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1 Introduction
In this paper we consider the following critical problem involving fractional Laplacian:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = a(x)up–1 + u2∗
s –1 in Ω ,

u > 0 in Ω ,

u = 0 in R
N \ Ω ,

(1.1)

where s ∈ (0, 1) is fixed and (–�)s is the fractional Laplace operator, Ω ⊂ R
N (N > 2s) is a

smooth bounded domain, 1 < p < 2, 2∗
s := 2N

N–2s , and a ∈ C(Ω̄) changes sign in Ω .
During the last years there has been an increasing interest in the study of the fractional

Laplacian, motivated by great applications and by important advances in the theory of
nonlinear partial differential equations, see [3, 7, 11, 14, 15, 17, 20, 21, 24, 25, 35, 36] for
details. Nonlinear equations involving fractional Laplacian are currently actively studied.
The fractional Laplace operator (–�)s (up to normalization factors) may be defined as

–(–�)su(x) =
∫

RN

(
u(x + y) + u(x – y) – 2u(x)

)
K(y) dy, x ∈R

N ,

where K(x) = |x|–(N+2s), x ∈ R
N . We will denote by Hs(RN ) the usual fractional Sobolev

space endowed with the so-called Gagliardo norm

‖u‖Hs(RN ) = ‖u‖L2(RN ) +
(∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy

)1/2

,
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while X0 is the function space defined as

X0 =
{

u ∈ Hs(
R

N)
: u = 0 a.e. in R

N \ Ω
}

.

We refer to [22, 29, 30] for a general definition of X0 and its properties. The embedding
X0 ↪→ Lq(Ω) is continuous for any q ∈ [1, 2∗

s ] and compact for any q ∈ [1, 2∗
s ). The space

X0 is endowed with the norm defined as

‖u‖X0 =
(∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy

)1/2

.

By Lemma 5.1 in [29] we have C2
0(Ω) ⊂ X0. Thus X0 is nonempty. Note that (X0,‖ · ‖X0 ) is

a Hilbert space with scalar product

(u, v)X0 =
∫

R2N

(
u(x) – u(y)

)(
v(x) – v(y)

)
dx dy.

It is well known that the following critical problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u = u2∗–1 in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.2)

has no positive solution if Ω is a star-shaped domain, where 2∗ = 2N
N–2 . For a non-

contractible domain Ω , Coron [12] proved that (1.2) has a positive solution. Later,
Bahri and Coron [4] improved Coron’s existence result by showing, via topological ar-
guments based upon homology theory, that (1.2) admits a positive solution provided that
Hm(Ω ,Z2) �= {0} for some m > 0. After that, many papers have studied the existence and
multiplicity of positive solutions of the problem similar to (1.2), see [16, 18, 37, 39].

It is natural to think that, as in the local case, by assuming suitable geometrical or topo-
logical conditions on Ω , one can get the existence of nontrivial solutions for the nonlocal
fractional problem. In a recent work, Secchi et al. [28] consider the following nonlocal
fractional problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = u2∗
s –1 in Ω ,

u > 0 in Ω ,

u = 0 in R
N \ Ω .

(1.3)

They proved that (1.3) admits at least a positive solution if there is a point x0 ∈ R
N and

radii R2 > R1 > 0 such that

{
R1 ≤ |x – x0| ≤ R2

} ⊂ Ω ,
{|x – x0| ≤ R1

} �⊂ Ω̄

and R2/R1 is sufficiently large.
Motivated by the works mentioned above, we study problem (1.1), which involves the

critical exponent, the effect of the coefficient a(x), and the domain with “rich topology”.
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We try to extend some important results, which are well known for the classical case of
the Laplacian (see, e.g., Theorem 1.1 in [39]), to a nonlocal setting.

Taking into account that we are looking for positive solutions, we consider the energy
functional associated with (1.1)

I(u) =
1
2

∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy

–
1
p

∫

Ω

a(x)
(
u+)p dx –

1
2∗

s

∫

Ω

(
u+)2∗

s dx, (1.4)

where u+ = max{u, 0} denotes the positive part of u. By the maximum principle (Proposi-
tion 2.2.8 in [33]), it is easy to check that critical points of I are the positive solutions of
(1.1).

We make the following assumptions:
(H1) There exist three constants ρ2 > ρ1 > ρ0 > 0 such that B̄ρ2 (0) \ Bρ1 (0) ⊂ Ω and

Bρ0 (0) ∩ Ω = ∅, where Bρ(0) = {x ∈ R
N : |x| < ρ} for any ρ > 0;

(H2) There exists a domain B̄ρ2 (0) \ Bρ1 (0) ⊂D ⊂ Ω such that a(x) > 0 for x ∈D and
a(x) ≤ 0 for x ∈ Ω \D.

Theorem 1.1 Assume that (H1), (H2) hold. Then there exists σ0 > 0 such that if |a+|q < σ0,
where a+(x) = max{a(x), 0}, q = 2∗

s
2∗

s –p , (1.1) has three positive solutions ũi(1 ≤ i ≤ 3) such
that

∫

Ω

a(x)ũq
i dx > 0, i = 1, 2, 3. (1.5)

We should remark that ũ2 and ũ3 satisfy I(ũi) < I(ũ1) + s
N S

N
2s
s (i = 2, 3), where Ss is the

Sobolev constant. It is an interesting task to find the fourth positive solution ũ4 with I(ũ4) >
I(ũ1) + s

N S
N
2s
s provided ρ2/ρ1 is sufficiently large, although we shall not undertake it here.

This paper is organized as follows. In Sect. 2 we introduce Nehari manifold and state
technical and elementary lemmas useful along the paper. In Sect. 3 we prove the existence
of the first solution of (1.1). In Sect. 4 we establish some essential estimates of energy.
In Sect. 5 we prove the existence of the other two solutions by Lusternik–Schnirelmann
category. We denote by | · |r the Lr(Ω)-norm for any r > 1, respectively.

2 Preliminaries
Recall that I is unbounded from below; we can get rid of this problem once we restrict I
to the Nehari manifold

N =
{

u ∈ X0 \ {0} :
〈
I ′(u), u

〉
= 0

}

=
{

u ∈ X0 \ {0} : ‖u‖2
X0 =

∫

Ω

a(x)
(
u+)p dx +

∫

Ω

(
u+)2∗

s dx
}

.

Notice that u+ �≡ 0 for any u ∈N , and on N the functional I reads

I(u) =
(

1
2

–
1
2∗

s

)

‖u‖2
X0 –

(
1
p

–
1
2∗

s

)∫

Ω

a(x)
(
u+)p dx. (2.1)
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Set

q =
2∗

s
2∗

s – p
.

In our context, the Sobolev constant is given by

Ss = inf
u∈Hs(RN )\{0}

∫

R2N (u(x) – u(y))2K(x – y) dx dy
(
∫

RN |u(x)|2∗
s dx)2/2∗

s
. (2.2)

Lemma 2.1 I is coercive and bounded from below on N .

Proof If u ∈N , by (2.1) and the Sobolev inequality,

I(u) ≥ s
N

‖u‖2
X0 –

(
1
p

–
1
2∗

s

)
∣
∣a+∣

∣
qS–p/2

s ‖u‖p
X0

. (2.3)

Since 1 < p < 2, we get that I is coercive and bounded from below on N . �

Define

ψ(u) =
〈
I ′(u), u

〉
.

Then, for u ∈N , we have

〈
ψ ′(u), u

〉
= 2‖u‖2

X0 – p
∫

Ω

a(x)
(
u+)p dx – 2∗

s

∫

Ω

(
u+)2∗

s dx

= (2 – p)‖u‖2
X0 –

(
2∗

s – p
)
∫

Ω

(
u+)2∗

s dx (2.4)

=
(
2∗

s – p
)
∫

Ω

a(x)
(
u+)p dx –

(
2∗

s – 2
)‖u‖2

X0 . (2.5)

Adopting a method similar to that used in [34], we split N into three parts:

N + =
{

u ∈N :
〈
ψ ′(u), u

〉
> 0

}
;

N 0 =
{

u ∈N :
〈
ψ ′(u), u

〉
= 0

}
;

N – =
{

u ∈N :
〈
ψ ′(u), u

〉
< 0

}
.

Lemma 2.2 Assume that u is a minimizer for I on N and u /∈ N 0. Then 〈I ′(u), v〉 = 0 for
any v ∈ X0.

The proof is similar to that of Theorem 2.3 in [9], we omit it.
Set

σ1 =
2∗

s – 2
2∗

s – p

(
2 – p
2∗

s – p

)(2–p)/(2∗
s –2)

S(2∗
s –p)/(2∗

s –2)
s .

