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Abstract
We propose to implement the mortar spectral elements discretization of the heat
equation in a bounded two-dimensional domain with a piecewise continuous
diffusion coefficient. The discretization on time is based on the Euler implicit method.
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1 Introduction
This paper is devoted to the implementation of the discretization by the mortar spectral
elements method of the heat equation. We will consider the diffusion coefficient to be
piecewise constant and the quotient of its maximal and minimal value to be sufficiently
large. The a priori and a posteriori analysis of the heat equations was addressed in a va-
riety of work [1–4]. The discretization by the conforming finite element method of the
stationary case of the aforementioned heat equation problem was considered in [5]. The
same problem was handled by the mortar method for the spectral elements discretization
in [6].

In this work, we consider the nonstationary problem. The Euler implicit method is used
for the time discretization then a first decomposition of the domain is proposed such
that on each sub-domain the diffusion coefficient is constant. A second decomposition
is also used based on the mortar method [7], which is the most suitable one for this type
of problem, since it is about nonconforming geometries (i.e. it is not necessarily that the
intersection of two sub-domains is a corner or a whole edge of both of them) [8]. The non-
conforming property permits to reduce the number of sub-domains enormously. Spectral
discretization is performed in each sub-domain where the solution is approached by a
high degree polynomial. The sub-domains are chosen as rectangles to benefit from the
tensorization property of the polynomial basis. The mortar spectral elements method has
two advantages. The first one is the possibility to choose polynomial degrees in each sub-
domain different from each others. This allows us to take a high degree polynomial in the
sub-domains where the value of the diffusion coefficient is large. The second advantage is
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that the error estimation depends on the local regularity of the solution rather than on the
global regularity. The global regularity of the solution is poor due to the discontinuity of
the diffusion coefficient [5, 9, 10]. This justifies the choice of the domain decomposition
method to solve our problem [11]. Some numerical experiments are described. They are
fairly coherent with the analysis and support the choice of the mortar method. We refer to
[12] for similar numerical results in the mortar h-p version of the finite element method.

The outline of this paper is as follows: Sect. 2 is devoted to the continuous problem
and some regularity results. Section 3 describes the semidiscrete time problem and the
full discrete problem. The error estimation is presented in Sect. 4. Finally, Sect. 5 is ded-
icated to the discrete problem implementation. We perform and discuss some numerical
experiments.

2 The continuous problem and regularity results
Let Ω an open and bounded connected two-dimensional domain with a Lipschtiz contin-
uous boundary ∂Ω . We consider the following problem, which models the heat equation
with a diffusion coefficient λ, depending on the heterogeneity of the domain and not de-
pending on time:

⎧
⎪⎪⎨

⎪⎪⎩

∂ϕ

∂t – div(λgradϕ) = f in Ω × ]0, T[,

ϕ = 0 in ∂Ω × ]0, T[,

ϕ(·, 0) = ϕ0 on Ω ,

(1)

where T is a fixed positive real.
We denote in the following by x = (x, y) the elements of R2. We assume that there exist

a finite number of sub-domains Ω�
i , 1 ≤ i ≤ I�, such that:

(1)

Ω =
I�⋃

i=1

Ω
�
i , Ω�

i ∩ Ω�
j = ∅, 1 ≤ i < j ≤ I�;

(2) the restriction of λ to each Ω
�
i is continuous on Ω�

i , 1 ≤ i ≤ I�;
(3) λ is bounded on each Ω

�
i , and we define

λmax = max
1≤i≤I�

λmax
i , and λmin = max

1≤i≤I�
λmin

i , (2)

where

λmax
i = sup

x∈Ω�
i

λ(x), and λmin
i = min

x∈Ω�
i

λ(x).

Let Hs(Ω), s > 0, the Sobolev spaces with the associated norm ‖ ·‖s,Ω and seminorm | · |s,Ω .
The space H1

0 (Ω) denotes the closure in H1(Ω) of the space of infinitely differentiable
functions with compact support in Ω and H–1(Ω) is its dual space. We designate by (·, ·)
and ‖ · ‖0,Ω , respectively, the scalar product of L2(Ω) and its associated norm.

