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Abstract
In this paper, we consider plate equations with viscoelastic damping localized on a
part of the boundary and nonlinear damping in the domain. We establish general
and optimal decay rate results for a wider class of relaxation functions. These results
are obtained without imposing any restrictive growth assumption on the frictional
damping term. Our results are more general than the earlier results.
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1 Introduction
In this paper, we consider the following Kirchhoff plate equations:

utt + �2u + η(t)h(ut) = 0, in Ω × (0,∞), (1)

u =
∂u
∂ν

= 0, on Γ0 × (0,∞), (2)

–u +
∫ t

0
k1(t – s)Φ2u(s) ds = 0, on Γ1 × (0,∞), (3)

∂u
∂ν

+
∫ t

0
k2(t – s)Φ1u(s) ds = 0, on Γ1 × (0,∞), (4)

u(x, 0) = u0(x, t), ut(x, 0) = u1(x), in Ω . (5)

In system (1)–(5), u = u(x, t) is the transversal displacement of a thin vibrating plate sub-
jected to boundary viscoelastic damping and an internal time-dependent fractional damp-
ing. The integral terms in (3) and (4) describe the memory effects. The causes of these
memory effects are, for example, the interaction with another viscoelastic element. In the
above system, η ∈ C1(0,∞) is a positive nonincreasing function called the time-dependent
coefficient of the frictional damping and u0 and u1 are the initial data. The functions
k1, k2 ∈ C1(0,∞) are positive and nonincreasing, called relaxation functions, and h is a
function that satisfies some conditions. Denoting by Φ1, Φ2 the differential operators

Φ1u = �u + (1 – ρ)D1u, Φ2u =
∂�u
∂ν

+ (1 – ρ)
∂D2u
∂δ

,
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where

D1u = 2ν1ν2uxy – ν2
1 uyy – ν2

2 uxx, D2u =
(
ν2

1 – ν2
2
)
uxy + ν1ν2(uyy – uxx),

and ρ ∈ (0, 1
2 ) represents the Poisson coefficient. The vector ν = (ν1,ν2) denotes the unit

outward normal and δ = (–ν2,ν1) denotes the external unit normal to the boundary of
the domain. The stability of the Kirchhoff plate equations in which the boundary (inter-
nal) feedback is linear or nonlinear has been studied by several authors, such as Lagnese
[1], Komornik [2], Lasiecka [3], Cavalcanti et al. [4], Ammari and Tucsnak [5], Komornik
[6], Guzman and Tucsnak [7], Vasconcellos and Teixeira [8] and Pazoto et al. [9]. For the
existence, multiplicity and asymptotic behavior of nonnegative solutions for a fractional
Schrödinger–Poisson–Kirchhoff type system, we refer to Xiang and Wang [10]. There ex-
ist a large number of papers which discuss the plate equations when the memory effects
are in the domain or at the boundary. Here, we refer to Lagnese [11] and Rivera et al. [12]
for the internal viscoelastic damping. They proved that the energy decays exponentially
(polynomially) if the relaxation function k decays exponentially (polynomially). Alabau-
Boussouira et al. [13] obtained the same results but for an abstract problem. Regarding
the internal damping, if the viscoelastic term does not exist and η ≡ 1, the problem (1)
was studied and analyzed in the literature such as by Enrike [14] who established an expo-
nential decay for the wave equation with linear damping term. This result was extended
by Komornik [15] and Nakao [16] who used different methods and treated the problem
when the damping term is nonlinear. For the boundary damping, Santos and Junior [17]
showed that the energy decays exponentially if the resolvent kernels r decays exponen-
tially and polynomially if r decays polynomially. In the presence of η(t), Benaissa et al.
[18] established energy decay results which depend on h and η(t). In all the above work,
the rates of decay in the relaxation function were either of exponential or of polynomial
type. In 2008, Messaoudi in [19] and [20] gave general decay rates for an extended class
of relaxation functions for which the exponential (polynomial) decay rates are just special
cases. However, the optimal decay rates in the polynomial decay case were not obtained.
Specifically, he considered a relaxation function k that satisfies

k′(t) ≤ –ξ (t)kp(t), t ≥ 0, (6)

where p = 1 and ξ is a positive nonincreasing differentiable function. Furthermore, he
showed that the decay rates of the energy are the same rates of decay of the kernel k.
However, the decay rate is not necessarily of exponential or polynomial decay type. After
that, different papers appeared and used the condition (6) where p = 1; see, for instance,
[21–30]. Lasiecka and Tataru [31] took one step forward and considered the following
condition:

k′(t) ≤ –G
(
k(t)

)
, (7)

where G is a positive, strictly increasing and strictly convex function on (0, R0], and G
satisfies G(0) = G′(0) = 0. Using the above condition and imposing additional constraints
conditions on G, several authors in different approaches obtained general decay results
in terms of G; see for example [32–36], and [37]. Later, the condition (6) was extended
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by Messaoudi and Al-Khulaifi [38] to the case 1 ≤ p < 3
2 only and they obtained general

and optimal decay results. In [34], Lasiecka et al. established optimal decay rate for all
1 ≤ p < 2, but with γ (t) = 1. Very recently, Mustafa [39] obtained optimal exponential and
polynomial decay rates for all 1 ≤ p < 2 and γ is a function of t. The work most closely
related to our study is by Kang [40], Mustafa and Abusharkh [41] and Mustafa [42]. Kang
[40] investigated the system (1)–(5) whereas η(t) ≡ 1 and

Gi
(
–r′

i(t)
)

= –r′
i(t), ∀i = 1, 2, (8)

and established general decay results. Mustafa and Abusharkh [41] considered the system
(1)–(5). But with the condition

r′′
i (t) ≥ G

(
–r′

i(t)
)
, ∀i = 1, 2, (9)

and h(t) ≡ 0. They established explicit and general decay rate results. Very recently,
Mustafa [42] studied system (1)–(5). However, under the same condition (9) he obtained
a general decay rate result. Our contribution in this paper is to investigate the system (1)–
(5) under a very general assumption on the resolvent kernels ri. This assumption is more
general as it comprises the earlier results in [40, 41] and [42] in the presence of ξ (t) and
the very general assumption on the relaxation functions. Furthermore, we obtain our re-
sults without imposing any restrictive growth assumption on the damping and take into
account the effect of the time-dependent coefficient η(t). The rest of the paper is as fol-
lows: In Sect. 2, we give a literature review and in Sect. 3, we state our main results and
provide some examples. In Sect. 4, some technical lemmas are presented and established.
Finally, we prove and discuss our decay results.

2 Preliminaries
In this section, some important materials in the proofs of our results will be presented. In
this paper, L2(Ω) stands for the standard Lebesgue space and H1

0 (Ω) the Sobolev space.
We use those spaces with their usual scalar products and norms. Moreover, we denote by
W the following space: W = {w ∈ H2(Ω) : w = ∂w

∂ν
= 0 on Γ0}, and ri is the resolvent kernel

of –k′
i

ki(0) , which satisfies

ri(t) +
1

ki(0)
(
k′

i ∗ ri
)
(t) = –

1
ki(0)

k′
i(t), ∀i = 1, 2,

where ∗ represents the convolution product

(f ∗ g)(t) =
∫ t

0
f (t – s)g(s) ds.

From (3) and (4), we get the following Volterra equations:

Φ2u +
1

k1(0)
k′

1 ∗ Φ2u =
1

k1(0)
ut ,

Φ1u +
1

k2(0)
k′

2 ∗ Φ1u = –
1

k2(0)
∂ut

∂ν
.
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Taking τi = 1
ki(0) , for i = 1, 2, and using the Volterra’s inverse operator, we get

Φ2u = τ1{ut + r1 ∗ ut}, on Γ1 × (0,∞),

Φ1u = –τ2

{
∂ut

∂ν
+ r2 ∗ ∂ut

∂ν

}
, on Γ1 × (0,∞),

In our paper, we assume that u0 ≡ 0, so we have

Φ2u = τ1
{

ut + r1(0)u + r′
1 ∗ u

}
, on Γ1 × (0,∞), (10)

Φ1u = –τ2

{
∂ut

∂ν
+ r2(0)

∂u
∂ν

+ r′
2 ∗ ∂u

∂ν

}
, on Γ1 × (0,∞). (11)

Throughout the paper, c is a generic positive constant and we use (10) and (11) instead of
(3) and (4).