Lemma 2.3 N 0 = ∅ if |a+|q < σ1.
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Proof Assume by contradiction that there exists a ∈ C(Ω̄) with |a+|q < σ1 such that N �= ∅.
By (2.4) and (2.2), we have

‖u‖2
X0 =

2∗
s – p

2 – p

∫

Ω

(
u+)2∗

s dx ≤ 2∗
s – p

2 – p
S–2∗

s /2
s ‖u‖2∗

s
X0

.

Consequently,

‖u‖X0 ≥
(

2 – p
2∗

s – p
S2∗

s /2
s

)1/(2∗
s –2)

.

Similarly, by (2.5), we have

‖u‖2
X0 =

2∗
s – p

2∗
s – 2

∫

Ω

a(x)
(
u+)p dx ≤ 2∗

s – p
2∗

s – 2
∣
∣a+∣

∣
qS–p/2

s ‖u‖p
X0

,

and so

‖u‖X0 ≤
(

2∗
s – p

2∗
s – 2

∣
∣a+∣

∣
qS–p/2

s

) 1
2–p

.

Thus, we get that |a+|q ≥ σ1, which is impossible. �

Define

X+
0 :=

{
u ∈ X0 : u+ �≡ 0

}
.

Lemma 2.4 For each u ∈ X+
0 , we have

(i) if
∫

Ω
a(x)(u+)p dx ≤ 0, then there exists unique t–(u) > tmax such that t–(u)u ∈N –

and ϕ(t) := I(tu) is increasing on (0, t–(u)) and decreasing on (t–(u), +∞), where

tmax =
( (2 – p)‖u‖2

X0

(2∗
s – p)

∫

Ω
(u+)2∗

s dx

) N–2s
4s

.

Furthermore,

ϕ
(
t–(u)

)
= sup

t≥0
ϕ(t). (2.6)

(ii) If
∫

Ω
a(x)(u+)p dx > 0, then there exist unique 0 < t+(u) < tmax < t–(u) such that

t+(u)u ∈N +, t–(u)u ∈N –, and ϕ(t) is decreasing on (0, t+(u)) ∪ (t–(u), +∞) and
increasing on (t+(u), t–(u)). Furthermore,

ϕ
(
t+(u)

)
= inf

0≤t≤t–(u)
ϕ(t), ϕ

(
t–(u)

)
= sup

t≥t+(u)
ϕ(t). (2.7)

(iii) t–(u) is a continuous function for u ∈ X+
0 .

(iv) N – = {u ∈ X+
0 : 1

‖u‖X0
t–( u

‖u‖X0
) = 1}.
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Proof Fix u ∈ X+
0 . We consider the following function:

γ (t) = t2–p‖u‖2
X0 – t2∗

s –p
∫

Ω

(
u+)2∗

s dx, ∀t > 0. (2.8)

Clearly, tu ∈N if and only if γ (t) =
∫

Ω
a(x)(u+)p dx. Moreover,

γ ′(t) = (2 – p)t1–p‖u‖2
X0 –

(
2∗

s – p
)
t2∗

s –p–1
∫

Ω

(
u+)2∗

s dx. (2.9)

So, it is easy to see that tu ∈ N + (or N –) if and only if γ ′(t) > 0 (or < 0). Notice that γ is
increasing on (0, tmax) and decreasing on (tmax, +∞) and γ (t) → –∞ as t → +∞.

(i) If
∫

Ω
a(x)(u+)p dx ≤ 0, then γ (t) =

∫

Ω
a(x)(u+)p dx has a unique solution t–(u) > tmax

and γ ′(t–(u)) < 0. Thus, t–(u)u ∈N –. Since

ϕ′(t) = tp–1
[

γ (t) –
∫

Ω

a(x)
(
u+)p dx

]

,

we get that (2.6) holds.
(ii) Assume that

∫

Ω
a(x)|u|p dx > 0. Direct computation yields that

γ (tmax) =
( (2 – p)‖u‖2

X0

(2∗
s – p)

∫

Ω
|u|2∗

s dx

) (N–2s)(2–p)
4s 2∗

s – 2
2∗

s – p
‖u‖2

X0

≥ 2∗
s – 2

2∗
s – p

(
2 – p
2∗

s – p

) (N–2s)(2–p)
4s

SN(2–p)/(4s)
s ‖u‖p

X0

≥ 2∗
s – 2

2∗
s – p

(
2 – p
2∗

s – p

) (N–2s)(2–p)
4s

S(2∗
s –p)/(2∗

s –2)
s

∣
∣a+∣

∣–1
q

∫

Ω

a(x)
(
u+)p dx

>
∫

Ω

a(x)
(
u+)p dx

since |a+|q < σ1. Thus, γ (t) =
∫

Ω
a(x)(u+)p dx has exactly two solutions t+(u) < tmax < t–(u)

such that γ ′(t+(u)) > 0 and γ ′(t–(u)) < 0, and ϕ(t) is decreasing on (0, t+(u)) ∪ (t–(u), +∞)
and increasing on (t+(u), t–(u)). Consequently, t+(u)u ∈ N + and t–(u)u ∈ N –, and (2.7)
holds.

(iii) The uniqueness of t–(u) and its extremal property give that t–(u) is a continuous
function of u.

(iv) Set

S :=
{

u ∈ X+
0 :

1
‖u‖X0

t–
(

u
‖u‖X0

)

= 1
}

.

Let v = u
‖u‖X0

for any u ∈ N –. By (i) and (ii), there exists t–(v) > 0 such that t–(v)v ∈ N –,

that is, t–(v)
‖u‖X0

u ∈N –. Since u ∈N –, we have t–(v) = ‖u‖X0 . Hence, we get N – ⊂ S . On the
other hand, let u ∈ S . Then,

u = t–
(

u
‖u‖X0

)
u

‖u‖X0
∈N –.

Thus, S ⊂N –. �
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3 Existence of the first solution
Define

m+ = inf
u∈N +

I(u) and m– = inf
u∈N–

I(u).

Set

σ2 =
p
2
σ1.

Lemma 3.1
(i) m+ < 0 if function a satisfies |a+|q ∈ (0,σ1);

(ii) there exists positive constant c0 such that m– ≥ c0 if |a+|q < σ2. In particular,
m+ = infu∈N I(u) if function a satisfies |a+|q ∈ (0,σ2).

Proof (i) If u ∈N +, then by (2.5) we get that

‖u‖2
X0 <

2∗
s – p

2∗
s – 2

∫

Ω

a(x)
(
u+)p dx.

Thus, by (2.1),

I(u) < –
(

1 –
p
2∗

s

)(
1
p

–
1
2

)∫

Ω

a(x)
(
u+)p dx < 0,

and so m+ < 0.
(ii) If u ∈N –, then by (2.4),

2 – p
2∗

s – p
‖u‖2

X0 <
∫

Ω

(
u+)2∗

s dx ≤ S–2∗
s /2

s ‖u‖2∗
s

X0
.

Consequently,

‖u‖X0 > SN/(4s)
s

(
2 – p
2∗

s – p

)1/(2∗
s –2)

.

By (2.3) and |a+|q < σ2, we have

I(u) ≥ ‖u‖p
X0

[
s
N

‖u‖2–p
X0

–
(

1
p

–
1
2∗

s

)
∣
∣a+∣

∣
qS–p/2

s

]

≥ SNp/(4s)
s

(
2 – p
2∗

s – p

)p/(2∗
s –2)[ s

N
SN(2–p)/(4s)

s

(
2 – p
2∗

s – p

)(2–p)/(2∗
s –2)

–
(

1
p

–
1
2∗

s

)
∣
∣a+∣

∣
qS–p/2

s

]

> 0. �

From now on, we assume that |a+|q ∈ (0,σ2).

Lemma 3.2 I satisfies the (PS)β condition in X0 for β < m+ + s
N S

N
2s
s .
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Proof Let {un} be a (PS)β sequence for I such that

I(un) → β and I ′(un) → 0. (3.1)

Then, for n big enough, we have

β + 1 + ‖un‖X0 ≥ I(un) –
1
2∗

s

〈
I ′(un), un

〉

=
(

1
2

–
1
2∗

s

)

‖un‖2
X0 –

(
1
p

–
1
2∗

s

)∫

Ω

a(x)
(
u+

n
)p dx

≥
(

1
2

–
1
2∗

s

)

‖un‖2
X0 –

(
1
p

–
1
2∗

s

)
∣
∣a+∣

∣
qS–p/2

s ‖un‖p
X0

.

It follows that ‖un‖X0 is bounded. Going if necessary to a subsequence, we can assume
that

un ⇀ u0 in X0,

un → u0 in Lr(Ω) for r ∈ [1, 2∗
s ),

un → u0 a.e. in Ω .