We define below the spaces of time-dependent functions.
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• C j(0, T ; X) is a Banach space for the norm

‖u‖Cj(0,T ;X) = sup
0≤t≤T

j∑

l=0

∥
∥∂ l

t u
∥
∥

X ,

where ∂ l
t u is the derivative of order l in time of the function u. It represents the set of

class C j time-dependent function with a value on a separable Banach space X .
• Lp(0, T ; X) = {v mesurable on ]0, T[ such that

∫ T
0 ‖v(t)‖p

X dt < ∞} is a Banach space
for the norm

‖v‖Lp(0,T ;X) =

⎧
⎨

⎩

(
∫ T

0 ‖v(t)‖p
X dt)

1
p , for 1 ≤ p < +∞,

sup0≤t≤T ‖v(t)‖X , for p = +∞,

• Hs(0, T ; X) = {v ∈ L2(0, T ; X); ∂kv ∈ L2(0, T ; X); k ≤ s} is an Hilbert space for the scalar
product:

(u, v) =

(

(u, v)L2(0,T ;X) +
s∑

k=0

(
∂ku, ∂kv

)

L2(0,T ;X)

) 1
2

.

Problem (1) has the following equivalent formulation:
For t ∈ ]0, T[ and f ∈ L2(0, T ; H–1(Ω)), find ϕ ∈ C0(0, T ; L2(Ω)) ∩ L2(0, T ; H1

0 (Ω)) such
that: for all ψ ∈ H1

0 (Ω)

∫

Ω

∂ϕ

∂t
(x, t)ψ(x) dx +

I�∑

i=1

∫

Ω�
i

λ(x)∇ϕ(x, t)∇ψ(x) dx =
〈
f (·, t),ψ

〉
(3)

where 〈·, ·〉 denotes the duality product of H1
0 (Ω) and H–1(Ω).

Let the energy norm

‖ϕ‖λ(T) =

(

‖ϕ‖2
0,Ω +

I�∑

i=1

∫ T

0

∥
∥λ(x)

1
2 ∇ϕ(x, t)

∥
∥2

0,Ω�
i

dt

) 1
2

. (4)

We reiterate the proposition below as stated in (see [13], Chap. 3 for the proof ).

Proposition 1 For f ∈ L2(0, T ; H–1(Ω)) and ϕ0 ∈ L2(Ω), the problem (2) has a unique
solution ϕ ∈ L2(0, T ; H1

0 (Ω)) with the following stability condition:

‖ϕ‖λ(T) ≤
(

‖ϕ0‖2
0,Ω +

(
1

λmin

)

‖f ‖2
L2(0,T ;H–1(Ω))

) 1
2

. (5)

We recall the regularity result proved in ([5], Prop 2.2) and [9].

Proposition 2 We assume that on each sub-domain Ω�
i , 1 ≤ i ≤ I�, the restriction of the

function λ is constant. There exists a real 0 < s0 < 1
2 , depending on the quotient λmax

λmin , where
for f ∈ L2(0, T ; Hs–1(Ω)) and ϕ0 ∈ Hs(Ω), the solution ϕ of problem (3) is within the space
L2(0, T ; Hs+1(Ω) ∩ H1

0 (Ω)), for any 0 ≤ s ≤ s0.
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3 The discrete problems and the error estimate
3.1 The time semidiscrete problem
We introduce a partition of the interval [0, T] in order to formulate the discrete time-
dependent problem. Let [tn–1, tn] the sub-interval of the partition such that 0 = t0 < t1 <
· · · < tn–1 < · · · < tM = T with M a positive integer. We denote by h = tn – tn–1, 1 ≤ n ≤ M,
the step of the partition, considered constant, and we have ψn = ψ(·, tn), 0 ≤ n ≤ M. We
define ψh, the affine function on each interval [tn–1, tn]:

