f ∈ C[a, b].

Lemma 2.9 Assume that (H1) and (H2) are satisfied. Let L, k be defined as in (H1), then

L
(∫ T

0
g(t, s)f̃

(
s, u(s)

)
ds

)
=

∫ T

0
L
(
g(t, s)

)
f̃
(
s, u(s)

)
ds =

∫ T

0
k(s)f̃

(
s, u(s)

)
ds.

Proof Since L is a continuous linear functional defined on C[0, T], by the Riesz represen-
tation theorem, there exists unique ω ∈ BV such that

∫ T
0 h(t) dω(t) = L(h). We know that

g(t, s) and f̃ (s, u(s)) are absolutely bounded for all s, t ∈ [0, T]. Thus
∫

[0,T]×[0,T]

∣∣g(s, t)f̃
(
s, u(s)

)∣∣d
(
s,ω(t)

)
< ∞.

By Fubini’s theorem,

L
(∫ T

0
g(t, s)f̃

(
s, u(s)

)
ds

)
=

∫ T

0

∫ T

0
g(t, s)f̃

(
s, u(s)

)
ds dω(t)

=
∫ T

0

∫ T

0
g(t, s) dω(t)f̃

(
s, u(s)

)
ds

=
∫ T

0
L
(
g(t, s)

)
f̃
(
s, u(s)

)
ds (∗)

=
∫ T

0
k(s)f̃

(
s, u(s)

)
ds.

For (∗), since for all s∗ ∈ [0, T], g(·, s∗) ∈ C[0, 1], and so
∫ T

0 g(t, s∗) dΩ(t) = L(g(t, s∗)). There-
fore

max
s∈[0,T]

{∣∣∣∣
∫ T

0
g(t, s) dω(t) – L

(
g(t, s)

)∣∣∣∣
}

= 0,

and then (∗) follows. �
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Lemma 2.10 If (H1) and (H2) are satisfied, K defined in (H2) is a cone and Ñ(K) ⊆ K .

Proof We first show that K is a cone. Let u1, u2 ∈ K and 0 ≤ a, b ∈R.

L(au1 + bu2) = aL(u1) + bL(u2) ≥ aδ‖u1‖ + bδ‖u2‖ = δ‖au1‖ + δ‖bu2‖ ≥ δ‖au1 + bu2‖.

If u1 and –u1 ∈ K , then 0 = L(u1) + (–L(u1)) ≥ 2δ‖u1‖, which means u1 = 0. Clearly, for all
given s∗ ∈ [0, T],

Lg
(
t, s∗) = k

(
s∗) ≥ δΩ

(
s∗) ≥ δ max

t∈[0,T]

{
g
(
t, s∗)|} = δ‖g‖.

So K is not empty. Let {ui} → u be an arbitrary convergent sequence in K . Since C[0, T]
is a Banach space, thus u ∈ C[0, T]. Also, because sequences {L(ui)} → Lu and {δ‖ui‖} →
δ‖u‖, we obtain

L(u) – δ‖u‖ = lim
i→∞ L(ui) – δ‖ui‖ ≥ lim

i→∞ 0 = 0.

This shows that K is a well-defined cone. We next show that Ñ(K) ⊆ K . Let u ∈ K , clearly
Ñu ∈ C[0, T] and

L(Ñu) =
∫ T

0
Lg(t, s)f̃

(
s, u(s)

)
ds (By Lemma 2.9)

=
∫ T

0
k(s)f̃

(
s, u(s)

)
ds

≥
∫ T

0
δΩ(s)f̃

(
s, u(s)

)
ds

≥ δ

∫ T

0
max

t∈[0,T]

{∣∣g(t, s)
∣∣}f̃

(
s, u(s)

)
ds = δ‖Ñu‖.

So Ñ(K) ⊆ K . �

For compactness. The idea is similar to [13]. We see Ñ(u) = P ◦ h(u) as a composition
of a compact operator P(u) =

∫ T
0 g(t, s)u(s) ds and a continuous operator h(u) = f̃ (s, u(s)). It

can be shown that P(u) is compact using Arzela–Ascoli theorem.

Proof of Theorem 2.1 We will prove it in two steps.
(1) With Lemma 2.2, we will find a subset with index 0.
(2) With Lemma 2.3, we will find a subset with index 1.