2.1 Assumptions
(A1) We assume that Ω ⊂ R

2 is a bounded domain with a smooth boundary Γ = Γ0 ∪
Γ1. Here, the partitions Γ0 and Γ1 are closed and disjoint. We also assume that
meas(Γ0) > 0, and there exists a fixed point x0 ∈ R

2 such that m · ν ≤ 0 on Γ0 and
m · ν > 0 on Γ1 where m(x) := x – x0 and ν is the unit outward normal vector. This
assumption leads to positive constants δ0 and R such that

m · ν ≥ δ0 > 0 on Γ1 and
∣∣m(x) · ν∣∣ ≤ R, ∀x ∈ Ω .

(A2) We assume that h : R →R is a C0 nondecreasing function and there exists a strictly
increasing function h0 ∈ C1(R+) with h0(0) = 0 such that

h0
(|s|) ≤ ∣∣h(s)

∣∣ ≤ h–1
0

(|s|) for all |s| ≤ ε,

c1|s| ≤
∣∣h(s)

∣∣ ≤ c2|s| for all |s| ≥ ε,
(12)

where c1, c2, ε are positive constants. In the case h0 is nonlinear, we assume that
the function H defined by H(s) =

√
sh0(

√
s) is a strictly convex C2 on (0, r0], where

r0 > 0.
(A3) We assume that ri : R+ →R

+, for i = 1, 2, is a C2 function satisfies

lim
t→∞ ri(t) = 0, ri(0) > 0, r′

i(t) ≤ 0, (13)

and there exists a positive, differentiable and nonincreasing function ξi : R+ → R
+.

We also assume that there exists a positive function Gi ∈ C1(R+), Gi being a linear
or strictly increasing and strictly convex C2 function on (0, Ri], Ri > 0, with Gi(0) =
G′

i(0) = 0, such that

r′′
i (t) ≥ ξi(t)Gi

(
–r′

i(t)
)
, (i = 1, 2) ∀t > 0. (14)

Furthermore, we assume that the system ((1)–(5) has a unique solution

u ∈ L∞(
R

+; H4(Ω) ∩ W
) ∩ W 1,∞(

R
+; W

) ∩ W 2,∞(
R

+; L2(Ω)
)
.
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This result can be obtained by using the Galerkin method as in Park and Kang [43] and
Santos et al. [17].

Remark 2.1 It is worth noting that condition (12) was considered first in [31].

Remark 2.2 Using Assumption (A2), one may notice that sh(s) > 0, for all s �= 0.

Remark 2.3 If G is a strictly increasing and strictly convex C2 function on (0, r1], with
G(0) = G′(0) = 0, then it has an extension G, which is a strictly increasing and strictly con-
vex C2 function on (0,∞). For instance, if G(r1) = a, G′(r1) = b, G′′(r1) = c, we can define
G, for t > r1, by

G(t) =
c
2

t2 + (b – cr1)t +
(

a +
c
2

r1
2 – br1

)
. (15)

The same remark can be established for H .

Now, we define the bilinear form a(·, ·) as follows:

a(u, v) =
∫

Ω

{
uxxvxx + uyyvyy + ρ(uxxvyy + uyyvxx) + 2(1 – ρ)uxyvxy

}
dx dy. (16)

It is well known that
√

a(u, u) is an equivalent norm on W , that is,

β1‖u‖2
H2(Ω) ≤ a(u, u) ≤ β2‖u‖2

H2(Ω), (17)

for some positive constants β1 and β2. From (17) and the Sobolev embedding theorem, we
have, for some positive constants cp and cs,

‖u‖2 ≤ cpa(u, u), and ‖∇u‖2 ≤ csa(u, u), ∀u ∈ H2(Ω). (18)

The energy functional associated with (1)–(5) is

E(t) :=
1
2

[∫
Ω

|ut|2 + a(u, u) + τ1

∫
Γ1

(
r1(t)|u|2 –

(
r′

1 ◦ u
))

dΓ

]

+
1
2

[
τ2

∫
Γ1

(
r2(t)

∣∣∣∣∂u
∂ν

∣∣∣∣ –
(

r′
2 ◦ ∂u

∂ν

))
dΓ

]
, (19)

where (f ◦ g)(t) =
∫ t

0 f (t – s)|g(t) – g(s)|2 ds.
Our main stability results are in the following two theorems.

3 The main results
Theorem 3.1 Assume that (A1)–(A3) are satisfied and h0 is linear. Then the solution of
(1)–(5) satisfies, for all t ≥ t1,

E(t) ≤ c1e–c2
∫ t

t1
σ (s) ds, if G is linear, (20)

E(t) ≤ m2G–1
4

(
m1

∫ t

t1

σ (s) ds
)

, if G is nonlinear, (21)
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where c1, c2, m1 and m2 are strictly positive constants. G4(t) =
∫ r

t
1

sG′(s) ds, G = min{G1, G2},
and σ (t) = min{η(t), ξ (t)} where ξ (t) = min{ξ1(t), ξ2(t)}. G1, G2 and ξ1(t), ξ2(t) are defined
in (A3).

Theorem 3.2 Assume that (A1)–(A3) are satisfied and h0 is nonlinear. Then there exist
strictly positive constants c3, c4, m3, m4, ε1 and ε2 such that the solution of (1)–(5) satisfies,
for all t ≥ t1,

E(t) ≤ H–1
1

(
c3

∫ t

t1

σ (s) ds + c4

)
, if G is linear, (22)

where H1(t) =
∫ 1

t
1

H2(s) ds and H2(t) = tH ′(ε1t).

E(t) ≤ m4(t – t1)W2
–1

(
m3

(t – t1)
∫ t

t1
σ (s) ds

)
, if G is nonlinear, (23)

where W2(t) = tW ′(ε2t), W = (G–1 + H–1)–1 and G, H are introduced in Remark 2.3 .

Remark 3.1 ([44]) In (21), one can see that the decay rate of E(t) is consistent with the
decay rate of (–r′

i(t)) given by (14). So, the decay rate of E(t) is optimal.

In fact, using the general assumption (14), and taking into account the fact that G =
min{G1, G2} and σ (t) = min{η(t), ξ (t)}, we have

–r′
i(t) ≤ G–1

5

(∫ t

–r′–1
i (r)

σ (s) ds
)

, ∀t ≥ –r′–1
i (r),

where G5(t) =
∫ r

t
1

G(s) ds. Using the properties of G, we get

G4(t) =
∫ r

t

1
sG′(s)

ds ≤
∫ r

t

1
G(s)

ds = G5(t).

Also, using the properties of G4 and G5, we have

G–1
4 (t) ≤ G–1

5 (t).

This shows that (21) provides the best decay rates expected under the very general as-
sumption (14).

Example 3.3
(1.A) h0 and G are linear and η(t) ≡ 1.