ψh(·, t) = ψn –
tn – t

h
(
ψn – ψn–1). (6)

Based on the Euler implicit method, the semidiscrete problem is formulated as

⎧
⎪⎪⎨

⎪⎪⎩

ϕn–ϕn–1

h – div(λ∇ϕn) = f n in Ω , 1 ≤ n ≤ M,

ϕn = 0 on ∂Ω , 0 ≤ n ≤ M,

ϕ0 = ϕ0 in Ω ,

(7)

which has the equivalent variational formulation:
Find (ϕn)0≤n≤M ∈ L2(Ω) × H1

0 (Ω)M such that, for all ψ ∈ H1
0 (Ω),

∫

Ω

ϕn(x)ψ(x) dx + h
I�∑

i=1

∫

Ω�
i

λ(x)∇ϕn(x)∇ψ(x) dx

=
∫

Ω

ϕn–1(x)ψ(x) dx + h
∫

Ω

f n(x)ψ(x) dx. (8)

Let an(·, ·) the bilinear form and Ln(·) the linear form defined by

an(ϕn,ψ
)

=
∫

Ω

ϕn(x)ψ(x) dx + h
I�∑

i=1

∫

Ω�
i

λ(x)∇ϕn(x)∇ψ(x) dx

and

Ln(ψ) =
∫

Ω

ϕn–1(x)ψ(x) dx + h
∫

Ω

f n(x)ψ(x) dx.

Since an(·, ·) is continuous on the space H1
0 (Ω) × H1

0 (Ω) and coercive on the space H1
0 (Ω)

and Ln is continuous on the space H1
0 (Ω), we deduce based on the Lax Milgram theorem

the following proposition.

Proposition 3 For any function f in C0(0, T ; H–1(Ω)) and ϕ0 ∈ L2(Ω), problem (8) has a
unique solution (ϕn)0≤n≤M ∈ L2(Ω) × (H1

0 (Ω))M , such that:

1
4

(

‖ϕ0‖2
0,Ω +

h
λmin

n∑

j=1

∥
∥f j∥∥2

–1,Ω

)

≤ ‖ϕh‖2
λ

≤ ‖ϕ0‖2
0,Ω +

h
λmin

n∑

j=1

∥
∥f j∥∥2

–1,Ω +
1
2

h
∥
∥λ

1
2 ∇ϕ0

∥
∥2

0,Ω . (9)
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We introduce the norm ‖ · ‖n:

∥
∥ϕn∥∥

n =

(
∥
∥ϕn∥∥2

0,Ω + h
n∑

j=1

I�∑

i=1

∥
∥λ

1
2 ∇ϕj∥∥2

0,Ω�
i

) 1
2

. (10)

The following theorem is related to the a priori error estimate.

Theorem 3.1 If ∂2
t ϕ(·, t) ∈ L2(0, T , H–1(Ω)) where ϕ is the solution of the problem (3), then

we have

‖ϕ – ϕh‖n ≤ ch‖ϕ‖H2(0,T ,H–1(Ω)) (11)

where c is a positive constant.

3.2 The mortar spectral element discretization
In this section, we handle the case where the function λ is piecewise constant. Since we
are using the spectral discretization, the sub-domains are necessarily rectangles. We recall
that the domain decomposition has to be performed in two steps. The first decomposition
based on the value of λ (i.e. λ is constant on each sub-domain) is achieved above. The
second decomposition states that each obtained sub-domain is decomposed on rectangles
using the mortar spectral method. We consider

Ω =
i=I⋃

i=1

Ω i, Ωi ∩ Ωj = ∅, i �= j. (12)

We assume the function λ constant on each Ωi, 1 ≤ i ≤ I . We remark that, for any 1 ≤ i ≤ I ,
there exists 1 ≤ j ≤ I�, such that Ωi ⊂ Ω�

j and I > I�. In order to illustrate the decomposi-
tion, we consider for example I� = 2, which means that Ω is built with two heterogeneous
regions (see Fig. 1). In order to decompose the domain by spectral method, five rectangles
(I = 5) are necessary. However, nine rectangles are needed for a conforming decomposi-
tion (this means that if the intersection of two rectangles Ω i and Ω j, i �= j, is not empty, it
is necessarily equal to a corner or to a hole edge of Ωi and Ωj).