Assume that (H1), (H2a) are satisfied. Consider u ∈ ∂Kr if there exists u = Ñu that is already
a fixed point of u = Ñ(u) with ‖u‖ = r. Otherwise, by (H2a), we have

f̃
(
s, u(s)

)|s∈[0,T] ≥ inf
0≤t≤T
–r≤u≤r

(
f̃ (t, u)

) ≥ ‖L‖∗rM.

So

L(Ñu) = L
(∫ T

0
g(t, s)f̃

(
s, u(s)

)
ds

)
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=
∫ T

0
Lg(t, s)f̃

(
s, u(s)

)
ds

=
∫ T

0
k(s)f̃

(
s, u(s)

)
ds

≥
∫ T

0
k(s)‖L‖∗rM ds

= ‖L‖∗r = ‖L‖∗‖u‖ ≥ L(u).

Let e = g(t, s∗) for some s∗ ∈ [0, T] such that g(t, s∗) �= 0. Clearly e ∈ K and if there exist
u ∈ ∂Kr , λ > 0 such that Ñu + λe = u, then

L(u) = L(Ñu) + λL(e)

= L(Ñu) + λLg
(
t, s∗)

≥ L(Ñu) + λδ‖g‖
> L(Ñu),

which is a contradiction. By Lemma 2.2, i(Ñ , Kr , K) = 0. Assume that (H1), (H2b) are satis-
fied. Consider u ∈ ∂KR. If there exists u = Ñu, then that is already a fixed point of u = Ñ(u)
with ‖u‖ = R. Otherwise, by (H2b) we have

f̃
(
s, u(s)

)|s∈[0,1] ≤ sup
0≤t≤T

–R≤u≤R

(
f̃ (t, u)

)
< δRM.

Therefore,

L(Ñu) =
∫ T

0
k(s)f̃

(
s, u(s)

)
ds

<
∫ T

0
k(s)δRM ds

= δR = δ‖u‖ ≤ L(u).

If there exist u ∈ ∂KR, μ ≥ 1 such that Ñu = μu, then L(Ñu) = L(μu) ≥ L(u), which is a
contradiction. By Lemma 2.3, i(Ñ , KR, K) = 1.

Since Ñ has no fixed point at ∂Kr and ∂KR, using the properties of fixed point index, if
r > R,

i(Ñ , K̄r\KR, K) = i(Ñ , Kr , K) – i(Ñ , KR, K) = –1,

by Lemma 2.4, Ñ has at least one non-trivial solution in Kr\KR. On the other hand, if R > r,

i(Ñ , K̄R\Kr , K) = i(Ñ , KR, K) – i(Ñ , Kr , K) = 1.

Again by Lemma 2.4, Ñ has at least one non-trivial solution in KR\Kr .
In either case, we obtain at least one non-trivial solution for u = Ñ(u). Since u also sat-

isfies ‖u‖ ≤ max{r, R} < Q, by Lemma 2.5, u is a non-trivial solution for N as well. �
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3 Sub-linear and super-linear case
Assumptions (H2a) and (H2b) of Theorem 2.1 can be simplified when the nonlinear part
is in sub-linear or super-linear cases [4]. We introduce the following new conditions for
Theorem 3.1.

(H3) Assume that f : [0, T] × R → R+ is continuous, M = 1∫ T
0 k(s) ds

, K and Kr as defined
in (H2).

(H3a) 0 < lim|x|→0 inft∈[0,T] f (t, x),
(H3b) 0 ≤ f ∞ < δM, where

f ∞ = lim
x→∞

(
sup

t∈[0,T]

f (t, x)
|x|

)
.

Theorem 3.1 If (H1), (H3) are satisfied, and
∫ T

0 Lg(t, s) ds > 0, then the integral equation
N has at least one non-trivial fixed point.

Proof Let (H3a) be satisfied, we have 0 < lim|x|→0 inft∈[0,T] f (t, x). Then there exist m1 > 0
and r0 > 0 small enough such that

inf
0≤t≤T
|x|≤r0

f (t, x) ≥ ‖L‖∗Mm1.

Let r = min{m1, r0}, therefore r ≤ m1 and r ≤ r0. And we can have

inf
0≤t≤T
|x|≤r

f (t, x) ≥ inf
0≤t≤T
|x|≤r0

f (t, x)

≥ ‖L‖∗Mm1

= ‖L‖∗Mr,

which satisfy (H2a).
For the other part, let (H3b) be satisfied, we have 0 ≤ f ∞ < δM. There exists R0 > 0 large

enough such that sup0≤t≤T
|x|≥R0

f (t,x)
|x| < δM.