Let r′
i(t) = –aie–bi(1+t), where bi > 0 and ai > 0, ∀i = 1, 2, so that Assumption (A3)

is satisfied, then r′′
i (t) = ξi(t)Gi(–r′

i(t)). We take a = min{a1, a2}, b = min{b1, b2},
G = min{G1, G2}, ξ (t) = min{ξ1(t), ξ2(t)} and σ (t) = min{η(t), ξ (t)}. Hence, G(t) = t,
ξ (t) = b and we let σ (t) := b0 = min{1, b}. For the nonlinear case, assume that



Al-Mahdi Boundary Value Problems         (2019) 2019:82 Page 7 of 26

h0(t) = ct and H(t) =
√

th0(
√

t) = ct. Therefore, we can use (20) to deduce

E(t) ≤ c1e–c2t , (24)

which is the exponential decay.
(1.B) h0 and G are linear and η(t) = b

t+1 .
Let r′

i(t) = –aie–bi(1+t), where bi > 0 and ai > 0, ∀i = 1, 2, so that Assumption (A3)
is satisfied, then r′′

i (t) = ξi(t)Gi(–r′
i(t)). We take a = min{a1, a2}, b = min{b1, b2},

G = min{G1, G2}, ξ (t) = min{ξ1(t), ξ2(t)} and σ (t) = min{η(t), ξ (t)}. Hence, G(t) = t,
ξ (t) = b and σ (t) = b

t+1 . For the nonlinear case, assume that h0(t) = ct and
H(t) =

√
th0(

√
t) = ct. Therefore, we can use (20) to deduce

E(t) ≤ c
1 + ln(t + 1)

. (25)

(2) h0 is linear, G is nonlinear and η(t) ≡ 1.
Let r′

i(t) = –aie–tq , where 0 < q < 1 and ai > 0, ∀i = 1, 2, so that Assumption (A3)
is satisfied, then r′′

i (t) = ξi(t)Gi(–r′
i(t)). We take a = min{a1, a2}, G = min{G1, G2},

ξ (t) = min{ξ1(t), ξ2(t)} and σ (t) = min{η(t), ξ (t)}. Hence, ξ (t) = 1 and
G(t) = qt

(ln(a/t))
1
q –1

. In this case, σ (t) ≡ 1. For, the boundary feedback, let h0(t) = ct,

and H(t) =
√

th0(
√

t) = ct. Since

G′(t) =
(1 – q) + q ln(a/t)

(ln(a/t))1/q

and

G′′(t) =
(1 – q)(ln(a/t) + 1/q)

(ln(a/t))
1
q +1

,

the function G satisfies the condition (A3) on (0, r] for any r > 0. We have

G4(t) =
∫ r

t

1
sG′(s)

ds =
∫ r

t

[ln a
s ]

1
q

s[1 – q + q ln a
s ]

ds

=
∫ ln a

t

ln a
r

u
1
q

1 – q + qu
du

=
1
q

∫ ln a
t

ln a
r

u
1
q –1

[
u

1–q
q + u

]
du

≤ 1
q

∫ ln a
t

ln a
r

u
1
q –1 du ≤

(
ln

a
t

) 1
q

.

Then (21) gives

E(t) ≤ ke–ktq
, (26)

which is the optimal decay.
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(3) h0 is nonlinear, G is linear and η(t) = b
(t+e) ln(t+e) .

Let r′
i(t) = –aie–bi(1+t), where bi > 0 and ai > 0, ∀i = 1, 2, so that Assumption (A3)

is satisfied, then r′′
i (t) = ξi(t)Gi(–r′

i(t)). We take a = min{a1, a2}, b = min{b1, b2},
G = min{G1, G2}, ξ (t) = min{ξ1(t), ξ2(t)} and σ (t) = min{η(t), ξ (t)}. Hence, G(t) = t
and ξ (t) = b. In this case, σ (t) = b

(t+e) ln(t+e) . Also, assume that h0(t) = ctq, where

q > 1 and H(t) =
√

th0(
√

t) = ct
q+1

2 . Then

H1
–1(t) = (ct + 1)

–2
q–1 .

Therefore, applying (22), we obtain

E(t) ≤ c

[1 + ln(ln(t + e))]
2

q–1
. (27)

(4) h0 is nonlinear, G is non-linear and η(t) ≡ 1.
Let r′

i(t) = –ai
(1+t)2 , where ai > 0, ∀i = 1, 2, is chosen so that Assumption (A3) holds.

We choose a = min{a1, a2}, then r′′
i (t) = biGi(–r′

i(t)). We select b = min{b1, b2},
G = min{G1, G2}, ξ (t) = min{ξ1(t), ξ2(t)} and σ (t) = min{η(t), ξ (t)}. In this example,
G(s) = s 3

2 , ξ (t) = b. For the boundary feedback, let h0(t) = ct5 and H(t) = ct3. Then

W (s) =
(
G–1 + H–1)–1 =

(
–1 +

√
1 + 4s

2

)3

and

W2(s) =
3s√

1 + 4s

(
–1 +

√
1 + 4s

2

)2

=
3s

2
√

1 + 4s
+

3s2
√

1 + 4s
–

3s
2

≤ 3s
2

+
3s2

2
√

s
–

3s
2

= cs
3
2 .

Therefore, applying (23), we obtain

E(t) ≤ c
(t – t1) 1

3
.

For the proofs of our main results, we state and establish several lemmas in the following
section.

4 Technical lemmas
In this section, we introduce some lemmas which are important in our proofs of our main
results.

Lemma 4.1 ([1]) Let u and v be functions in H4(Ω) and ρ ∈R. Then we have

∫
Ω

(
�2u

)
v dx = a(u, v) +

∫
Γ1

{
(Φ2u)v – (Φ1u)

∂u
∂ν

}
dΓ (28)
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and

∫
Ω

(m.∇v)�2v dx = a(v, v) +
1
2

∫
Γ

m.v
[
v2

xx + v2
yy + 2ρvxxvyy + 2(1 – ρ)v2

xy
]

dΓ

+
∫

Γ

[
(Φ2v)m.∇v – (Φ1v)

∂

∂ν
(m.∇ν)

]
dΓ . (29)

Lemma 4.2 Under Assumptions (A1)–(A3) and considering Remark 2.2, the energy func-
tional E satisfies, along the solution of (1)–(5), the estimate

E′(t) = –
τ1

2

∫
Γ1

(
2|ut|2 – r′

1(t)|u|2 + r′′
1 ◦ u

)
dΓ

–
τ2

2

∫
Γ1

(
2
∣∣∣∣∂ut

∂ν

∣∣∣∣
2

– r′
2(t)

∣∣∣∣∂u
∂ν

∣∣∣∣
2

+ r′′
2 ◦ ∂u

∂ν

)
dΓ – η(t)

∫
Ω

uth(ut) dx

≤ 0. (30)

Proof The proof can be established by multiplying Eq. (1) by ut , integrating by parts over
Ω , and using (28) and the boundary conditions (10) and (11). With the help of the ideas
in [44], one can establish the following two helpful lemmas.

Lemma 4.3 For i = 1, 2, 0 < αi < 1, and for

Cαi :=
∫ ∞

0

r′2
i (s)

r′′
i – αir′

i(s)
ds and θi(t) := r′′

i (t) – αir′
i(t), (31)

we have

(∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣ds
)2

≤ Cα1 (θ1 ◦ u)(t), (32)

(∫ t

0
r′

2(t – s)
∣∣∣∣∂u(s)

∂ν
–

∂u(t)
∂ν

∣∣∣∣ds
)2

≤ Cα2

(
θ2 ◦ ∂u

∂ν

)
(t). (33)

Lemma 4.4 There exist positive constants d1, d2 and t1 such that

r′′
i (t) ≥ –dir′

i(t), (i = 1, 2) ∀t ∈ [0, t1]. (34)

Lemma 4.5 Under Assumptions (A1)–(A3), the functional

ψ1(t) :=
∫

Ω

(m.∇u)ut dx (35)

satisfies, along the solution of (1)–(5), the estimate

ψ ′
1(t) ≤ 1

2

∫
Γ1

m.ν|ut|2 dΓ –
1
2

∫
Ω

|ut|2 dx –
(

1 –
c0

2
–

εc
2

)
a(u, u)

+
τ1

2

2ε

∫
Γ1

[|ut|2 + r2
1(t)|u|2]dΓ +

τ1
2Cα1

2ε

∫
Γ1

(θ1 ◦ u) dΓ
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+
τ 2

2
2ε

∫
Γ1

[∣∣∣∣∂ut

∂ν

∣∣∣∣ + r2
2(t)