We presume that the intersection of each boundary ∂Ωi of the sub-domain Ωi with
the boundary ∂Ω of the domain Ω is a corner or a hole edge of Ωi. The skeleton of the

Figure 1 The domain Ω



Abdelwahed and Chorfi Boundary Value Problems         (2019) 2019:80 Page 6 of 14

decomposition

S =
I⋃

i=1

∂Ωi \ ∂Ω

is equal to: For an integer M ≥ 2

S =
M⋃

m=1

γm, γm ∩ γm′ = ∅, 1 ≤ m �= m′ ≤ M, (13)

where γm stands for mortar. It corresponds to a hole edge of one sub-domain Ωi named
Ωi(m).

We consider PNi (Ωi), Ni ≥ 2, 1 ≤ i ≤ I , the space of the polynomial functions defined on
Ωi, with a degree less or equal to Ni, for x and y.

We define the discrete space Xδ , (δ = (N1, . . . , NI) is the discrete parameter) as the space
of discrete functions ϕδ such that (see [8]):

• ϕδ /Ωi , 1 ≤ i ≤ I , belongs to the polynomial space PNi (Ωi),
• ϕδ vanishes on the boundary ∂Ω ,
• let φ the mortar function where φ/γm = ϕδ /Ωi(m)/γm , for any Ωi, 1 ≤ i ≤ I and an edge Γ

of Ωi (Γ is not part of the boundary ∂Ω), we propose the matching condition:

∀χδ ∈ PNi–2(Γ ),
∫

Γ

(ϕδ /Ωi – φ)(ξ )χδ(ξ ) dξ = 0, (14)

where PNi–2(Γ ) is the space of polynomials with degree ≤ (Ni – 2) defined on Γ . That Γ

is not a mortar permits one to conclude that the discretization is not conforming (Xδ is
not a subspace of H1(Ω)).

For the numerical integration, we use the Gauss–Lobatto quadrature formula on ]–1, 1[.
For an integer N ≥ 2, there exists a unique set of points ε0 = –1, εN = 1, εj, 1 ≤ j ≤ (N – 1)
and weights �j, 0 ≤ j ≤ N , such that

∀ϕ ∈ P2N–1
(
]–1, 1[

)
,

∫ 1

–1
ϕ(ξ ) dξ =

N∑

j=1

ϕ(εj)�j. (15)

We deduce the values of the points and weights εx
ij and �x

ij (respectively ε
y
ij and �

y
ij) in the

direction x (respectively in the direction y) from εj, 0 ≤ j ≤ N and weights �j, 0 ≤ j ≤ N ,
by homothety and translation of the domain Ωi to the reference domain ]–1, 1[2. Then we
obtain the discrete scalar product: For ϕ and ψ continuous on each Ωi, 1 ≤ i ≤ I ,

(ϕ,ψ)δ =
I∑

i=1

(ϕ,ψ)Ni , (16)

where

(ϕ,ψ)Ni =
Ni∑

j=0

Ni∑

l=0

ϕ
(
εx

ij, ε
y
il
)
ψ

(
εx

ij, ε
y
il
)
�x

ij�
y
il.
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We define the space

Zδ =
{
θδ ∈ L2(Ω); θδ/Ωi ∈ PNi (Ωi); 1 ≤ i ≤ I

}
,

and Iδ the Lagrange interpolation operator: for all θ ∈ Xδ such that θ/Ωi , 1 ≤ i ≤ I is con-
tinuous on Ω i, Iδ(θ ) ∈ Zδ , and Iδ(θ )(εx

ij, ε
y
il) = θ (εx

ij, ε
y
il).