Since f (t, x) is continuous, so f (t, x)||x|<R0 is bounded. Let sup0≤t≤T
|x|≤R0

f (t, x) ≤ B̄. Assuming

(H3a) is not true, then for any R > 0,

sup
0≤t≤T

–R≤x≤R

{
f (t, x)

}
> δRM.

Choose R > max{R0, B̄
δM }, therefore R > R0 and R > B̄

δM . Since

sup
0≤t≤T
|x|≤R0

f (t, x) ≤ B̄ ≤ δMR,

we have

sup
0≤t≤T

R0≤|x|≤R

f (t, x) = sup
0≤t≤T
|x|≤R

f (t, x) ≥ δRM,
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and so

sup
0≤t≤T
|x|≥R0

f (t, x)
|x| ≥ sup

0≤t≤T
R0≤|x|≤R

f (t, x)
|x| ≥ sup

0≤t≤T
R0≤|x|≤R

f (t, x)
R

= δM,

which is a contradiction. Thus (H3b) has to be satisfied. Since (H1), (H2) are satisfied and∫ T
0 Lg(t, s) ds > 0, by Theorem 2.1, N has at least one non-trivial fixed point. �

4 Examples
Consider the periodic boundary value problem [9, 11, 18, 28]:

⎧⎪⎪⎨
⎪⎪⎩

–u′′(t) – ρ2u(t) = f (t, u(t)) t ∈ [0, T],

u(0) = u(T),

u′(0) = u′(T).

When ρ /∈N is a positive constant, this BVP is equivalent to

u(t) =
∫ T

0
G(t, s)f

(
s, u(s)

)
ds,

where a Green’s function is given as

G(t, s) =

⎧⎨
⎩

– sin(ρ(t–s))+sinρ(T–(t–s))
2ρ(1–cosρT) 0 ≤ s ≤ t ≤ T ,

– sin(ρ(s–t))+sinρ(T–(s–t))
2ρ(1–cosρT) 0 ≤ t ≤ s ≤ T .

Example 4.1 Let ρ = 2
3 , T = 2π , we have the following BVP:

⎧⎪⎪⎨
⎪⎪⎩

–u′′(t) – 4
9 u(t) = f (t, u(t)) t ∈ [0, 2π ],

u(0) = u(2π ),

u′(0) = u′(2π ),

where f (t, x) = e– x2
2 (1 + sin(t)) and the Green’s function changes sign. If we let Lg(t, s) =∫ 2π

0 –g(t, s) dt, clearly Lg(t, s) = 2.25 for all s ∈ [0, 2π ]. Also maxs,t∈[0,2π ]{|g(t, s)|} =
√

3
2 . Se-

lect Ω(s) =
√

3
2 and δ = 1.5

√
3 which satisfy all conditions (H1). The corresponding cone is

defined as

K1 = u ∈ C[0, 2π ] :
∫ 2π

0
–u(t) dt ≥ 1.5

√
3‖u‖}.

As for the nonlinear part, f is clearly a continuous positive function. We can calculate that
lim|x|→0 inft∈[0,2π ] f (t, x) = 3, so (H3a) is satisfied. Moreover, since M = 2

9π
, f ∞ = 0 < δM,

(H3b) is satisfied. Therefore, by Theorem 3.1, there exists a non-trivial solution in K1.

Figure 2 shows the approximation (with 1000 sample points) of the fixed point which
was directly obtained from the differential equation. By direct computation we have Lu –
δ‖u‖ ≈ 1.464 > 0, which suggests that it is a fixed point in K1.
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Figure 2 Solution in Example 4.1

Example 4.2 Let ρ = 1
4 , T = 2π , the period boundary value problem has the form

⎧⎪⎪⎨
⎪⎪⎩

–u′′(t) – 1
16 u(t) = f (t, u(t)) t ∈ [0, 2π ],

u(0) = u(2π ),

u′(0) = u′(2π ),

where

f (t, x) =
2 cos(2t)

x2 + 1
+ π .

In this case, the Green’s function is negative. Let Lg(t, s) = –g(π , s), we can show that
Lg(t, s) ∈ [2, 2

√
2] for all s ∈ [0, 2π ]. We also have maxs∈[0,2π ]{|g(t, s)|} = 2

√
2. Let Ω(s) =

2
√

2 and δ =
√

2
2 . All conditions of (H1) are satisfied. Define the corresponding cone

K2 = u ∈ C[0, 2π ] : –u(π ) ≥ 2
√

2‖u‖}.