∣∣∣∣∂u
∂ν

∣∣∣∣
]

dΓ +
τ2

2Cα2

2ε

∫
Γ1

(
θ2 ◦ ∂u

∂ν

)
dΓ +

c
2

∫
Ω

h2(ut) dx

–
[

1
2

–
εc
2

]∫
Γ1

m.ν
[
u2

xx + u2
yy + 2ρuxxuyy + 2(1 – ρ)u2

xy
]

dΓ . (36)

Proof By direct integrations, using (1), and using (29) with v = u, we obtain

ψ ′
1(t) =

∫
Ω

(m · ∇ut)ut dx +
∫

Ω

(m · ∇u)utt dx

=
1
2

∫
Γ1

m · ν|ut|2 dΓ –
1
2

∫
Ω

|ut|2 dx – a(u, u) – η(t)
∫

Ω

h(ut)(m · ∇u) dx

–
∫

Γ

[
(Φ2u)(m · ∇u) – (Φ1u)

∂

∂ν
(m · ∇u)

]
dΓ

–
1
2

∫
Γ

m.ν
[
u2

xx + u2
yy + 2ρuxxuyy + 2(1 – ρ)u2

xy
]

dΓ . (37)

Since uxxuyy – (uxy)2 = 0 on Γ0, we have

uxxuyy + 2(1 – ρ)u2
xy = (�u)2 on Γ0. (38)

Now, as u = ∂u
∂ν

= 0 on Γ0, we have D1u = D2u = 0 on Γ0 and

∂

∂ν
(m.∇u) = (m.ν)�u. (39)

Combining (37), (38) and (39), (37) becomes

ψ ′
1(t) =

1
2

∫
Γ1

m.ν|ut|2 dΓ –
1
2

∫
Ω

|ut|2 dx – a(u, u) – η(t)
∫

Ω

(m · ∇u)h(ut) dx

+
1
2

∫
Γ0

m.ν(�u)2 dΓ –
1
2

∫
Γ1

m.ν
[
u2

xx + u2
yy + 2ρuxxuyy + 2(1 – ρ)u2

xy
]

dΓ

–
∫

Γ1

(Φ2u)(m.∇u) dΓ +
∫

Γ1

(Φ1u)
∂

∂ν
(m.∇u) dΓ . (40)

Now, Young’s inequality leads to

∣∣∣∣
∫

Γ1

(Φ2u)(m.∇u) dΓ

∣∣∣∣ ≤ 1
2ε

∫
Γ1

|Φ2u|2 dΓ +
ε

2

∫
Γ1

|m.∇u|2 dΓ , (41)

∣∣∣∣
∫

Γ1

(Φ1u)
∂

∂ν
(m.∇u) dΓ

∣∣∣∣ ≤ 1
2ε

∫
Γ1

|Φ1u|2 dΓ +
ε

2

∫
Γ1

∣∣∣∣ ∂

∂ν
(m.∇u)

∣∣∣∣
2

dΓ , (42)

where ε is a positive constant. Using (17) and (18), the fact | m(x) |≤ R, and the trace theory,
we obtain

∫
Γ1

|m.∇u|2 dΓ +
∫

Γ1

∣∣∣∣ ∂

∂ν
(m.∇u)

∣∣∣∣
2

dΓ

≤ R2csa(u, u) + R
∫

Γ1

m.ν
[
u2

xx + u2
yy + 2ρuxxuyy + 2(1 – ρ)u2

xy
]

dΓ . (43)
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Furthermore, using (17) and (18) and the property of the function η(t), we have

∣∣∣∣η(t)
∫

Ω

h(ut)m.∇u dx
∣∣∣∣ ≤ c

2

∫
Ω

h2(ut) dx +
R2cs

2
a(u, u). (44)

Combining (40)–(44), we have

ψ ′
1(t) ≤ 1

2

∫
Γ1

m.ν|ut|2 dΓ –
1
2

∫
Ω

|ut|2 dx –
(

1 –
λ0

2
–

ελ0

2

)
a(u, u)

+
1

2ε

∫
Γ1

|Φ1u|2 dΓ +
1

2ε

∫
Γ1

|Φ2u|2 dΓ +
c
2

∫
Ω

h2(ut) dx

–
[

1
2

–
εR
2

]∫
Γ1

m.ν
[
u2

xx + u2
yy + 2ρuxxuyy + 2(1 – ρ)u2

xy
]

dΓ , (45)

where λ0 = R2cs. By direct computation and using (4.3), we arrive at

(
r′

1 ∗ u
)
(t) =

∫ t

0
r′

1(t – s)u(s) ds =
∫ t

0
r′

1(t – s)
[
u(s) – u(t) + u(t)

]
ds

=
∫ t

0
r′

1(t – s)
[
u(s) – u(t)

]
ds +

∫ t

0
r′

1(t – s)u(t) ds

= –
∫ t

0
r′

1(t – s)
[
u(t) – u(s)

]
ds +

∫ t

0
r′

1(t – s)u(t) ds

= –
∫ t

0
r′

1(t – s)
[
u(t) – u(s)

]
ds + r1(t)u(t) – r1(0)u(t)

≤ [
Cα1 (θ1 ◦ u)(t)

] 1
2 + r1(t)u(t) – r1(0)u(t), (46)

similarly, we can show that

(
r′

2 ∗ ∂u
∂ν

)
(t) ≤

[
Cα2

(
θ2 ◦ ∂u

∂ν

)
(t)

] 1
2

+ r2(t)
∂u(t)
∂ν

– r2(0)
∂u(t)
∂ν

, (47)

then from the boundary conditions (10), (11) and using (46) and (47), we have

Φ2u ≤ τ1
{

ut + r1(t)u +
[
Cα1 (θ1 ◦ u)(t)

] 1
2
}

,

Φ1u ≤ –τ2

{
∂ut

∂ν
+ r2(t)

∂u
∂ν

+
[

Cα2

(
θ2 ◦ ∂ut

∂ν

)
(t)

] 1
2
}

. (48)

Substituting the inequalities (48) in (45) and using the fact m.ν ≤ 0 on Γ0, (36) is
achieved. �

Lemma 4.6 Under Assumptions (A1)–(A3), the functionals

ψ2(t) =
∫

Γ1

∫ t

0
μ1(t – s)

∣∣u(s)
∣∣2 ds dx,

ψ3(t) =
∫

Γ1

∫ t

0
μ2(t – s)

∣∣∣∣∂u(s)
∂ν

∣∣∣∣
2

ds dx,

(49)
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satisfy, along the solution of (1)–(5), the estimates

ψ ′
2(t) ≤ 1

2
(
r′

1 ◦ u
)
(t) + 3r1(0)

∫
Γ1

∣∣u(t)
∣∣2 dx,

ψ ′
3(t) ≤ 1

2

(
r′

2 ◦ ∂u
∂ν

)
(t) + 3r2(0)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

∣∣∣∣
2

dx,
(50)

where μi(t) =
∫ +∞

t (–r′
i(s)) ds, i = 1, 2.