Let f n be continuous on Ωi, 1 ≤ i ≤ I , for each 0 ≤ n ≤ M. Consider the discrete problem:
Find ϕn

δ ∈Xδ for each 1 ≤ n ≤ M, such that

ϕ0
δ = Iδ(ϕ0)

and

∀ψδ ∈Xδ , an
δ

(
ϕn

δ ,ψδ

)
= Ln

δ (ψδ). (17)

The bilinear form an
δ (·, ·), and the linear form Ln

δ (·), for 1 ≤ n ≤ M, are defined as

an
δ

(
ϕn

δ ,ψδ

)
=

(
ϕn

δ ,ψδ

)

δ
+ h

I∑

i=1

λi
(∇ϕn

δ ,∇ψδ

)

Ni
(18)

and

Ln
δ (ψδ) =

(
ϕn–1

δ ,ψδ

)

δ
+ h

(
f n,ψδ

)

δ
. (19)

We define on the space Xδ the following broken energy norm:

‖ψδ‖Xδ
=

(

‖ψδ‖2
0,Ω + h

I∑

i=1

λi|ψδ|21,Ωi

) 1
2

. (20)

The bilinear form an
δ (·, ·) is continuous on Xδ ×Xδ , coercive on Xδ and the linear form

Ln
δ (·) is continuous on Xδ . The Lax–Milgram lemma permits us to propose the following

theorem.

Theorem 1 For f continuous on Ω × [0, T] and ϕ0 continuous on Ω , problem (17) has a
unique solution (ϕn

δ )0≤n≤M in Yδ × (Xδ)M verifying the stability condition:

∥
∥ϕn

δ

∥
∥2

0,Ω + h
n∑

j=1

I∑

i=1

λi
∥
∥∇ϕ

j
δ

∥
∥

0,Ωi
≤ c

(

‖Iδϕ0‖2
0,Ω +

λmax

λmin

n∑

j=1

∥
∥Iδ f j∥∥

0,Ω

)

where c is a positive constant independent of n and δ.

3.3 The error estimate
For each mortar γm ⊂ S, 1 ≤ m ≤ M, we define η(m) as the set of subscripts i, 1 ≤ i ≤ I ,
such that ∂Ωi ∩ γm has a positive measure. We have the following theorem for the error
result (see [14] for its proof ).
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Theorem 2 We suppose λ is constant on each Ωi, 1 ≤ i ≤ I . Let f is such that f/Ωi ∈
C0(0, T ; Hσi (Ωi)); σi > 1; ϕ0 is such that ϕ0/Ωi ∈ Hμi (Ωi); μi > 1 and the solution (ϕn)0≤n≤M

of problem (8) is such that ϕn
/Ωi

∈ Hsi+1(Ωi); si ≥ 0. Then the error between the (ϕn)0≤n≤M

and (ϕn
δ )0≤n≤M solutions of problem (17) is

∥
∥ϕn – ϕn

δ

∥
∥

n ≤ ch

[

(1 + α + αδ)

((
λmin

λmax

) I∑

i=1

λiN
–2si
i log(Ni)

∥
∥ϕn∥∥2

Hsi+1(Ωi)

)1/2

+
(

1
min(1,λmin)

)1/2
( I∑

i=1

N–2σi
i ‖f ‖2

C0(0,T ;Hσi (Ωi))

)1/2

+

( I∑

i=1

N–2μi
i ‖Iδϕ0‖2

Hμi (Ωi)

)1/2]

, (21)

where c is a positive constant independent of δ,

α = max
1≤m≤M

max
k∈η(m)

(
λk

λi(m)

)1/2

,

αδ = max
1≤m≤M

max
k∈η(m)

(
λkNi(m)

λi(m)Nk

)1/2

.