We derive from (3.1) that 〈I ′(u0), v〉 = 0, ∀v ∈ X0, i.e., u0 is a solution of (1.1). In particular,
u0 ∈N . Thus, by Lemma 3.1, we have I(u0) ≥ m+. Since X0 is a Hilbert space, we have

‖un‖2
X0 = ‖un – u0‖2

X0 + ‖u0‖2
X0 + o(1). (3.2)

By Brézis–Lieb’s lemma [8], we get

∫

Ω

(
u+

n
)2∗

s dx =
∫

Ω

(
(un – u0)+)2∗

s dx +
∫

Ω

(
u+

0
)2∗

s dx + o(1). (3.3)

Since (u+
n)2∗

s –1 is bounded in Lp′ (Ω) with p′ = 2∗
s /(2∗

s – 1) and Lp′ (Ω) is a reflexible space,
we get (u+

n)2∗
s –1 ⇀ (u+

0 )2∗
s –1 in Lp′ (Ω), and so

∫

Ω

(
u+

n
)2∗

s –1u0 dx →
∫

Ω

(
u+

0
)2∗

s dx. (3.4)

Similarly, since un ⇀ u0 in L2∗
s (Ω) and (u+

0 )2∗
s –1 ∈ Lp′ (Ω), we get

∫

Ω

(
u+

0
)2∗

s –1un dx →
∫

Ω

(
u+

0
)2∗

s dx. (3.5)

By (3.2)–(3.5), we have

I(un) = I(u0) +
1
2
‖un – u0‖2

X0 –
1
2∗

s

∫

Ω

(
u+)2∗

s dx + o(1) (3.6)
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and

o(1) =
〈
I ′(un) – I ′(u0), un – u0

〉

= ‖un – u0‖2
X0 –

∫

Ω

(
(un – u0)+)2∗

s dx + o(1). (3.7)

By (3.6) and (3.7), we have

s
N

‖un – u0‖2
X0 = I(un) – I(u0) + o(1)

≤ I(un) – m+ + o(1)

= β – m+ + o(1).

Thus, there exists a positive constant σ > 0 such that

‖un – u0‖2
X0 < S

N
2s
s – σ (3.8)

for n large enough. By (3.7), (3.8), and Sobolev inequality, we get

0 <
[
1 –

(
S

N
2s
s – σ

)(2∗
s –2)/2S–2∗

s /2
s

]‖un – u0‖2
X0

≤ (
1 – S–2∗

s /2
s ‖un – u0‖2∗

s –2
X0

)‖un – u0‖2
X0

≤ ‖un – u0‖2
X0 –

∫

Ω

(
(un – u0)+)2∗

s dx = o(1).

This implies ‖un – u0‖X0 → 0 in X0. �

Theorem 3.3 There exists a minimizer ũ1 of the critical problem (1.1), and it satisfies
(i) ũ1 ∈N + and I(ũ1) = m+;

(ii) ũ1 ∈ C0,s(RN ) is a positive solution of (1.1);
(iii) I(ũ1) → 0 as |a+|q → 0.

Proof Applying Ekeland’s variational principle [13] and using the similar argument as the
proof of Theorem 1 in [34], we get that there exists {un} ⊂N + such that

I(un) → m+ and I ′(un) → 0.

By Lemma 3.2, there exist a subsequence (still denoted by {un}) and ũ1 ∈N +, a solution of
(1.1), such that un → ũ1 in X0 and m+ = I(ũ1). By the maximum principle (Proposition 2.2.8
in [33]), ũ1 is strictly positive in Ω . By Proposition 2.2 in [6], u ∈ L∞(Ω). Furthermore, by
Proposition 1.1 in [26] (or Proposition 5 in [31]), u ∈ C0,s(RN ).

By (2.6),

‖ũ1‖X0 ≤
(

2∗
s – p

2∗
s – 2

∣
∣a+∣

∣
qS–p/2

s

) 1
2–p

.

This implies ‖ũ1‖X0 → 0 as |a+|q → 0, and so I(ũ1) → 0 as |a+|q → 0. �
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4 Estimates of energy
Recall that Ss is defined as

Ss := inf
v∈Hs(RN )\{0}

∫

R2N |v(x) – v(y)|2K(x – y) dx dy
(
∫

RN |v|2∗
s dx)2/2∗

s
.

It is well known from [32] that the infimum in the formula above is attained at ũ, where

ũ(x) =
κ

(μ2 + |x – x0|2) N–2s
2

, x ∈ R
N , (4.1)

with κ ∈R\{0}, μ > 0 and x0 ∈R
N fixed constants. We suppose κ > 0 for our convenience.

Equivalently, the function ū defined as

ū =
ũ

‖ũ‖Lp(RN )

is such that

Ss =
∫

R2N

∣
∣ū(x) – ū(y)

∣
∣2K(x – y) dx dy.

The function

u∗(x) = ū
(

x
S1/(2s)

s

)

, x ∈R
N ,

is a solution of

(–�)su = |u|p–2u in R
N . (4.2)

Now, we consider the family of functions Uε defined as

Uε(x) = ε–(N–2s)/2u∗(x/ε), x ∈ R
N , (4.3)

for any ε > 0. The function Uε is a solution of problem (4.2) and satisfies

∫

R2N

∣
∣Uε(x) – Uε(y)

∣
∣2K(x – y) dx dy =

∫

RN

∣
∣Uε(x)

∣
∣p dx = SN/(2s)

s . (4.4)

Let us fix ρa, ρb, ρ̃ , ρc, ρd such that

ρ1 < ρa < ρb < ρ̃ < ρc < ρd < ρ2. (4.5)

Let η ∈ C∞
0 (RN ) be a radially symmetric function such that 0 ≤ η ≤ 1 in R

N and

η(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if |x| ≤ ρa,

1, if ρb ≤ |x| ≤ ρc,

0, if |x| ≥ ρd.

(4.6)
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For every ε ∈ (0, 1) and e ∈ S
N–1 := {x ∈R

N : |x| = 1}, we denote by uε,e the following func-
tion:

uε,e(x) = η(x)Uε(x – ρ̃e). (4.7)

Lemma 4.1 There hold
(i)

∫

RN |uε,e|2∗
s = S

N
2s
s + O(εN ) uniformly in e ∈ S

N–1;

(ii) ‖uε,e‖2
X0

= S
N
2s
s + O(εN–2s) uniformly in e ∈ S

N–1.

Proof (i) By Proposition 22 in [32], we have

∫

RN
|uε,e|2∗

s dx

=
∫

RN
U2∗

s
ε (x – ρ̃e) dx +

∫

RN

(
η2∗

s (x) – 1
)
U2∗

s
ε (x – ρ̃e) dx

= S
N
2s
s +

∫

|x|<ρb

(
η2∗

s (x) – 1
)
U2∗

s
ε (x – ρ̃e) dx +

∫

|x|>ρc

(
η2∗

s (x) – 1
)
U2∗

s
ε (x – ρ̃e) dx. (4.8)

Direct computation yields that

∣
∣
∣
∣

∫

|x|<ρb

(
η2∗

s (x) – 1
)
U2∗

s
ε (x – ρ̃e) dx +

∫

|x|>ρc

(
η2∗

s (x) – 1
)
U2∗

s
ε (x – ρ̃e) dx

∣
∣
∣
∣

≤ CεN
(∫

|x|<ρb

dx
|x – ρ̃e|2N +

∫

|x|>ρc

dx
|x – ρ̃e|2N

)

≤ CεN
(∫

|x|<ρb

dx
(ρ̃ – ρb)2N +

∫

|x+ρ̃e|>ρc

dx
|x|2N

)

≤ CεN
(

(ρ̃ – ρb)–2N ∣
∣Bρb (0)

∣
∣ +

∫

|x|>ρc–ρ̃

dx
|x|2N

)

≤ C′εN . (4.9)

Thus, by (4.8), we prove (i).
(ii) Set δ = 1

2 min{ρ̃ – ρb,ρc – ρ̃}. Define

D1 =
{

x ∈R
N : ρb < |x| < ρc

}
,

D2 =
{

x ∈R
N : |x| ≤ ρb or |x| ≥ ρc

}
,

D3 =
{

x ∈R
N : |x| ≤ ρa or |x| ≥ ρd

}
,

A1 =
{

(x, y) ∈R
N ×R

N : x ∈D1, y ∈D1
}

,

A2 =
{

(x, y) ∈R
N ×R

N : x ∈D1, y ∈D2, |x – y| > δ
}

,

A3 =
{

(x, y) ∈R
N ×R

N : x ∈D1, y ∈D2, |x – y| ≤ δ
}

,

A4 =
{

(x, y) ∈R
N ×R

N : x ∈D2, y ∈D2
}

,

B1 =
{

(x, y) ∈R
N ×R

N : |x| ≥ ρc, |y| ≥ ρc,
∣
∣tx + (1 – t)y

∣
∣ ≥ ρc,∀t ∈ [0, 1]

}
,

B2 =
{

(x, y) ∈R
N ×R

N : |x| ≤ ρb, |y| ≤ ρb,
∣
∣tx + (1 – t)y

∣
∣ ≤ ρb,∀t ∈ [0, 1]

}
,

B3 =
{

(x, y) ∈R
N ×R

N : x ∈D3, y ∈D3
}

.
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We have

‖uε,e‖2
X0 =

∫

R2N

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

=
(∫

A1

+2
∫

A2

+2
∫

A3

+
∫

A4

)
∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy. (4.10)

We consider the following four cases:
(i) Assume (x, y) ∈ A4. Then |x – ρ̃e| ≥ ρ̃ – ρb or |x – ρ̃e| ≥ ρc – ρ̃ . Thus, there exists

constant C > 0 such that

∣
∣uε,e(x)

∣
∣ ≤ Cε– N–2s

2

(

μ2 +
|ξ – ρ̃e|2
|εS1/(2s)

s |2
)– N–2s

2 ≤ Cε
N–2s

2 .