As for the nonlinear part, f is clearly a continuous positive function. We can see f (t, x) ≥
23
32 , so (H3a) is satisfied. We also have M = 1

16π , f ∞ = 1
32 < δM, so (H3b) is satisfied. By

Theorem 3.1, there exists a non-trivial solution in K2.

Figure 3 shows the approximation (with 1000 sample points) of the fixed point which
was directly obtained from the differential equation. By direct computation we have Lu –
δ‖u‖ ≈ 1.464 > 0, which suggests that it is a fixed point in K2.

We point out that results from [6, 13, 14, 18, 22, 23] are not applicable to the Green’s
functions in the above two examples. The cone applied in [9] and [28]

K =
{

u ∈ C[0, T] : u ≥ 0,
∫ T

0
u(s) ds ≥ δ‖u‖

}

cannot capture the solutions that we found in the above two examples.
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Figure 3 Solution in Example 4.2

Remark 4.3 Consider the following example:

g(t, s) =

⎧⎨
⎩

sin(t – s) 0 ≤ s ≤ t ≤ 2π ,

sin(s – t) 0 ≤ t ≤ s ≤ 2π .

Since g(t, 0)+g(t, 2π ) = 0 for all t, our method has failed to apply when the Green’s function
is reflexive.

Acknowledgements
The authors would like to thank the referees for valuable comments. Support from the Natural Sciences and Engineering
Research Council of Canada (NSERC) is greatly acknowledged.

Funding
The project was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors read and approved the final manuscript.

Author details
1Department of Mathematics, Queen’s University, Kingston, Canada. 2Departments of Mathematics and Computing &
Information Systems, Trent University, Peterborough, Canada.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 September 2018 Accepted: 7 April 2019

References
1. Adams, M., Victor, G.: Measure Theory and Probability (1996). https://doi.org/10.1007/978-1-4612-0779-5
2. Banka, N., Piaskowy, W.T., Garbini, J., Devasia, S.: Iterative Machine Learning for Precision Trajectory Tracking with

Series Elastic Actuators. CoRR (2017). https://doi.org/10.1109/AMC.2019.8371094
3. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: A Concise Guide to Chaotic Electronic Circuits. Springer, Berlin (2014).

https://doi.org/10.1007/978-3-319-05900-6
4. Cabada, A., Lopez-Somoza, L., Tojo, F.A.F.: Existence of solutions of integral equations with asymptotic conditions.

Nonlinear Anal., Real World Appl. 42, 140–159 (2018). https://doi.org/10.1016/j.nonrwa.2017.12.009
5. Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace systems. Bound. Value

Probl. 2018, 1 (2018). https://doi.org/10.1186/s13661-018-0981-3

https://doi.org/10.1007/978-1-4612-0779-5
https://doi.org/10.1109/AMC.2019.8371094
https://doi.org/10.1007/978-3-319-05900-6
https://doi.org/10.1016/j.nonrwa.2017.12.009
https://doi.org/10.1186/s13661-018-0981-3


Liu and Feng Boundary Value Problems         (2019) 2019:84 Page 12 of 12

6. Feng, W.: Topological methods on solvability, multiplicity and bifurcation of a nonlinear fractional boundary value
problem. Electron. J. Qual. Theory Differ. Equ. 2015, 70 (2015). https://doi.org/10.14232/ejqtde.2015.1.70

7. Feng, W., Zhang, G., Chai, Y.: Existence of positive solutions for second order differential equations arising from
chemical reactor theory. In: Discrete Contin. Dyn. Syst., Dynamical Systems and Differential Equations. Proceedings of
the 6th AIMS International Conference, pp. 373–381 (2007)

8. Furi, M., Pera, M.P., Spadini, M.: On the uniqueness of the fixed point index on differentiable manifolds. Fixed Point
Theory Appl. 2004 478686 (2004). https://doi.org/10.1155/S168718200

9. Graef, J.R., Kong, L., Wang, H.: A periodic boundary value problem with vanishing Green’s function. Appl. Math. Lett.
21(2), 176–180 (2008). https://doi.org/10.1016/j.aml.2007.02.019

10. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)
11. Hai, D.D.: On a superlinear periodic boundary value problem with vanishing Green’s function. Electron. J. Qual. Theory

Differ. Equ. 2016, 55 (2016). https://doi.org/10.14232/ejqtde.2016.1.55
12. He, J., Liu, X., Chen, H.: Existence of positive solutions for a high order fractional differential equation integral

boundary value problem with changing sign nonlinearity. Adv. Differ. Equ. 2018, 49 (2018).
https://doi.org/10.1186/s13662-018-1465-6