Proof Taking the derivative of the first equation in (49) and using the fact μ′
1(t) = r′

1(t), we
have

ψ ′
2(t) = r1(0)

∫
Γ1

∣∣u(t)
∣∣2 dx +

∫
Γ1

∫ t

0
r′

1(t – s)
∣∣u(s)

∣∣2 dx

=
∫

Γ1

∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣2 ds dx

+ 2
∫

Γ1

u(t)
∫ t

0
r′

1(t – s)
(
u(s) – u(t)

)
ds dx + r1(t)

∫
Γ1

∣∣u(t)
∣∣2 dx. (51)

Using the fact limt→∞ r1(t) = 0, and Young’s inequality we have the following:

2
∫

Γ1

u(t)
∫ t

0
r′

1(t – s)
(
u(s) – u(t)

)
ds dx

≤ 2γ

∫
Γ1

∣∣u(s)
∣∣2 dx +

∫ t
0 r′

1(s)
2γ

∫
Γ1

∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣2 ds dx

≤ 2γ

∫
Γ1

∣∣u(s)
∣∣2 dx +

∫ ∞
0 r′

1(s)
2γ

∫
Γ1

∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣2 ds dx

≤ 2γ

∫
Γ1

∣∣u(t)
∣∣2 dx –

r1(0)
2γ

∫
Γ1

∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣2 ds dx

≤ 2r1(0)
∫

Γ1

∣∣u(t)
∣∣2 dx –

1
2

∫
Γ1

∫ t

0
r′

1(t – s)
∣∣u(s) – u(t)

∣∣2 ds dx. (52)

Combining (51) and (52) and using the fact that μ1(t) ≤ μ1(0) = r1(0), the first estimate in
(50) is established. Similarly, we can establish the second estimate in (50). �

Lemma 4.7 Under Assumptions (A1)–(A3), the functional L(t) := NE(t)+N1ψ1(t)+n0E(t),
where N , N1, n0 > 0, satisfies along the solution of (1)–(5) the following estimate:

L′(t) ≤ –mE(t) –
1
4

∫ t

t1

r′
1(t – s)

∫
Γ1

∣∣u(t) – u(s)
∣∣2 dx dΓ

–
1
4

∫ t

t1

r′
2(t – s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(s)
∂ν

∣∣∣∣
2

dΓ + c
∫

Ω

h2(ut) dx, ∀t ≥ t1. (53)
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Proof Using L′(t) = NE′(t) + N1ψ
′
1(t) + n0E′(t), combining (30) and (36), using the proper-

ties of ri and r′
i given in Assumption (A3) and using | m · ν |≤ R, we obtain

L′(t) ≤ –
(

τ1N –
RN1

2
–

N1τ
2
1

2ε

)∫
Γ1

|ut|2 dΓ –
(

τ2N –
N1τ

2
1

2ε

)∫
Γ1

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

dΓ

– N1

(
1 –

λ0

2
–

ελ0

2

)
a(u, u) +

N1τ
2
1

2ε

∫
Γ1

r2
1(t)|u|2 dΓ

+
N1τ

2
2

2ε

∫
Γ1

r2
2(t)

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

dΓ –
N1

2

∫
Ω

|ut|2 dx

+
N1τ

2
1 Cα1

2ε

∫
Γ1

(θ1 ◦ u) dΓ +
N1τ

2
2 Cα1

2ε

∫
Γ1

(
θ2 ◦ ∂ut

∂ν

)
dΓ

– N1

(
1
2

–
εR
2

)∫
Γ1

m.ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 – μ)u2

xy
]

dΓ

–
N1τ1

2

∫
Γ1

(
r′′

1 ◦ u
)

dΓ –
N1τ2

2

∫
Γ1

(
r′′

2 ◦ ∂u
∂ν

)
dΓ

+ n0E′(t) +
N1c

2

∫
Ω

h2(ut) dx. (54)

Then choosing 0 < ε ≤ min{ 1
R , 2–λ0

λ0
} so that 1

2 – εR
2 > 0 and c0 := 1 – λ0

2 – ελ0
2 > 0 and using

limt→∞ ri(t) = 0, for i = 1, 2, we obtain

L′(t) ≤ –
(

τ1N –
RN1

2
–

N1τ
2
1

2ε

)∫
Γ1

|ut|2 dΓ –
(

τ2N –
N1τ

2
1

2ε

)∫
Γ1

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

dΓ

–
N1

2

∫
Ω

|ut|2 dx – N1c0a(u, u) +
N1τ

2
1 Cα1

2ε

∫
Γ1

(θ1 ◦ u) dΓ

+
N1c

2

∫
Ω

h2(ut) dx +
N1τ

2
2 Cα2

2ε

∫
Γ1

(
θ2 ◦ ∂ut

∂ν

)
dΓ –

N1τ1

2

∫
Γ1

(
r′′

1 ◦ u
)

dΓ

–
N1τ2

2

∫
Γ1

(
r′′

2 ◦ ∂u
∂ν

)
dΓ + n0E′(t). (55)

In this case, we choice N large enough so that

τ2N –
N1τ

2
1

2ε
> 0,

τ1N –
RN1

2
–

N1τ
2
1

2ε
> 0. (56)

Then (55) reduces to

L′(t) ≤ –
N1

2

∫
Ω

|ut|2 dx – N1c0a(u, u) +
N1τ

2
1 Cα1

2ε

∫
Γ1

(θ1 ◦ u) dΓ

+
N1c

2

∫
Ω

h2(ut) dx +
N1τ

2
2 Cα2

2ε

∫
Γ1

(
θ2 ◦ ∂ut

∂ν

)
dΓ

–
N1τ1

2

∫
Γ1

(
r′′

1 ◦ u
)

dΓ –
N1τ2

2

∫
Γ1

(
r′′

2 ◦ ∂u
∂ν

)
dΓ + n0E′(t). (57)
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Recall that r′′
i = αr′

i + θi, i = 1, 2, and use (19), to obtain

L′(t) ≤ –
N1

2

∫
Ω

|ut|2 dx – N1c0a(u, u) –
(

N1τ1

2
–

N1τ
2
1 Cα1

2ε

)∫
Γ1

(θ1 ◦ u) dΓ

–
(

N1τ2

2
–

N1τ
2
2 Cα2

2ε

)∫
Γ1

(
θ2 ◦ ∂u

∂ν

)
dΓ +

N1c
2

∫
Ω

h2(ut) dx,

–
τ1N1α

2

∫
Γ1

(
r′

1 ◦ u
)

dΓ –
τ2N1α

2

∫
Γ1

(
r′

2 ◦ ∂u
∂ν

)
dΓ + n0E′(t) ∀t ≥ t1. (58)

Now, our purpose is to have, for i = 1, 2,

Niτi

2
– Cαi

(
Niτ

2
i

2ε

)
>

Niτi

4
. (59)

As in [44], we can deduce that αiCαi → 0 when αi → 0. Then there exists 0 < α0i < 1 such
that if αi < α0i, then

Cαi <
ε

4αiτ
2
i Ni

.

Now, we choose 0 < αi = 1
2Niτi

< 1, to obtain

Cαi

(
Niτ

2
i

2ε

)
<

1
8αi

=
Niτi

4
, (60)

and hence, we have

N1

(
τi

2
–

τ 2
i Cαi

2ε

)
> 0, i = 1, 2, (61)

and then (58) becomes

L′(t) ≤ –
N1

2

∫
Ω

|ut|2 dx – N1c0a(u, u) +
N1c

2

∫
Ω

h2(ut) dx,

–
1
4

∫
Γ1

(
r′

1 ◦ u
)

dΓ –
1
4

∫
Γ1

(
r′

2 ◦ ∂u
∂ν

)
dΓ + n0E′(t). (62)

From (34) and (30), we notice that, for all t ≥ t1,

–
∫ t1

0
r′

1(s)
∫

Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

≤ 1
d1

∫ t1

0
r′′

1 (s)
∫

Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds ≤ –cE′(t),

–
∫ t1

0
r′

2(s)
∫

Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds

≤ 1
d2

∫ t1

0
r′′

2 (s)
∣∣∣∣∂u(t)

∂ν
–

∂u(t – s)
∂ν

∣∣∣∣
2

dΓ ds ≤ –cE′(t).

(63)
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Then, using (62) and (63), we have for all t ≥ t1

L′(t) ≤ –
N1

2

∫
Ω

|ut|2 dx – N1c0a(u, u) –
1
4

∫ t

t1

r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

–
1
4

∫ t

t1

r′
2(s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣dΓ ds

+
N1c

2

∫
Ω

h2(ut) dx + (n0 – c)E′(t). (64)

Now, we choose n0 so that n0 – c > 0, then (53) is established. Moreover, we can choose N
even larger (if needed) so that

L(t) ∼ E(t). (65)�

Lemma 4.8 [45] Under Assumptions (A1)–(A3), the solution satisfies the estimates

∫
Ω1

h2(ut) dx ≤ c
∫

Ω1

uth(ut) dx, if h0 is linear, (66)

∫
Ω1

h2(ut) dx ≤ cH–1(J(t)
)

– cE′(t), if h0 is nonlinear, (67)

where

J(t) :=
∫

Ω1

ut(t)h
(
ut(t)

)
dx ≤ –cE′(t) (68)

and

Ω1 =
{

x ∈ Ω :
∣∣ut(t)

∣∣ ≤ ε1
}

.