Consequently,

∣
∣uε,e(x) – uε,e(y)

∣
∣ ≤ ∣

∣uε,e(x)
∣
∣ +

∣
∣uε,e(y)

∣
∣ ≤ Cε

N–2s
2 . (4.11)

Moreover, if (x, y) ∈ A4 and |x – y| ≤ 1
2 (ρc – ρb), then (x, y) ∈ B1 ∪ B2, and so |ξ – ρ̃e| ≥

ρc – ρ̃ > 0 or |ξ – ρ̃e| ≥ ρ̃ – ρb > 0 for any ξ on the segment joining x and y. By the mean
value theorem, there exists ξ̄ on the segment joining x and y such that

∣
∣uε,e(x) – uε,e(y)

∣
∣

=
∣
∣∇uε,e(ξ̄ )

∣
∣ · |x – y|

≤
[

Cε– N–2s
2

(

μ2 +
|ξ̄ – ρ̃e|2
|εS1/(2s)

s |2
)– N–2s

2

+ Cε– N–2s
2

(

μ2 +
|ξ̄ – ρ̃e|2
|εS1/(2s)

s |2
)– N–2s

2 –1 |ξ̄ – ρ̃e|
|εS1/(2s)

s |2
]

|x – y|

≤ Cε
N–2s

2 |x – y|.

Hence, by (4.11) and the inequality above, we get

∣
∣uε,e(x) – uε,e(y)

∣
∣ ≤

⎧
⎨

⎩

Cε
N–2s

2 |x – y|, if (x, y) ∈ A4 and |x – y| ≤ 1
2 (ρc – ρb),

Cε
N–2s

2 , if (x, y) ∈ A4 and |x – y| > 1
2 (ρc – ρb),

(4.12)

or

∣
∣uε,e(x) – uε,e(y)

∣
∣ ≤ Cε

N–2s
2 min

{
1, |x – y|}. (4.13)

Consequently, by the definition of uε,e and (4.13),

∫

A4

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

=
∫

A4∩(R2N \B3)

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy



Pang et al. Boundary Value Problems         (2019) 2019:81 Page 13 of 29

≤ 2
∫

A4∩({(x,y):|x|≤ρd ,y∈RN })

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

≤ CεN–2s
∫

A4∩({(x,y):|x|≤ρd ,y∈RN })
min{1, |x – y|2}

|x – y|N+2s dx dy

≤ CεN–2s
∫

{(x,y):|x|≤ρd ,y∈RN }
min{1, |x – y|2}

|x – y|N+2s dx dy

= CεN–2s
∫

|x|≤ρd

dx
∫

RN

min{1, |y|2}
|y|N–2s dy

= CεN–2s
∫

|x|≤ρd

dx
(∫

|y|≤1

|y|2
|y|N+2s dy +

∫

|y|>1

1
|y|N+2s dy

)

≤ CεN–2s. (4.14)

(ii) Assume (x, y) ∈ A3. Let ξ = tx + (1 – t)y = y + t(x – y) for any t ∈ [0, 1]. If |y| ≥ ρc, then

|ξ | =
∣
∣y + t(x – y)

∣
∣ ≥ |y| – |x – y| ≥ ρc –

1
2

(ρc – ρ̃) =
1
2

(ρc + ρ̃),

and so

|ξ – ρ̃e| ≥ 1
2

(ρc + ρ̃) – ρ̃ =
1
2

(ρc – ρ̃) > 0.

If |y| ≤ ρb, then

|ξ | ≤ |y| + |x – y| ≤ ρb +
1
2

(ρ̃ – ρb) =
1
2

(ρ̃ + ρb),

and so

|ξ – ρ̃e| ≥ ρ̃ – |ξ | ≥ ρ̃ –
1
2

(ρ̃ + ρb) =
1
2

(ρ̃ – ρb) > 0.

Thus, by the mean value theorem, there exists ξ̄ on the segment joining x and y such that

∣
∣uε,e(x) – uε,e(y)

∣
∣ =

∣
∣∇uε,e(ξ̄ )

∣
∣ · |x – y| ≤ Cε

N–2s
2 |x – y|.

Consequently,
∫

A3

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

≤ CεN–2s
∫

A3

|x – y|2
|x – y|N+2s dx dy

≤ Cε
N–2s

2

∫

Ã3

|x – y|2
|x – y|N+2s dx dy

≤ CεN–2s
∫

D1

dx
∫

{y∈RN :|x–y|≤δ}
1

|x – y|N+2s–2 dy

= CεN–2s
∫

D1

dx
∫

|y|≤δ

1
|y|N+2s–2 dy

≤ CεN–2s, (4.15)

where Ã3 = {(x, y) ∈R
N ×R

N : x ∈D1, y ∈R
N , |x – y| ≤ δ}.
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(iii) Assume (x, y) ∈ A2. Since x ∈D1, we have

∫

A2

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

=
∫

A2

∣
∣Uε(x – ρ̃e) – uε,e(y)

∣
∣2K(x – y) dx dy

=
∫

A2

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e) + Uε(y – ρ̃e) – uε,e(y)

∣
∣2K(x – y) dx dy

≤
∫

A2

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣2K(x – y) dx dy

+
∫

A2

∣
∣Uε(y – ρ̃e) – uε,e(y)

∣
∣2K(x – y) dx dy

+ 2
∫

A2

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣ · ∣∣Uε(y – ρ̃e) – uε,e(y)

∣
∣K(x – y) dx dy. (4.16)

Direct computation yields

∫

A2

∣
∣Uε(y – ρ̃e) – uε,e(y)

∣
∣2K(x – y) dx dy

≤
∫

A2

(|Uε(y – ρ̃e)| + |uε,e(y)|)2

|x – y|N+2s dx dy

≤ 4
∫

A2

|Uε(y – ρ̃e)|2
|x – y|N+2s dx dy

≤ CεN–2s
∫

A2

1
|x – y|N+2s dx dy

= CεN–2s
∫

D1

dx
∫

{y∈RN :|x–y|>δ}
1

|x – y|N+2s dy

≤ CεN–2s
∫

D1

dx
∫

{y∈RN :|y|>δ}
1

|y|N+2s dy

≤ CεN–2s, (4.17)

where Ã2 = {(x, y) ∈R
N ×R

N : x ∈D1, y ∈R
N , |x – y| > δ}.

For any (x, y) ∈ A2,

∣
∣Uε(x – ρ̃e)Uε(y – ρ̃e)

∣
∣ ≤ Cε

N–2s
2

∣
∣Uε(x – ρ̃e)

∣
∣ ≤ C

(

μ2 +
∣
∣
∣
∣

x – ρ̃e
εS1/(2s)

s

∣
∣
∣
∣

2)– N–2s
2

.