13. Infante, G., Webb, J.R.L.: Three Point boundary value problems with solutions that change sign. J. Integral Equ. Appl.
15(1), 37–57 (2003). https://doi.org/10.1216/jiea/1181074944

14. Infante, G., Webb, J.R.: Loss of positivity in a nonlinear scalar heat equation. Nonlinear Differ. Equ. Appl. 13(2), 249–261
(2006). https://doi.org/10.1007/s00030-005-0039-y

15. Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana
Univ. Math. J. 28, 673–688 (1979)

16. Li, P., Feng, M., Wang, M.: A class of singular n-dimensional impulsive Neumann systems. Adv. Differ. Equ. 2018, 100
(2018). https://doi.org/10.1186/s13662-018-1558-2

17. Liu, X., Liu, L., Wu, Y.: Existence of positive solutions for a singular nonlinear fractional differential equation with
integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 24 (2018).
https://doi.org/10.1186/s13661-018-0943-9

18. Ma, R.: Nonlinear periodic boundary value problems with sign-changing Green’s function. Nonlinear Anal., Theory
Methods Appl. 74(5), 1714–1720 (2011). https://doi.org/10.1016/j.na.2010.10.043

19. Narkawicz, A.: A formal proof of the Riesz representation theorem. J. Formaliz. Reason. 4(1), 1–24 (2011)
20. Pei, M., Wang, L., Lv, X.: Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation

in Minkowski space. Bound. Value Probl. 2018, 43 (2018). https://doi.org/10.1186/s13661-018-0963-5
21. Qian, Y., Zhou, Z.: Existence of positive solutions of singular fractional differential equations with infinite-point

boundary conditions. Adv. Differ. Equ. 2017, 8 (2017). https://doi.org/10.1186/s13662-016-1042-9
22. Webb, J.R.: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82(2), 420–436

(2010). https://doi.org/10.1112/jlms/jdq037
23. Webb, J.R.: Existence of positive solutions for a thermostat model. Nonlinear Anal., Real World Appl. 13(2), 923–938

(2012). https://doi.org/10.1016/j.nonrwa.2011.08.027
24. Xu, X., Zhang, H.: Multiple positive solutions to singular positone and semipositone m-point boundary value

problems of nonlinear fractional differential equations. Bound. Value Probl. 2018, 34 (2018).
https://doi.org/10.1186/s13661-018-0944-8

25. Zeidler, E.: Nonlinear Functional Analysis and Its Application I. Springer, New York (1986)
26. Zhai, C., Ren, J.: Positive and negative solutions of a boundary value problem for a fractional q-difference equation.

Adv. Differ. Equ. 2017, 82 (2017). https://doi.org/10.1186/s13662-017-1138-x
27. Zhai, C., Zhao, L., Li, S., Marasi, H.R.: On some properties of positive solutions for a third-order three-point boundary

value problem with a parameter. Adv. Differ. Equ. 2017, 187 (2017). https://doi.org/10.1186/s13662-017-1246-7
28. Zhong, S., An, Y.: Existence of positive solutions to periodic boundary value problems with sign-changing Green’s

function. Bound. Value Probl. 2011, 8 (2011). https://doi.org/10.1186/1687-2770-2011-8

https://doi.org/10.14232/ejqtde.2015.1.70
https://doi.org/10.1155/S168718200
https://doi.org/10.1016/j.aml.2007.02.019
https://doi.org/10.14232/ejqtde.2016.1.55
https://doi.org/10.1186/s13662-018-1465-6
https://doi.org/10.1216/jiea/1181074944
https://doi.org/10.1007/s00030-005-0039-y
https://doi.org/10.1186/s13662-018-1558-2
https://doi.org/10.1186/s13661-018-0943-9
https://doi.org/10.1016/j.na.2010.10.043
https://doi.org/10.1186/s13661-018-0963-5
https://doi.org/10.1186/s13662-016-1042-9
https://doi.org/10.1112/jlms/jdq037
https://doi.org/10.1016/j.nonrwa.2011.08.027
https://doi.org/10.1186/s13661-018-0944-8
https://doi.org/10.1186/s13662-017-1138-x
https://doi.org/10.1186/s13662-017-1246-7
https://doi.org/10.1186/1687-2770-2011-8

	A generalization of the compression cone method for integral operators with changing sign kernel functions
	Abstract
	Keywords

	Introduction
	Main result
	Sub-linear and super-linear case
	Examples
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