Lemma 4.9 Assume that (A1)–(A3) hold and h0 is linear. Then the energy functional sat-
isfies the following estimate:

∫ +∞

0
E(s) ds < ∞. (69)

Proof Let F(t) = L(t) + ψ2(t) + ψ3(t), using (50) and (64), and using the trace theory, we
obtain for all t ≥ t1

F ′(t) ≤ –
N1

2

∫
Ω

|ut|dx – N1c0a(u, u) +
1
4
(
r′

1 ◦ u
)
(t) +

1
4

(
r′

2 ◦ ∂u
∂ν

)
(t)

+
N1c

2

∫
Γ1

h2(ut) dΓ + 3r1(0)
∫

Ω

∣∣u(t)
∣∣2 dx + 3r2(0)

∫
Ω

∣∣∣∣∂u(t)
∂ν

∣∣∣∣
2

dx. (70)

Using (17) and (18), we arrive at

F ′(t) ≤ –
N1

2

∫
Ω

|ut|dx – (N1c0 – cr)a(u, u) +
1
4
(
r′

1 ◦ u
)
(t) +

1
4

(
r′

2 ◦ ∂u
∂ν

)
(t)

+ c
∫

Γ1

h2(ut) dΓ , (71)
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where cr = (3cpr1(0)+3csr2(0)) and cp, cs are given in (18). Here, we choose N1 large enough
so that N1c0 – cr > 0. After that, we can choose N even larger (if needed) so that (56) holds.
Now, we have

F ′(t) ≤ –bE(t) + c
∫

Ω

uth(ut) dx

≤ –bE(t) – cE′(t),

where b is a positive constant. Therefore,

b
∫ t

t1

E(s) ds ≤ F1(t1) – F1(t) ≤ F1(t1) < ∞, (72)

where F1(t) = F(t) + cE(t) ∼ E. �

Now, we define

I1(t) :=
∫ t

t1

r′′
1 (s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds ≤ –cE′(t),

I2(t) :=
∫ t

t1

r′′
2 (s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds ≤ –cE′(t).

(73)

Lemma 4.10 Under Assumptions (A1)–(A3), and if h0 is linear, we have the following
estimates:

∫ t

t1

–r′
1(s)

∫
Ω

∣∣u(t) – u(t – s)
∣∣2 dx ds ≤ 1

q
G1

–1
(

qI1(t)
ξ1(t)

)
(74)

and

∫ t

t1

–r′
2(s)

∫
Ω

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds ≤ 1
q

G2
–1

(
qI2(t)
ξ2(t)

)
, (75)

and if h0 is nonlinear, we have the following estimates:

∫ t

t1

–r′
1(s)

∫
Ω

∣∣u(t) – u(t – s)
∣∣2 dx ds ≤ (t – t1)

q
G1

–1
(

qI1(t)
(t – t1)ξ1(t)

)
, (76)

∫ t

t1

–r′
2(s)

∫
Ω

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds ≤ (t – t1)
q

G2
–1

(
qI2(t)

(t – t1)ξ2(t)

)
, (77)

where q ∈ (0, 1), G1 and G2 are the extensions of G1 and G2, respectively, such that G1 and
G2 are strictly increasing and strictly convex C2 functions on (0,∞)

Proof Case I: if h0 is linear: we define the following quantities:

λ1(t) := q
∫ t

t1

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds,

λ2(t) := q
∫ t

t1

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds, (78)
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where by (69), (19) and (16) we can choose q so small such that ∀t ≥ t1,

λi(t) < 1, i = 1, 2. (79)

Since Gi is strictly convex on (0, Ri] and Gi(0) = 0, we have

Gi(θz) ≤ θGi(z), 0 ≤ θ ≤ 1 and z ∈ (0, r], (80)

where r = min{R1, R2}. Without loss of generality, for all t ≥ t1, we assume that Ii(t) > 0,
i = 1, 2, otherwise we get an exponential decay from (53). Using (14), (79), (80) and Jensen’s
inequality, we have

I1(t) =
1

qλ1(t)

∫ t

t1

λ1(t)r′′
1 (s)

∫
Γ1

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ 1
qλ1(t)

∫ t

t1

λ1(t)ξ1(s)G1
(
–r′

1(s)
)∫

Γ1

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ 1
qλ1(t)

∫ t

t1

ξ1(s)G1
(
–λ1(t)r′

1(s)
)∫

Γ1

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ ξ1(t)
qλ1(t)

∫ t

t1

G1
(
–λ1(t)r′

1(s)
)∫

Γ1

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ ξ1(t)
qλ1(t)

λ1(t)G1

(
q
∫ t

t1

–r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

)

=
ξ1(t)

q
G1

(
q
∫ t

t1

–r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

)
.

This gives

∫ t

t1

–r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds ≤ 1

q
G1

–1
(

qI1(t)
ξ1(t)

)
.

Similarly, we can show that

∫ t

t1

–r′
2(s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds ≤ 1
q

G2
–1

(
qI2(t)
ξ2(t)

)
.

Case II: if h0 is nonlinear: we introduce the following functionals:

λ3(t) :=
q

t – t1

∫ t

t1

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds,

λ4(t) :=
q

t – t1

∫ t

t1

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds, (81)

then using (16), (19) and (69), we can choose q so small enough so that ∀t ≥ t1,

λi(t) < 1, i = 3, 4. (82)
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Using (14), (80), (82) and Jensen’s inequality, we get

I1(t) =
1

qλ3(t)

∫ t

t1

λ3(t)r′′
1 (s)

∫
Γ

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ 1
qλ3(t)

∫ t

t1

λ3(t)ξ1(s)G1
(
–r′

1
)∫

Γ

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ 1
qλ3(t)

∫ t

t1

ξ1(s)G1
(
–λ3(t)r′

1(s)
)∫

Γ

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ ξ1(t)
qλ3(t)

∫ t

t1

G1
(
–λ3(t)r′

1(s)
)∫

Γ

q
∣∣u(t) – u(t – s)

∣∣2 dΓ ds

≥ (t – t1)ξ1(t)
qλ3(t)

λ3(t)G1

(
q

(t – t1)

∫ t

t1

–r′
1(s)

∫
Γ

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

)

=
(t – t1)ξ1(t)

q
G1

(
q

(t – t1)

∫ t

t1

–r′
1(s)

∫
Γ

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

)
.

This gives

∫ t

t1

–r′
1

∫
Γ

∣∣u(t) – u(t – s)
∣∣2 dΓ ds ≤ (t – t1)

q
G1

–1
(

qI1(t)
(t – t1)ξ1(t)

)
.

Similarly, we can have

∫ t

t1

–r′
2(s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
∂u(t – s)

∂ν

∣∣∣∣
2

dΓ ds ≤ (t – t1)
q

G2
–1

(
qI2(t)

(t – t1)ξ1(t)

)
. �

5 Proofs of our main results
Here, we prove the main results of our work given in Theorem 3.1 and 3.2.

Proof of Theorem 3.1, case 1, G is linear We multiply (53) by the nonincreasing function
σ (t). We use (14), (30) and (66), and invoke (14) to have

σ (t)L′(t) ≤ –mσ (t)E(t) – cσ (t)
∫ t

t1

r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

– cσ (t)
∫ t

t1

r′
2(s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
u(t – s)

∂ν

∣∣∣∣
2

dΓ ds + cσ (t)
∫

Ω

h2(ut) dx ∀t ≥ t1

≤ –mσ (t)E(t) + c
∫

Γ1

[(
r′′

1 ◦ u
)
(t) +

(
r′′

2 ◦ ∂u(t)
∂ν

)]
dΓ + cσ (t)

∫
Ω

h2(ut) dx

≤ –mσ (t)E(t) – 2cE′(t).