Remark 1 The term αδ vanishes when the decomposition is conforming. The choice of
mortars can be done freely in two ways. Firstly, it can be such that

∀k ∈ η(m), λk ≤ λi(m). (22)

Thus α ≤ 1.
Secondly, it can be such that

∀k ∈ η(m), λkN–1
k ≤ λi(m)N–1

i(m), (23)

which can lead us to make a small modification in the domain decomposition. Thus we
optimize the error estimation (21) without making the geometry conform.

4 Implementation and numerical results
We start by the description of the implementation of mortar spectral element method for
the discrete problem (17). We consider lx

ill
y
ik , 0 ≤ l, k ≤ Ni, 1 ≤ i ≤ I , to be a basis of the

polynomial space PNi (Ωi) where lx
il and ly

ik denote the Lagrange interpolating polynomials
associated with the nodes εx

il and ε
y
ik , respectively. Then the solution ϕn

δ of the problem
(17) is decomposed as

ϕn
δ (x, y)/Ωi =

Ni∑

l=0

Ni∑

k=0

ϕn
δ

(
εx

il, ε
y
ik
)
lx
il(x)ly

ik(y).

Then the discrete problem (17) is written in the form

(D + hA)Φn
δ = Fn, (24)
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where Φn
δ is the vector of admissible unknowns composed of ϕn

δ (εx
il, ε

y
ik), 1 ≤ l, k ≤ Ni,

1 ≤ i ≤ I , the matrix D is diagonal with coefficient ρx
irρ

y
is, 1 ≤ r, s ≤ Ni, 1 ≤ i ≤ I , A is a

symmetric block-diagonal matrix made of the I square sub-matrices (∇(lillik),∇(lirlis))Ni

which represent the Neumann–Laplace operator on each sub-domain Ωi and Fn is the
vector with components equal to (ϕn–1

δ (εx
ir , εy

is) + hf n(εx
ir , εy

is))ρx
irρ

y
is, 1 ≤ r, s ≤ Ni, 1 ≤ i ≤ I .

The vector Φn
δ has false degrees of freedom. These false degrees of freedom are the

values of the solution ϕn
δ on the edges of the sub-domain Ωi which are not mortars (Ωi �=

Ωi(m)) and are not in the boundary ∂Ω . Then the matching condition (14) is written in
the form ϕn

δ /Γ = Q̄ψ/γm , where Q̄ is the matching matrix. Its value is determined locally
for each pair edge-mortar (Γ , γm) and ψ is the corresponding mortar function (see [15,
16] for more details). Then the action of the global matching matrix Q is represented as
follows:

(
vi

lk/internal
vi

lk/edges

)

︸ ︷︷ ︸
Φn

δ

=

(
I 0
0 Q̄

)

︸ ︷︷ ︸
Q

(
vi

lk/internal
ψ/γm

)

︸ ︷︷ ︸
Φ̄n

δ

,

for 1 ≤ i ≤ I , 1 ≤ l, k ≤ Ni and 1 ≤ m ≤ M. The role of the matrix Q is to decouple the
system (24) in order to be solved on each sub-domain Ωi. The transpose matrix QT serves
to eliminate the false degrees of freedom from the vector of unknowns. Thus the system
that we solve is

QT (D + hA)QΦ̄n
δ = QT Fn. (25)

The components of the vector Φ̄n
δ are the values of the solution on the internal nodes of

sub-domains Ωi, 1 ≤ i ≤ I , and the values of the mortar functions on the skeleton S. Since
the matrix Ā = QT (D + hA)Q is symmetric and positive defined, we solve the system (25)
using the gradient conjugate method as follows.

Initialization: let Φn
0 be arbitrary, Rn

0 = QT Fn – ĀΦn
0 , Tn

0 = Rn
0 .

Iteration k = 1, . . . :

αk =
(Rn

k , Rn
k )

(Tn
k , ĀTn

k )
,

Φn
k+1 = Φn

k + αkTn
k ,

Rn
k+1 = Rn

k – αkĀTn
k ,

βk =
(Rn

k+1, Rn
k+1)

(Rn
k , Rn

k )
,

Tn
k+1 = Rn

k+1 + βkTn
k .