Therefore, using the change of variable ξ = x, ζ = x – y, we have that

∫

A2

∣
∣Uε(x – ρ̃e)

∣
∣ · ∣∣Uε(y – ρ̃e) – uε,e(y)

∣
∣K(x – y) dx dy

≤ 2
∫

A2

∣
∣Uε(x – ρ̃e)

∣
∣ · ∣∣Uε(y – ρ̃e)

∣
∣K(x – y) dx dy

≤ C
∫

A2

(

μ2 +
∣
∣
∣
∣

x – ρ̃e
εS1/(2s)

s

∣
∣
∣
∣

2)– N–2s
2 |x – y|–(N+2s) dx dy
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= C
∫

D1

(

μ2 +
∣
∣
∣
∣
ξ – ρ̃e
εS1/(2s)

s

∣
∣
∣
∣

2)– N–2s
2

dξ

∫

{ζ∈RN :|ζ |>δ}
1

ζ N+2s dζ

≤ C
∫

{ξ∈RN :|ξ–ρ̃e|≤ρc+ρ̃}

(

μ2 +
∣
∣
∣
∣
ξ – ρ̃e
εS1/(2s)

s

∣
∣
∣
∣

2)– N–2s
2

dξ

≤ CεN
∫

{ξ∈RN :|ξ |≤S–1/(2s)
s (ρc+ρ̃)ε–1}

(
μ2 + |ξ |2)– N–2s

2 dξ

≤ CεN
(∫

{x∈RN :|ξ |≤1}
+

∫

{x∈RN :1≤|ξ |≤S–1/(2s)
s (ρc+ρ̃)ε–1}

)
(
μ2 + |ξ |2)– N–2s

2 dξ

≤ CεN–2s. (4.18)

Similar to (4.17), we have

∫

A2

∣
∣Uε(y – ρ̃e)

∣
∣ · ∣∣Uε(y – ρ̃e) – uε,e(y)

∣
∣K(x – y) dx dy

≤ 2
∫

A2

|Uε(y – ρ̃e)|2
|x – y|N+2s dx dy

≤ CεN–2s. (4.19)

By (4.16)–(4.19), we get

∫

A2

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

≤
∫

A2

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣2K(x – y) dx dy + CεN–2s. (4.20)

By (4.10), (4.14), (4.15), and (4.20), we have

∫

R2N

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

≤
∫

A1

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy

+ 2
∫

A2

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣2K(x – y) dx dy + CεN–2s

≤
∫

R2N

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣2K(x – y) dx dy + CεN–2s. (4.21)

Using the change of variable and (4.13) in [32], we have

∫

R2N

∣
∣Uε(x – ρ̃e) – Uε(y – ρ̃e)

∣
∣2K(x – y) dx dy =

∫

R2N

∣
∣Uε(x) – Uε(y)

∣
∣2K(x – y) dx dy

=
∫

RN

∣
∣Uε(x)

∣
∣2∗

s dx = S
N
2s
s . (4.22)

By (4.21) and (4.22), we have

‖uε,e‖2
X0 =

∫

R2N

∣
∣uε,e(x) – uε,e(y)

∣
∣2K(x – y) dx dy ≤ S

N
2s
s + CεN–2s. (4.23)
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On the other hand, by the definition of Ss and (i), we have

‖uε,e‖2
X0 ≥ Ss

(∫

RN
|uε,e|2∗

s dx
)2/2∗

s
= S

N
2s
s + o(1). (4.24)

Combining (4.23) and (4.24), we prove (ii). �

Lemma 4.2 Assume that a ∈ C(Ω̄) with |a+|q ∈ (0,σ2). There exists ε0 > 0 such that, for
ε < ε0,

sup
t≥0

I(ũ1 + tuε,e) < m+ +
s
N

S
N
2s
s

uniformly in e ∈ S
N–1, where ũ1 is a minimizer of I in Theorem 3.3.

Proof Since I is continuous in X0 and uε,e is uniformly bounded in X0 for ε small enough,
there exists t1 > 0 such that, for t ∈ [0, t1],

I(ũ1 + tuε,e) < I(ũ1) +
s
N

S
N
2s
s .

Since uε,e(x) = 0 for any x ∈ {x ∈ Ω : a(x) < 0}, we have

I(ũ1 + tuε,e) =
1
2
‖ũ1 + tuε,e‖2

X0 –
1
p

∫

Ω

a(x)(ũ1 + tuε,e)p dx –
1
2∗

s

∫

Ω

(ũ1 + tuε,e)2∗
s dx

=
1
2
‖ũ1‖2

X0 + t(ũ1, uε,e)X0 +
t2

2
‖uε,e‖2

X0 –
1
p

∫

Ω

a+(x)(ũ1 + tuε,e)p dx

+
1
p

∫

Ω

a–(x)ũp
1 dx –

1
2∗

s

∫

Ω

(ũ1 + tuε,e)2∗
s dx. (4.25)

It is easy to get from Lemma 4.1 that

∫

Ω

u2∗
s

ε,e dx ≥ 1
2

S
N
2s
s

for ε small enough. Note that the last term in (4.25) satisfies

1
2∗

s

∫

Ω

(ũ1 + tuε,e)2∗
s dx ≥ t2∗

s

2∗
s

∫

Ω

u2∗
s

ε,e dx ≥ S
N
2s
s

22∗
s

t2∗
s .

Thus, I(ũ1 + tuε,e) → –∞ as t → +∞ uniformly in ε and e. Consequently, there exists
t2 > t1 such that I(ũ1 + tuε,e) < m+ + s

N S
N
2s
s for t ≥ t2. Then, we only need to verify the

inequality

sup
t1≤t≤t2

I(ũ1 + tuε,e) < m+ +
s
N

S
N
2s
s

for ε small enough.
From now on, we assume that t ∈ [t1, t2].
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There exists a constant C > 0 such that
∫

Ω

(ũ1 + tuε,e)2∗
s dx ≥

∫

Ω

ũ2∗
s

1 dx + t2∗
s

∫

Ω

u2∗
s

ε,e dx + 2∗
s t

∫

Ω

ũ2∗
s –1

1 uε,e dx

+ 2∗
s t2∗

s –1
∫

Ω

u2∗
s –1

ε,e ũ1 dx – Ct2∗
s /2

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx. (4.26)

We have used the following inequality (see [5, 40] for example): for r > 2, there exists a
constant Cr (depending on r) such that

(α + β)r ≥ αr + βr + r
(
αr–1β + αβr–1) – Crα

r/2βr/2 ∀α,β > 0.

Combining (4.25) and (4.26), and using the fact that ũ1 is a positive solution of (1.1), we
have

I(ũ1 + tuε,e)

≤ 1
2
‖ũ1‖2

X0 + t(ũ1, uε,e)X0 +
t2

2
‖uε,e‖2

X0 –
1
p

∫

Ω

a+(x)(ũ1 + tuε,e)p dx

+
1
p

∫

Ω

a–(x)ũp
1 dx –

1
2∗

s

∫

Ω

ũ2∗
s

1 dx –
1
2∗

s
t2∗

s

∫

Ω

u2∗
s

ε,e dx

– t
∫

Ω

ũ2∗
s –1

1 uε,e dx – t2∗
s –1

∫

Ω

u2∗
s –1

ε,e ũ1 dx + Ct2∗
s /2

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

=
1
2
‖ũ1‖2

X0 + t
∫

Ω

a(x)+ũp–1
1 uε,e dx +

t2

2
‖uε,e‖2

X0 –
1
p

∫

Ω

a+(x)(ũ1 + tuε,e)p dx

+
1
p

∫

Ω

a–(x)ũp
1 dx –

1
2∗

s

∫

Ω

ũ2∗
s

1 dx –
1
2∗

s
t2∗

s

∫

Ω

u2∗
s

ε,e dx – t2∗
s –1

∫

Ω

u2∗
s –1

ε,e ũ1 dx

+ Ct2∗
s /2

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

= I(ũ1) + t
∫

Ω

a+(x)ũp–1
1 uε,e dx +

t2

2
‖uε,e‖2

X0 –
1
p

∫

Ω

a+(x)(ũ1 + tuε,e)p dx

+
1
p

∫

Ω

a+(x)ũp
1 dx –

1
2∗

s
t2∗

s

∫

Ω

u2∗
s

ε,e dx – t2∗
s –1

∫

Ω

u2∗
s –1

ε,e ũ1 dx

+ Ct2∗
s /2

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

= I(ũ1) +
t2

2
‖uε,e‖2

X0 –
1
2∗

s
t2∗

s

∫

Ω

u2∗
s

ε,e dx

–
1
p

∫

Ω

a+(x)
[
(ũ1 + tuε,e)p dx – ũp

1 – pũp–1
1 tuε,e

]
dx

– t2∗
s –1

∫

Ω

u2∗
s –1

ε,e ũ1 dx + Ct2∗
s /2

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

≤ I(ũ1) +
t2

2
‖uε,e‖2

X0 –
t2∗

s

2∗
s

∫

Ω

u2∗
s

ε,e dx

– t2∗
s /2

(

t(2∗
s –2)/2

∫

Ω

u2∗
s –1

ε,e ũ1 dx – C
∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx
)

≤ I(ũ1) + S
N
2s
s

(
t2

2
–

t2∗
s

2∗
s

)

– t
2∗s
2

(

t
2∗s –2

2

∫

Ω

u2∗
s –1

ε,e ũ1 dx – C
∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx
)
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+ O
(
εN–2s)

≤ I(ũ1) +
s
N

S
N
2s
s – t2∗

s /2
(

t
2∗s –2

2

∫

Ω

u2∗
s –1

ε,e ũ1 dx – C
∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx
)

+ O
(
εN–2s). (4.27)

Here we have used the elementary inequality: (α + β)p ≥ αp + pαp–1β , ∀α,β > 0.
Now, we estimate the last but one term in (4.27). By Theorem 3.3, there exists a constant

C1 > 0 such that ũ1(x) ≥ C1 for x ∈ E := {x ∈R
N : ρb ≤ |x| ≤ ρc}. Thus,

∫

Ω

u2∗
s –1

ε,e ũ1 dx ≥ C1

∫

E
u2∗

s –1
ε,e dx

≥ C1

∫

E
U2∗

s –1
ε (x – ρ̃e) dx

≥ C1

∫

E1

U2∗
s –1

ε (x) dx

≥ C1ε
N–2s

2

∫

E2

dx

(μ2 + |x|2) N+2s
2

≥ C2ε
N–2s

2 (4.28)

for ε small enough, where

E1 :=
{

x ∈R
N : |x| ≤ min{ρ̃ – ρb,ρc – ρ̃}},

E2 :=
{

x ∈R
N : |x| ≤ min{ρ̃ – ρb,ρc – ρ̃}/ε}.