This gives

(σL + 2cE)′ ≤ –mσ (t)E(t), ∀t ≥ t1. (83)

Using the fact σ ′(t) ≤ 0, we have σL + 2cE ∼ E, and we can obtain

E(t) ≤ c1e–c2
∫ t

t1
σ (s) ds. (84)�
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Proof of Theorem 3.1, case 2, G is nonlinear Using (53), (66), (75) and (74), we get

L′(t) ≤ –mE(t) – c
∫ t

t1

r′
1(s)

∫
Γ1

∣∣u(t) – u(t – s)
∣∣2 dΓ ds

– c
∫ t

t1

r′
2(s)

∫
Γ1

∣∣∣∣∂u(t)
∂ν

–
u(t – s)

∂ν

∣∣∣∣
2

dΓ ds + c
∫

Ω

h2(ut) dx ∀t ≥ t1

≤ –mE(t) +
1
q

G–1
(

qI1(t)
σ (t)

)
+

1
q

G–1
(

qI2(t)
σ (t)

)
– cE′(t)

≤ –mE(t) +
1
q

G–1
(

qI(t)
σ (t)

)
– cE′(t), (85)

where I(t) = max{I1(t), I2(t)} ∀t ≥ t1. Let F1(t) = L(t) + cE(t) ∼ E, then (85) becomes

F ′
1(t) ≤ –mE(t) + c(G)–1

(
qI(t)
σ (t)

)
, (86)

we notice that the functional F2, defined by

F2(t) := G′
(

ε0
E(t)
E(0)

)
F1(t)

satisfies

α1F2(t) ≤ E(t) ≤ α2F2(t) (87)

where α1,α2 > 0, and

F ′
2(t) = ε0

E′(t)
E(0)

G′′
(

ε0
E(t)
E(0)

)
F1(t) + G′

(
ε0

E(t)
E(0)

)
F1

′(t)

≤ –mE(t)G′
(

ε0
E(t)
E(0)

)
+ cG′

(
ε0

E(t)
E(0)

)
G–1

(
qI(t)
σ (t)

)
. (88)

As in the sense of Young (see [46]), let G∗ be the convex conjugate of G, then

G∗(a) = a
(
G′)–1(a) – G

[(
G′)–1(a)

]
, if a ∈ (

0, G′(r)
]

(89)

and G∗ satisfies the generalized Young inequality

AB ≤ G∗(A) + G(B), if A ∈ (
0, G′(r)

]
, B ∈ (0, r]. (90)

So, with A = G′(ε0
E′(t)
E(0) ) and B = G–1( qI(t)

σ (t) ) and using (19) and (88)–(90), we arrive at

F ′
2(t) ≤ –mE(t)G′

(
ε0

E(t)
E(0)

)
+ cG∗

(
G′

(
ε0

E(t)
E(0)

))
+ c

(
qI(t)
σ (t)

)

≤ –mE(t)G′
(

ε0
E(t)
E(0)

)
+ cε0

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
+ c

(
qI(t)
σ (t)

)
. (91)
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So, multiplying (91) by σ (t) and using the fact that ε0
E(t)
E(0) < r, G′(ε0

E(t)
E(0) ) = G′(ε0

E(t)
E(0) ), gives

σ (t)F ′
2(t) ≤ –mσ (t)E(t)G′

(
ε0

E(t)
E(0)

)
+ cσ (t)ε0

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
+ cqI(t)

≤ –mσ (t)E(t)G′
(

ε0
E(t)
E(0)

)
+ cσ (t)ε0

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
– cE′(t).

Now, for all t ≥ t1 and with a good choice of ε0, we obtain

F ′
3(t) ≤ –m0σ (t)

(
E(t)
E(0)

)
G′

(
ε0

E(t)
E(0)

)
= –m0σ (t)G3

(
E(t)
E(0)

)
, (92)

where F3 = σF2 + cE ∼ E satisfies, for any β3,β4 > 0,

β3F3(t) ≤ E(t) ≤ β4F3(t), (93)

and G3(t) = tG′(ε0t). Since G′
3(t) = G′(ε0t)+ε0tG′′(ε0t). Since G is strictly convex over (0, r],

we find that G′
3(t), G3(t) > 0 on (0, 1]. Then, with

R(t) =
β3F3(t)

E(0)
,

using (93) and (92), we obtain

R(t) ∼ E(t) (94)

and then

R′(t) ≤ –m1σ (t)G3
(
R(t)

)
, ∀t ≥ t1,

where m1 > 0. We, after integration over (t1, t), get

∫ t

t1

–R′(s)
G3(R(s))

ds ≥ m1

∫ t

t1

σ (s) ds.

Hence, by an appropriate change of variable, we get

∫ ε0R(t1)

ε0R(t)

1
τG′(τ )

dτ ≥ m1

∫ t

t1

σ (s) ds.

Thus, we have

R(t) ≤ 1
ε0

G–1
4

(
m1

∫ t

t1

σ (s) ds
)

, (95)

where G4(t) =
∫ r

t
1

sG′(s) ds. Here, we used the strictly decreasing property of G4 over (0, r].
Therefore (21) is established by virtue of (94) and hence we finished the proof of Theo-
rem 3.1. �
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Proof of Theorem 3.2, case 1, G is linear Multiplying (53) by σ (t), using (67), gives, as σ (t)
is nonincreasing, the following:

σ (t)L′(t) ≤ –mσ (t)E(t) + c
∫

Γ1

[(
r′′

1 ◦ u
)
(t) +

(
r′′

2 ◦ ∂u(t)
∂ν

)]
dΓ + cσ (t)

∫
Ω

h2(ut) dx

≤ –mσ (t)E(t) – 2cE′(t) + cσ (t)
∫

Ω

h2(ut) dx

≤ –mσ (t)E(t) – 2cE′(t) + cσ (t)
(
H–1(J(t)

)
– cE′(t)

)

≤ –mσ (t)E(t) – 3cE′(t) + cσ (t)H–1(J(t)
)
,

(σL + 3cE)′ ≤ –mσ (t)E(t) + cσ (t)H–1(J(t)
)
, ∀t ≥ t1. (96)

Therefore, (96) becomes

L′(t) ≤ –mσ (t)E(t) + cσ (t)H–1(J(t)
)
, ∀t ≥ t1, (97)

where L := σL + 3cE ∼ E. Now, for ε1 < r0 and c0 > 0, using (97) and the fact that E′ ≤ 0,
H ′ > 0, H ′′ > 0 on (0, r0], we notice that the functional L1, defined by

L1(t) := H ′
(

ε1
E(t)
E(0)

)
L(t) + c0E(t)

satisfies, for some α3,α4 > 0.

α3L1(t) ≤ E(t) ≤ α4L1(t) (98)

and

L′
1(t) = ε0

E′(t)
E(0)

H ′′
(

ε0
E(t)
E(0)

)
L(t) + H ′

(
ε0

E(t)
E(0)

)
L′(t) + c0E′(t)

≤ –mE(t)H ′
(

ε0
E(t)
E(0)

)
+ cσ (t)H ′

(
ε0

E(t)
E(0)

)
H–1(J(t)

)
+ c0E′(t). (99)

Now, let H∗ be the convex conjugate of H (see [46]), then, as in (89) and (90), with A =
H ′(ε1

E(t)
E(0) ) and B = H–1(J(t)), (99) gives

L′
1(t) ≤ –mE(t)H ′

(
ε1

E(t)
E(0)

)
+ cσ (t)H∗

(
H ′

(
ε1

E(t)
E(0)

))
+ cσ (t)J(t) + c0E′(t)

≤ –mE(t)H ′
(

ε1
E(t)
E(0)

)
+ cε1σ (t)

E(t)
E(0)

H ′
(

ε1
E(t)
E(0)

)
– cE′(t) + c0E′(t).