The high cost of operations is due to the product matrix-vector (D + hA)iΦ
n
i , 1 ≤ i ≤ I ,

which is of order O(N4
i ). Thanks to the tensorization property of the polynomial basis,

this cost has been reduced to O(N3
i ) operations.

To validate the used numerical method, we focus, firstly, on the time convergence. We
consider the domain Ω = ]–1, 1[2 and the continuous solution

ϕ(x, y, t) = (t + 1)
(
1 – x2)5/2(1 – y2)5/2. (26)
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Figure 2 Error on time for the solution defined in
(26)

Figure 3 The discrete solution for the data f , ϕ0 defined in (27)

We consider the space discrete parameter δ = 40, T = 1 and the time steps h ∈ {10–1, 10–2,
10–3}. Figure 2 shows the curves of convergence for the two terms log‖ϕ – ϕn

δ ‖H1(Ω) (in
blue) and log‖ϕ – ϕn

δ ‖L2(Ω) (in red) as a function of log(h). We notice that the error de-
creases when the step h decreases with an order almost equal to 1.

In the following, we fix h = 10–3, T = 1,

f (x, y, t) = 1 and ϕ0(x, y) = 0. (27)

We consider the partition of the domain Ω = ]–1, 1[2 in two sub-domains

Ω1 = ]–1, 0[ × ]–1, 1[, Ω2 = ]0, 1[ × ]–1, 1[.

Let λ = λ1 in Ω1 and λ = λ2 in Ω2.
In Fig. 3 (left), the discrete solution is computed for δ = N = 40 without considering the

decomposition of the domain where λ is continuous and equal to 1. The discrete solution
computed considering the mortar method for δ = (N1, N2) = (40, 40) and (λ1,λ2) = (1, 1) is
presented in Fig. 3 (right).

We present in Table 1 the influence of the variation of λ2 on the number of iterations of
the gradient conjugate algorithm taking into account domain decomposition or not with
λ1 = 1. We remark that the number of iterations increases when the ratio λ2

λ1
moves away

from 1, for a resolution without a domain decomposition (without mortar). This number
of iterations decreases sharply when we solve the discrete problem by considering the
domain decomposition (with mortar).
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Table 1 Correlation between the number of iterations and the quotient λmax

λmin

λ2 0.15 0.2 0.5 0.8 1 5 10 13 100

Iterations (without mortar) 29,387 1335 72 38 25 388 5598 51,325 ∞
Iterations (with mortar) 179 176 35 21 8 206 280 316 786

Figure 4 The isovalues of the discrete solution issued from (27) for (λ1,λ2) = (1, 1) (left) and (λ1,λ2) = (1, 10)
(right)

Figure 5 The error curves issued from the solution defined in (26)

In Fig. 4, we observe that the discontinuity of λ makes the discrete solution unsymmet-
rical.

To illustrate the variation of the error according to the discontinuity of λ we define the
term:

error =
∥
∥ϕ – ϕn

δ

∥
∥

L2(Ω) and N =

( I∑

1

N2
i

) 1
2

.

Hereafter the error curves showing the log(error) as a function of log(N).
In Fig. 5 (left), the resolution is done without considering the domain decomposition

(without mortar) by fixing λ1 = 1. The curves are made with a discretization parameter
δ ∈ {7, 10, 15, 25}. We observe that in the case where λ2 = 1 (in red) and the domain is
homogeneous (λ is continuous), the convergence is exponential (10–8). In the case where
λ2 ∈ [0.13, 14]/{1} (for example λ2 = 0.13 (in blue) and λ2 = 14 (in black)), the convergence
is very bad with a large number of iterations (see Table 1). Outside the interval [0.13, 14]
the number of iterations is much higher (about a million).
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However, in Fig. 5 (right), the same resolution is made considering that the domain Ω

is broken down into two sub-domains Ω1 and Ω2. The mortar is chosen γ1 = ]–1, 1[ edge
of Ω2, δ equal to (5, 7), (8, 12), (10, 15) and (22, 25). The method is functionally noncon-
forming. The curves are made for three different values: λ2 = 1 (in red), λ2 = 10 (in black)
and λ2 = 100 (in blue). We observe that in the case where λ2 = 10 and λ2 = 100 where λ is
discontinuous, the convergence is much better than in the case without domain decom-
position. This convergence also depends on the ratio λ2

λ1
.