Direct computation yields that

∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx ≤ C3

∫

Ω

u2∗
s /2

ε,e dx

≤ C3

∫

D1

U2∗
s /2

ε (x – ρ̃e) dx

≤ C3

∫

D2

U2∗
s /2

ε (x) dx

≤ C4ε
N
2

∫

D3

1
(μ2 + |x|2)N/2 dx

≤ C5ε
N
2 | ln ε|, (4.29)

where

D1 :=
{

x ∈R
N : ρa ≤ |x| ≤ ρd

}
,

D2 :=
{

x ∈R
N : |x| ≤ ρd + ρ̃

}
,

D3 :=
{

x ∈R
N : |x| ≤ (ρd + ρ̃)/ε

}
.
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Hence, by (4.28) and (4.29), we have

t(2∗
s –2)/2

∫

Ω

u2∗
s –1

ε,e ũ1 dx – C
∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

≥ t
2∗s –2

2
1

∫

Ω

u2∗
s –1

ε,e ũ1 dx – C
∫

Ω

ũ2∗
s /2

1 u2∗
s /2

ε,e dx

≥ t
2∗s –2

2
1 C2ε

N–2s
2 – C5ε

N
2 | ln ε|

for ε > 0 small enough. Consequently, by (4.27), we have

sup
t1≤t≤t2

I(ũ1 + tuε,e) < I(ũ1) +
s
N

S
N
2s
s (4.30)

for ε > 0 small enough. �

Let

A1 :=
{

u ∈ X+
0 :

1
‖u‖X0

t–
(

u
‖u‖X0

)

> 1
}

,

A2 :=
{

u ∈ X+
0 :

1
‖u‖X0

t–
(

u
‖u‖X0

)

< 1
}

.

Lemma 4.3 Assume that a ∈ C(Ω̄) with |a+|q ∈ (0,σ2). We have
(i) X+

0 = A1 ∪A2 ∪N –;
(ii) N + ⊂A1;

(iii) for each ε < ε0 (ε0 is defined in Lemma 4.2), there exists t0 > 1 such that
ũ1 + t0uε,e ∈A2 for all e ∈ S

N–1;
(iv) for each ε < ε0, there exists s0 ∈ (0, 1) such that ũ1 + s0t0uε,e ∈N – for all e ∈ S

N–1;
(v) m– < m+ + s

N S
N
2s
s .

Proof (i) By Lemma 2.4(iv) we prove (i).
(ii) For any u ∈N +, by (2.6), we get that

∫

Ω
a(x)(u+)p dx > 0. Let v = u

‖u‖X0
. By Lemma 2.4,

there exists t–(v) > 0 such that t–(v)v ∈N –, that is,

1
‖u‖X0

t–
(

u
‖u‖X0

)

u ∈N –.

Hence,

t–(u) =
1

‖u‖X0
t–

(
u

‖u‖X0

)

.

By Lemma 2.4, we have

1 = t+(u) < tmax(u) < t–(u).

Thus, we get N + ⊂A1.
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(iii) We claim that there exists C > 0 such that supt≥0 t–( ũ1+tuε,e
‖ũ1+tuε,e‖X0

) < C. Assume by
contradiction that there exists a sequence {tn} such that tn → +∞ and t–(vn) → +∞ as
n → ∞, where vn := ũ1+tnuε,e

‖ũ1+tnuε,e‖X0
. Since t–(vn)vn ∈ N –, by Lebesgue’s dominated conver-

gence theorem, we have

∫

Ω

(
v+

n
)2∗

s dx =
1

‖t–1
n ũ1 + uε,e‖2∗

s
X0

∫

Ω

(
t–1
n ũ1 + uε,e

)2∗
s dx →

∫

Ω
u2∗

s
ε,e dx

‖uε,e‖2∗
s

X0

as n → ∞. Thus,

I
(
t–(vn)vn

)
=

1
2
(
t–(vn)

)2 –
(t–(vn))p

p

∫

Ω

a(x)
(
v+

n
)p dx –

(t–(vn))2∗
s

2∗
s

∫

Ω

(
v+

n
)2∗

s dx → –∞

as n → ∞, which is impossible since I is bounded from below on N by Lemma 2.1. Set

t0 =
‖ũ1‖X0 + (‖ũ1‖2

X0
+ |C2 – ‖ũ1‖2

X0
|)1/2

‖uε,e‖X0
+ 1.

Then

‖ũ1 + t0uε,e‖2
X0 = ‖ũ1‖2

X0 + t2
0‖uε,e‖2

X0 + 2t0(ũ1, uε,e)X0

> ‖ũ1‖2
X0 +

∣
∣C2 – ‖ũ1‖2

X0

∣
∣

≥ C2 >
[

t–
(

ũ1 + tuε,e

‖ũ1 + tuε,e‖X0

)]2

.

Hence, we get ũ1 + t0uε,e ∈A2.
(iv) Define γ : [0, 1] →R as

γ (s) :=
1

‖ũ1 + st0uε,e‖X0
t–

(
ũ1 + st0uε,e

‖ũ1 + st0uε,e‖X0

)

for all s ∈ [0, 1].

By Lemma 2.4(iii), γ (s) is a continuous function of s. Since γ (0) > 1 and γ (1) < 1 there
exists s0 ∈ (0, 1) such that γ (s0) = 1, that is, ũ1 + s0t0uε,e ∈N –.

(v) By Lemma 4.2 and (iv), we have m– < m+ + s
N S

N
2s
s . �

Consider the following critical problem:

⎧
⎨

⎩

(–�)su = |u|2∗
s –2u in Ω ,

u = 0 in R
N \ Ω .

(4.31)

We define the energy functional J : X0 →R associated with the critical problem (4.31) as

J(u) =
1
2
‖u‖2

X0 –
1
2∗

s

∫

Ω

|u|2∗
s dx.

Set

M(Ω) =
{

u ∈ X0 \ {0} :
〈
J ′(u), u

〉
= 0

}
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and

γ (Ω) = inf
u∈M(Ω)

J(u).

Similarly, we define J∞ : Ḣs(RN ) →R as

J∞(u) =
1
2

∫

R2N

(
u(x) – u(y)

)2K(x – y) dx dy –
1
2∗

s

∫

RN
|u|2∗

s dx,

where Ḣs(RN ) denotes the space of functions u ∈ Lp(RN ) such that
∫

R2N (u(x) – u(y))2K(x –
y) dx dy < ∞. Set

M
(
R

N)
=

{
u ∈ Ḣs(

R
N)

:
〈
J∞(u), u

〉
= 0

}

and

γ
(
R

N)
= inf

u∈M(RN )
J∞(u).

It is easy to see that γ (RN ) = s
N S

N
2s
s .

Lemma 4.4 γ (Ω) = γ (RN ) and γ (Ω) is never achieved except when Ω = R
N .

The proof of Lemma 4.4 can be found in [19], and we give a proof for the reader’s’ con-
venience although these results are known.

Proof Since M(Ω) ⊂ M(RN ), we have γ (RN ) ≤ γ (Ω). Conversely, let {un} ⊂ Ḣs(RN ) be
a minimizing sequence for γ (RN ). By density of C∞

0 (RN ) in Ḣs(RN ) we may assume that
un ∈ C∞

0 (RN ). We can choose yn ∈R
N and λn > 0 such that

uyn ,λn
n (·) := λ

N–2s
2

n un(λn · +yn) ∈ C∞
0 (Ω).