Choosing suitable ε1 and c0, we find, for all t ≥ t1,

L′
1(t) ≤ –cσ (t)

E′(t)
E(0)

H ′
(

ε1
E(t)
E(0)

)
= –cσ (t)H2

(
ε1

E(t)
E(0)

)
, (100)
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where H2(t) = tH ′(ε1t). We have H ′
2(t) = H ′(ε1t) + ε1tH ′′(ε1t). Since H is strictly convex

over (0, r0], we find that H ′
2(t), H2(t) > 0 on (0, 1]. Then, with

R1(t) =
α3L1(t)

E(0)
,

using (98) and (100), we have

R1(t) ∼ E(t), (101)

R′
1(t) ≤ –c3σ (t)H2

(
R1(t)

)
, ∀t ≥ t1,

where c3 > 0. Thus, we integrate over (t1, t) to get

R1(t) ≤ H–1
1

(
c3

∫ t

t1

σ (s) ds + c4

)
, ∀t ≥ t1, (102)

where c4 > 0, and H1(t) =
∫ 1

t
1

H2(s) ds. �

Proof of Theorem 3.2, case 2, G is nonlinear Using (53), (67) and (77), we obtain

L′(t) ≤ –mE(t) + c(t – t1)(G)–1
(

qI(t)
(t – t1)σ (t)

)
+ cH–1(J(t)

)
– cE′(t). (103)

Since limt→+∞ 1
t–t1

= 0, there exists t2 > t1 such that 1
t–t1

< 1 whenever t > t2. By setting
θ = 1

t–t1
< 1 and using (80), we obtain

H–1(J(t)
) ≤ (t – t1)H–1

(
J(t)

(t – t1)

)
, ∀t ≥ t2,

and then (103) becomes

L′(t) ≤ –mE(t) + c(t – t1)(G)–1
(

qI(t)
(t – t1)σ (t)

)
+ c(t – t1)H–1

(
J(t)

(t – t1)

)

– cE′(t), ∀t ≥ t2. (104)

Let L1(t) = L(t) + cE(t) ∼ E, then (104) takes the form

L′
1(t) ≤ –mE(t) + c(t – t1)(G)–1

(
qI(t)

(t – t1)σ (t)

)
+ c(t – t1)H–1

(
J(t)

(t – t1)

)
, (105)

Let r3 = min {r, r0}, χ (t) = max { qI(t)
(t–t1)σ (t) , J(t)

(t–t1) } and W = ((G)–1 + H–1)–1.
So, (105) reduces to

L′
1(t) ≤ –mE(t) + c(t – t1)W –1(χ (t)

)
, ∀t ≥ t2. (106)

Now, for ε2 < r3 and using (103) and the fact that E′ ≤ 0, W ′ > 0, W ′′ > 0 on (0, r3], we find
that the functional L2, defined by

L2(t) := W ′
(

ε2

t – t1
· E(t)

E(0)

)
L1(t), ∀t ≥ t2,
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satisfies, for some α5,α6 > 0.

α5L2(t) ≤ E(t) ≤ α6L2(t) (107)

and, for all t ≥ t2,

L′
2(t) =

(
–ε2

(t – t1)2
E(t)
E(0)

+
ε2

(t – t1)
E′(t)
E(0)

)
W ′′

(
ε2

t – t1
· E(t)

E(0)

)
L1(t)

+ W ′
(

ε2

t – t1
· E(t)

E(0)

)
L′

1(t)

≤ –mE(t)W ′
(

ε2

t – t1
· E(t)

E(0)

)
+ c(t – t1)W ′

(
ε2

t – t1
· E(t)

E(0)

)
W –1(χ (t)

)
. (108)

Let W ∗ be the convex conjugate of W (see [46]), then as in (89) and (90),

W ∗(a) = a
(
W ′)–1(a) – W

[(
W ′)–1(a)

]
, if a ∈ (

0, W ′(r3)
]

(109)

and W ∗ satisfies the Young inequality,

AB ≤ W ∗(A) + W (B), if A ∈ (
0, W ′(r3)

]
, B ∈ (0, r3]. (110)

Therefore, taking A = W ′( ε2
t–t1

· E(t)
E(0) ) and B = W –1(χ (t)), (108) gives

L′
2(t) ≤ –mE(t)W ′

(
ε2

t – t1
· E(t)

E(0)

)
+ c(t – t1)W ∗

(
W ′

(
ε2

t – t1
· E(t)

E(0)

))

+ c(t – t1)χ (t)

≤ –mE(t)W ′
(

ε2

t – t1
· E(t)

E(0)

)
+ c(t – t1)

ε2

t – t1
· E(t)

E(0)
W ′

(
ε2

t – t1
· E(t)

E(0)

)

+ c(t – t1)χ (t). (111)

Using (68) and (73), we observe that

(t – t1)σ (t)χ (t) ≤ –cE′(t).

So, multiplying (111) by σ (t), using the fact that ε2
E(t)
E(0) < r3, gives

σ (t)L′
2(t) ≤ –mσ (t)E(t)W ′

(
ε2

t – t1
· E(t)

E(0)

)
+ cε2σ (t) · E(t)

E(0)
W ′

(
ε2

t – t1
· E(t)

E(0)

)

– cE′(t), ∀t ≥ t2.

Using the property of σ (t), we obtain, for all t ≥ t2,

(
σ (t)L2 + cE

)′(t) ≤ –mσ (t)E(t)W ′
(

ε2

t – t1
· E(t)

E(0)

)

+ cε2σ (t)
E(t)
E(0)

W ′
(

ε2

t – t1
· E(t)

E(0)

)
.
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Therefore, by setting L3(t) := σ (t)L2(t) + cE(t) ∼ E(t), we get

L′
3(t) ≤ –mσ (t)E(t)W ′

(
ε2

t – t1
· E(t)

E(0)

)
+ cε2σ (t) · E(t)

E(0)
W ′

(
ε2

t – t1
· E(t)

E(0)

)
.

This gives, for a suitable choice of ε2,

L′
3(t) ≤ –m0σ (t)

(
E(t)
E(0)

)
W ′

(
ε2

t – t1
· E(t)

E(0)

)
, ∀t ≥ t2,

or

m0

(
E(t)
E(0)

)
W ′

(
ε2

t – t1
· E(t)

E(0)

)
σ (t) ≤ –L′

3(t), ∀t ≥ t2. (112)

An integration of (112) yields

∫ t

t2

m0

(
E(s)
E(0)

)
W ′

(
ε2

s – t1
· E(s)

E(0)

)
σ (s) ds ≤ –

∫ t

t2

L′
3(s) ds ≤ L3(t2). (113)

Using the facts that W ′, W ′′ > 0 and the nonincreasing property of E, we deduce that the
map t �→ E(t)W ′( ε2

t–t1
· E(t)

E(0) ) is nonincreasing and, consequently, we have

m0

(
E(t)
E(0)

)
W ′

(
ε2

t – t1
· E(t)

E(0)

)∫ t

t2

σ (s) ds

≤
∫ t

t2

m0

(
E(s)
E(0)

)
W ′

(
ε2

s – t1
· E(s)

E(0)

)
σ (s) ds ≤ L3(t2). (114)

Multiplying each side of (114) by 1
t–t1

, we have

m0

(
1

t – t1
· E(t)

E(0)

)
W ′

(
ε2

t – t1
· E(t)

E(0)

)∫ t

t2

σ (s) ds ≤ m3

t – t1
. (115)

Next, we set W2(t) = tW ′(ε2t) which is strictly increasing, then we obtain

m0W2

(
1

t – t1
· E(t)

E(0)

)∫ t

t2

σ (s) ds ≤ m3

t – t1
. (116)

Finally, for two positive constants m3 and m4, we obtain

E(t) ≤ m4(t – t1)W2
–1

(
m3

(t – t1)
∫ t

t2
σ (s) ds

)
. (117)

This finishes the proof of Theorem 3.2. �
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