Secondly we consider the L-shaped domain

Ω = ]–1, 1[2/ ]0, 1[2,

which we decompose into three sub-domains

Ω1 = ]–1, 0[ × ]–1, 0[, Ω2 = ]–1, 0[ × ]0, 1[, Ω3 = ]0, 1[ × ]–1, 0[.

Figure 6 presents the discrete solution in the L-shaped domain for δ = (N1, N2, N3) =
(35, 35, 35), in the case where the domain Ω is homogeneous (i.e. λ is continuous equal to
(λ1,λ2,λ3) = (1, 1, 1) where λj is the value of λ on each sub-domain Ωj for 1 ≤ j ≤ 3).

In Fig. 7, we present the isovalues of the discrete solution issued from the data (27), for
the two values λ = (1, 1, 1) and λ = (1, 10, 10). We observe that the symmetry of the solution
changes when λ is discontinuous.

Consider the continuous solution

ϕ(x, y, t) = t2x
(
1 – x2) 5

2 y
(
1 – y2) 5

2 . (28)

Figure 6 The discrete solution in the L-shaped
domain for the data defined in (27)

Figure 7 The isovalues of the discrete solution issue from (27) for λ = (1, 1, 1) (left) and λ = (1, 10, 10) (right)
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Figure 8 The curves of error issued from the
solution defined in (28)

Figure 9 The error curves for the solution defined in
(27)

We choose the two mortars γ1 = ]–1, 0[ in Ω2 and γ2 = ]–1, 0[ in the sub-domain Ω3.
Figure 8 presents the error curves for λ = (1, 1, 1) (in red), λ = (1, 10, 10) (in black) and
λ = (1, 100, 100) (in blue). Each curve is done with a discrete parameter δ = (5, 8, 8), δ =
(10, 13, 13), δ = (15, 17, 17) and δ = (20, 25, 25). We notice that in so far as the value of λmax

λmin

is high, the error is bad. We also observe that in this case, the error is not as good as in the
case of two domains. This is due to the presence of the geometric singularity 3π

2 .
Finally, we consider the case of a geometrically nonconforming domain. Let Ω be the

domain

Ω = ]–1, 1[2,

partitioned into three sub-domain as follows:

Ω1 = ]–1, 1[ × ]0, 1[, Ω2 = ]–1, 0[ × ]–1, 0[, Ω3 = ]0, 1[ × ]–1, 0[.

The mortar γ1 is chosen equal to the edge ]–1, 1[ in the domain Ω1, according to the con-
ditions (22) and (23). In Fig. 9, we present two error curves with a discrete parameter δ =
(N1, N2, N3) running through (5, 7, 12), (9, 13, 15), (11, 16, 19) and (20, 22, 25). The curves in
red and black correspond, respectively, to the cases λ = (1, 1, 1) and λ = (1, 10, 100), where
λ is discontinuous. Since the decomposition is nonconforming, the error estimation is less
good than the case where the domain Ω is decomposed in two sub-domains. This is due
to the presence of the term αδ in the estimation (21).
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5 Conclusion
We have been interested in this work in the numerical implementation of the mortar spec-
tral element method for the heat equation with diffusion coefficient depending on the
heterogeneity of the domain. We illustrate numerically that the error is poor, which is due
to the fact that the diffusion coefficient is piecewise continuous. To improve the order of
convergence, we opted for a domain decomposition method (mortar method) associated
with the spectral discretization method, known for its high accuracy. This technique can
be generalized for other types of partial differential equations.
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