Since

∥
∥uyn ,λn

n
∥
∥

X0
= ‖un‖Ḣ(RN ),

∫

Ω

∣
∣uyn ,λn

n
∣
∣p dx =

∫

RN
|un|p dx,

we get γ (Ω) ≤ γ (RN ). Thus, γ (Ω) = γ (RN ).
Assume by contradiction that Ω �= R

N and u ∈ X0 is a minimizer for γ (Ω). Let t > 0 such
that t|u| ∈M(Ω). Then

t =
( ‖|u|‖2

X0∫

Ω
|u|p dx

) 1
p–2 ≤

( ‖u‖2
X0∫

Ω
|u|p dx

) 1
p–2

= 1.

Consequently,

γ (Ω) ≤ J
(
t|u|) = tp

(
1
2

–
1
p

)∫

Ω

|u|p dx ≤ γ (Ω).
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Thus, t = 1 and |u| ∈ M(Ω) is another minimizer for γ (Ω). For this reason we assume
straight away that u ≥ 0. Clearly, u ∈ R

N is a minimizer for J∞. Therefore, we get that
J ′∞(u) = 0. So that u is a solution of

(–�)su = up in R
N .

By the maximum principle (Proposition 2.2.8 in [33]), u > 0 in R
N . This is a contradic-

tion. �

Lemma 4.5 If u ∈N – satisfies I(u) ≤ m+ + s
N S

N
2s
s , then

∫

Ω
a(x)(u+)p dx > 0.

Proof Let u ∈ N – with I(u) ≤ m+ + s
N S

N
2s
s . Then there exists unique t(u) > 0 such that

t(u)u ∈M(Ω). Assume by contradiction that
∫

Ω
a(x)(u+)p dx ≤ 0. By Lemmas 2.4 and 4.4,

I(u) = sup
t≥0

I(tu) ≥ I
(
t(u)u

) ≥ J
(
t(u)u

)
–

1
p

∫

Ω

a(x)
(
t(u)u+)p dx

≥ s
N

S
N
2s
s –

tp(u)
p

∫

Ω

a(x)
(
u+)p dx.

Hence, by Lemma 3.1,

tp(u)
p

∫

Ω

a(x)
(
u+)p dx ≥ –m+ > 0.

We get a contradiction. �

5 Existence of the other two solutions
For μ > 0, we define

Iμ(u) =
1
2
‖u‖2

X0 –
μ

2∗
s

∫

Ω

|u|2∗
s dx,

Nμ =
{

u ∈ X0 \ {0} :
〈
I ′
μ(u), u

〉
= 0

}
.

Lemma 5.1 For each u ∈N –, we have
(i) there exists unique tμ(u) > 0 such that tμ(u)u ∈Nμ, and

sup
t≥0

Iμ(tu) = Iμ
(
tμ(u)u

)
=

s
N

( ‖u‖2∗
s

X0

μ
∫

Ω
|u|2∗

s dx

) N–2s
2s

;

(ii) there exists unique t(u) > 0 such that t(u)u ∈M(Ω), and for c ∈ (0, 1),

J
(
t(u)u

) ≤ (1 – c)– N
2s

(

I(u) +
2 – p

2p
c

p
p–2

(∣
∣a+∣

∣
qS– p

2
s

) 2
2–p

)

. (5.1)

Proof (i) The proof is standard, and we omit it.
(ii) Let μ = (1 – c)–1. Then, by Young’s inequality,

∫

Ω

a(x)
(
tμ(u)u+)p dx ≤ ∣

∣a+∣
∣
qS–p/2

s tp
μ(u)‖u‖p

X0
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≤ 2 – p
2

(∣
∣a+∣

∣
qS–p/2

s c– p
2
) 2

2–p +
p
2
(
c

p
2 tp

μ(u)‖u‖p
X0

) 2
p

=
2 – p

2
c

p
p–2

(∣
∣a+∣

∣
qS–p/2

s
) 2

2–p +
pc
2

t2
μ(u)‖u‖2

X0 .

By Lemmas 3.1 and 2.4, we have I(u) ≥ m– > 0 and I(u) = supt≥0 I(tu). By (i), we have

I(u) = sup
t≥0

I(tu)

≥ I
(
tμ(u)u

)

≥ 1 – c
2

∥
∥tμ(u)u

∥
∥2

X0
–

2 – p
2p

c
p

p–2
(∣
∣a+∣

∣
qS–p/2

s
) 2

2–p –
1
2∗

s

∫

Ω

(
tμ(u)u+)2∗

s dx

≥ (1 – c)Iμ
(
tμ(u)u

)
–

2 – p
2p

c
p

p–2
(∣
∣a+∣

∣
qS–p/2

s
) 2

2–p

= (1 – c)
N
2s

s
N

( ‖u‖2∗
s

X0∫

Ω
|u|2∗

s dx

) N–2s
2s

–
2 – p

2p
c

p
p–2

(∣
∣a+∣

∣
qS–p/2

s
) 2

2–p

= (1 – c)
N
2s J

(
t(u)u

)
–

2 – p
2p

c
p

p–2
(∣
∣a+∣

∣
qS–p/2

s
) 2

2–p .

Thus, we get (5.1). �

Lemma 5.2 There exists δ0 > 0 such that, for u ∈M(Ω) with J(u) ≤ s
N S

N
2s
s + δ0, we have

∫

R2N

x
|x|

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy �= 0. (5.2)

Proof Assume by contradiction that there exists a sequence {un} ⊂M(Ω) such that

J(un) =
s
N

S
N
2s
s + o(1) and

∫

R2N

x
|x|

∣
∣un(x) – un(y)

∣
∣2K(x – y) dx dy = 0.

Without loss of generality, we can assume that {un} is a (PS)γ (Ω)-sequence (for example,
see Lemma 7 in [38]) for J . Since J is coercive on M(Ω), there exists a subsequence of {un}
(still denoted by {un}) and u0 ∈ X0 such that un ⇀ u0 in X0. Since Ω is a bounded domain,
we have u0 ≡ 0. By Theorem 1.1 in [23] and Lemma 4.4, there exist � nontrivial solutions
v1, . . . , v� ∈ Ḣs(RN ) to

(–�)su = |u|2∗
s –2u in R

N , (5.3)

or

(–�)su = |u|2∗
s –2u in R

N
+ , u = 0 in R

N \RN
+ , (5.4)

where � ∈ N, sequences of points x1
n, . . . , x�

n ⊂ Ω and finitely many sequences of numbers
r1

n, . . . , r�
n ⊂ (0, +∞) converging to zero such that, up to a subsequence,

un =
�∑

j=1

(
rj

n
) 2s–N

2 vj
(

x – xj
n

rj
n

)

+ o(1) in Ḣs(
R

N)
, (5.5)
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and

J(un) =
�∑

j=1

J∞
(
vj) + o(1). (5.6)

If � > 1, then by (5.6) we have J(un) → ∑�
j=1 J∞(vj) > γ (Ω), which is a contradiction. Thus,

by (5.5),

un =
(
r1

n
) 2s–N

2 v1
(

x – x1
n

r1
n

)

+ o(1) in Ḣs(
R

N)
. (5.7)

By (H1), |x1
n| is bounded from below. Hence, we may assume x1

n
|x1

n| → e as n → ∞, where
|e| = 1. By Lebesgue’s dominated convergence theorem, we have

0 =
∫

R2N

x
|x|

∣
∣un(x) – un(y)

∣
∣2K(x – y) dx dy

=
∫

R2N

r1
nx̃ + x1

n
|r1

nx̃ + x1
n|

∣
∣v1(x̃) – v1(ỹ)

∣
∣2K(x̃ – ỹ) dx̃ dỹ + o(1)

= eS
N
2s
s + o(1),

which is impossible. �

Lemma 5.3 There exists σ0 ∈ (0,σ2) such that, for |a+|q ∈ (0,σ0), we have

∫

R2N

x
|x|

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy �= 0

for all u ∈N – with I(u) < m+ + s
N S

N
2s
s .

Proof For u ∈N – with I(u) < m+ + s
N S

N
2s
s , there exists t(u) > 0 such that t(u)u ∈M(Ω). By

Lemma 5.1(ii), for any c ∈ (0, 1), we have

J
(
t(u)u

) ≤ (1 – c)– N
2s

(

I(u) +
2 – p

2p
c

p
p–2

(∣
∣a+∣

∣
qS– p

2
s

) 2
2–p

)

< (1 – c)– N
2s

(
s
N

S
N
2s
s +

2 – p
2p

c
p

p–2
(∣
∣a+∣

∣
qS– p

2
s

) 2
2–p

)

,

since m+ < 0 by Lemma 3.1. Thus, there exists σ0 ∈ (0,σ2) such that, for a ∈ C(Ω̄) with
|a+|q ∈ (0,σ0),

J
(
t(u)u

)
<

s
N

S
N
2s
s + δ0,

where δ0 is given in Lemma 5.2. Consequently, by Lemma 5.2,

∫

R2N

x
|x|

∣
∣t(u)u(x) – t(u)u(y)

∣
∣2K(x – y) dx dy �= 0.

Hence, we complete the proof. �
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Now, we use Lusternik and Schnirelmann’s theory in order to obtain multiplicity results.
The notion of category was introduced by Lusternik and Schnirelmann. It is a topologi-
cal tool used in the estimate of the lower bounded of the number of critical points of a
functional.

Definition 5.4 Let X be a topological space. A closed subset A of X is contractible in X if
there exists h ∈ C([0, 1] × A,X) and v ∈X such that, for every u ∈ A,

h(0, u) = u, h(1, u) = v.

Definition 5.5 The (L–S) category of A with respect to X (or simply the category of A
with respect to X), denoted by catX(A), is the least integer k such that A ⊂ A1 ∪ · · · ∪ Ak ,
with Ai (i = 1, . . . , k) closed and contractible in X.

We set catX(∅) = 0 and catX(A) = +∞ if there are no integers with the above property.
We will use the notation cat(X) for catX(X). For fundamental properties of Lusternik–
Schnirelmann category, we refer to Ambrosetti [2], Schwartz [27], and Chang [10].

Theorem 5.6 (Lusternik–Schnirelmann theorem) Let M be a smooth Banach–Finsler
manifold. Suppose that f ∈ C1(M,R) is a functional bounded from below, satisfying the
(PS) condition. Then f has at least cat(M) critical points.

We say f satisfies the (PS) condition if any sequence {un} ⊂ M, such that

∣
∣f (un)

∣
∣ ≤ const. and f ′(un) → 0,

has a converging subsequence.
The following lemma is from [1].

Lemma 5.7 Let X be a topological space. Suppose that there exist two continuous maps

F : SN–1 →X, G : X → S
N–1

such that G ◦ F is homotopic to identity map of SN–1, that is, there exists ξ ∈ C([0, 1] ×
S

N–1,SN–1) such that

ξ (0, x) = (G ◦ F)(x) for all x ∈ S
N–1,

ξ (1, x) = x for all x ∈ S
N–1.

Then

cat(X) ≥ 2.

For ε < ε0 (ε0 is defined in Lemma 4.2), we define a map Φ : SN–1 → X0 by

Φ(e) = ũ1 + s0t0uε,e for all e ∈ S
N–1,

where s0, t0 are given in Lemma 4.3.



Pang et al. Boundary Value Problems         (2019) 2019:81 Page 26 of 29

Lemma 5.8 Φ(SN–1) is compact.

Proof Let {en} ⊂ S
N–1 be a sequence such that en → e0 as n → ∞. Using a similar argu-

ment as that in the proof of Lemma 4.1 and Lebesgue’s dominated convergence theorem,
we obtain ‖uε,en‖X0 → ‖uε,e0‖X0 as n → ∞. Since X0 is a Hilbert space and uε,en ⇀ uε,e0 ,
we get ‖uε,en – uε,e0‖X0 → 0. Consequently, Φ(en) → Φ(e0). �

For c ∈R, we define

Ic :=
{

u ∈N – : I(u) ≤ c
}

.

Lemma 5.9 There exists dε ∈ (0, m+ + s
N S

N
2s
s ) such that Φ(SN–1) ⊂ Idε for each ε ∈ (0, ε0).

Proof By Lemmas 4.2 and 4.3(iii), for each ε ∈ (0, ε0), we have ũ1 + s0t0uε,e ∈N – and

sup
t≥0

I(ũ1 + tuε,e) < m+ +
s
N

S
N
2s
s

uniformly in e ∈ S
N–1. Since Φ(SN–1) is compact by Lemma 5.8, there exists dε ∈ (0, m+ +

S
N S

N
2s
s ) such that Φ(SN–1) ⊂ Idε . �

Set β = m+ + s
N S

N
2s
s and define Ψ : Iβ → S

N–1 by

Ψ (u) =

∫

R2N
x
|x| |u(x) – u(y)|2K(x – y) dx dy

| ∫
R2N

x
|x| |u(x) – u(y)|2K(x – y) dx dy| .

By Lemma 5.3, Ψ is well-defined. Let

Σ =
{

u ∈ X0 \ {0} :
∫

R2N

x
|x|

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy �= 0

}

.

We define Ψ̃ : Σ → S
N–1 by

Ψ̃ (u) =

∫

R2N
x
|x| |u(x) – u(y)|2K(x – y) dx dy

| ∫
R2N

x
|x| |u(x) – u(y)|2K(x – y) dx dy| .

Clearly, Ψ̃ is an extension of Ψ .

Lemma 5.10 uε,e ∈ Σ for all e ∈ S
N–1 and for ε small enough.

Proof For every uε,e, one sees immediately that there exists t(ε, e) > 0 such that t(ε, e)uε,e ∈
M(Ω). Indeed, t(ε, e)uε,e ∈M(Ω) is equivalent to

∥
∥t(ε, e)uε,e

∥
∥2

X0
=

∫

Ω

∣
∣t(ε, e)uε,e

∣
∣2∗

s dx,

which is solved by

t(ε, e) =
( ‖uε,e‖2

X0∫

Ω
|uε,e|2∗

s dx

)1/(2∗
s –2)

.
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By Lemma 4.1, we have

lim
ε→0

t(ε, e) = 1

uniformly in e ∈ S
N–1. Thus,

lim
ε→0

J
(
t(ε, e)uε,e

)
=

s
N

S
N
2s
s

uniformly in e ∈ S
N–1. By Lemma 5.2, we get t(ε, e)uε,e ∈ Σ for ε > 0 small enough. Con-

sequently, uε,e ∈ Σ . �

Lemma 5.11 Ψ ◦ Φ : SN–1 → S
N–1 is homotopic to the identity.

Proof By Lemma 5.10, there exists ε∗ ∈ (0, ε0) such that, for ε ∈ (0, ε∗), uε,e ∈ Σ and
u2(1–θ )ε,e ∈ Σ for all e ∈ S

N–1 and θ ∈ [ 1
2 , 1). Let γ : [s1, s2] → S

N–1 be a regular geodesic
between Ψ̃ (uε,e) and Ψ̃ (Φ(e)) such that

γ (s1) = Ψ̃ (uε,e), γ (s2) = Ψ̃
(
Φ(e)

)
.

Define ξ : [0, 1] × S
N–1 → S

N–1 by

ξ (θ , e) =

⎧
⎪⎪⎨

⎪⎪⎩

γ (2θs1 + (1 – 2θ )s2)) for θ ∈ [0, 1
2 ),

Ψ̃ (u2(1–θ )ε,e) for θ ∈ [ 1
2 , 1),

e for θ = 1.

Set x̃ = (x – ρ̃e)/(2(1 – θ )ε), ỹ = (y – ρ̃e)/(2(1 – θ )ε). Then

∫

R2N

x
|x|

∣
∣u2(1–θ )ε,e(x) – u2(1–θ )ε,e(y)

∣
∣2K(x – y) dx dy

=
∫

R2N

ρ̃e + 2(1 – θ )εx̃
|ρ̃e + 2(1 – θ )εx̃|η

(
ρ̃e + 2(1 – θ )εx̃

)∣
∣U1(x̃) – U1(ỹ)

∣
∣2K(x̃ – ỹ) dx̃ dỹ

→ S
N
2s
s e,

as θ → 1– by (4.4) and Lebesgue’s dominated convergence theorem. Consequently,

lim
θ→1–

ξ (θ , e) = e.

Clearly, ξ (θ , e) → γ (s – 1) = Ψ̃ (uε,e) as θ → 1
2

–. Thus, ξ ∈ C([0, 1] × S
N–1,SN–1), and

ξ (0, e) = Ψ̃
(
Φ(e)

)
,

ξ (1, e) = e,

for all e ∈ S
N–1. �
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Proof of Theorem 1.1 By Lemmas 5.7, 5.9, and 5.11, there exists dε ∈ (0, m+ + s
N S

N
2s
s ) such

that

cat
(
Idε

) ≥ 2.

By Lemma 3.2 and Theorem 5.6, I has at least two critical points ũ2 and ũ3 in {u ∈ N – :
I(u) < m+ + s

N S
N
2s
s }. By the maximum principle (Proposition 2.2.8 in [33]), ũ2 and ũ3 are

strictly positive in Ω . By Theorem 3.3, we get three positive solutions ũi (i = 1, 2, 3) of
(1.1). By (2.5) and Lemma 4.5, we have

∫

Ω
a(x)ũp

i > 0, i = 1, 2, 3. �
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