a SpringerOpen Journal

Multiple positive solutions to Kirchhoff equations with competing potential functions in \mathbb{R}^{3}

Dongdong Sun ${ }^{1 *}$

*Correspondence:
sunddmath@163.com
${ }^{1}$ School of Mathematics, Qilu
Normal University, Jinan, P.R. China

Abstract

In this paper, we study the existence of multiple positive solutions to the following Kirchhoff equation with competing potential functions: $$
\left\{\begin{array}{l} -\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla v|^{2}\right) \Delta v+V(x) v=K(x)|v|^{p-1} v \quad \text { in } \mathbb{R}^{3}, \\ v>0, \quad v \in H^{1}\left(\mathbb{R}^{3}\right), \end{array}\right.
$$ where $\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $3<p<5$. We relate the number of solutions with the topology of the global minima set of the function $V^{\frac{2}{p-1}-\frac{1}{2}}(x) / K^{\frac{2}{p-1}}(x)$. The Nehari manifold and Ljusternik-Schnirelmann category theory are applied in our study.

MSC: 35J60; 35J20; 35B38
Keywords: Kirchhoff equation; Multiplicity; Competing potential functions; Nonlocal problems

1 Introduction

In this paper, we study the existence of multiple positive solutions to the Kirchhoff equation with competing potential functions:

$$
\left\{\begin{array}{l}
-\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla v|^{2}\right) \Delta v+V(x) v=K(x)|v|^{p-1} v \quad \text { in } \mathbb{R}^{3} \tag{1.1}\\
v>0, \quad v \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

where $\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $3<p<5, V(x)$ and $K(x)$ are positive continuous functions satisfying
(H) $\inf _{x \in \mathbb{R}^{3}} V(x)=\bar{V}>0, K(x)>0$ and $K(x)$ is bounded.

In recent years, the elliptic Kirchhoff type equations have been studied extensively by many authors, and they are related to the stationary analogue of the equation

$$
\begin{equation*}
u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2}\right) \Delta u=g(x, t) \tag{1.2}
\end{equation*}
$$

proposed by Kirchhoff [14] as an extension of the classical D'Alembert's wave equation for free vibrations of elastic strings. Kirchhoff's model takes into account the changes in length of the string produced by transverse vibrations.
Some early classical studies of Kirchhoff equations were those by Bernstein [4] and Pohozaev [21]. Equation (1.2) received much attention after Lions [18] had proposed an abstract framework to the problem. In 2006, Perera and Zhang [20, 31] obtained existence and multiplicity of solutions via variational methods. Recently several interesting results can be found in Azzollini [2], Li et al. [15], Li et al. [16], Liang et al. [17], Wu [29], Zhang [30], etc.
On the other hand, the well-known Schrödinger equation

$$
\begin{equation*}
-\varepsilon^{2} \Delta v+V(x) v=f(v) \quad \text { in } \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

has been paid much attention to after the celebrated work of Floer and Weinstein [11]. Many famous mathematicians have obtained a lot of interesting results, we only refer to [$5,6,9,22,26,27]$ and the references therein.
Recently, many authors have studied the existence and concentration behavior of positive solutions for Kirchhoff type equations in \mathbb{R}^{3}. In [12], He and Zou studied (1.1) with subcritical nonlinearity. In [23], Sun and Zhang investigated the uniqueness of positive ground state solutions for Kirchhoff type equations with constant coefficients and then studied the existence and concentration behavior of Kirchhoff type problems in \mathbb{R}^{3} with competing potentials. For more interesting results, we refer to [10, 13, 24, 25] etc.
In [8], Cingolani and Lazzo studied the existence of multiple positive solutions to the nonlinear Schrödinger equation with competing potential functions

$$
\begin{equation*}
-\varepsilon^{2} \Delta v+V(x) v=K(x)|v|^{p-2} v+Q(x)|u|^{q-2} u \quad \text { in } \mathbb{R}^{N} . \tag{1.4}
\end{equation*}
$$

They related the number of solutions with the topology of the global minima set of a suitable ground energy function. If $Q(x)=0$ in (1.4), the ground energy function is $V^{(2 p+2 N-N p) /(2 p-4)}(x) / K^{2 /(p-2)}(x)$.
Inspired by [8], we consider the existence of multiple positive solutions for the Kirchhoff equation (1.1) where a nonlocal term $\int_{\mathbb{R}^{3}}|\nabla v|^{2}$ appears in it. Because of the nonlocal term, the method of proof in [8] cannot work directly for our case, and several special difficulties would be faced. For example, we cannot get the Palais-Smale condition if we deal with it in a completely the same way as in [8], which forces us to develop new techniques to solve it. Moreover, the appearance of a competing potential function $K(x)$ and the nonlocal term in (1.1) will bring troubles to the uniform estimate in Sect. 4.
Let us denote by M the global minima set of the function $g(x):=\frac{V^{\frac{2}{p-1}-\frac{1}{2}}(x)}{K^{\frac{2}{p-1}}(x)}$, i.e.,

$$
\begin{equation*}
M=\left\{\xi \in \mathbb{R}^{3}: g(\xi)=\inf _{x \in \mathbb{R}^{3}} g(x)\right\} . \tag{1.5}
\end{equation*}
$$

We recall that, if Y is a closed subset of a topological space X, cat ${ }_{X} Y$ denotes the Ljusternik-Schnirelmann category of Y in X, namely the least number of closed and contractible sets in X which cover Y. For $\delta>0$, we denote

$$
M_{\delta}:=\left\{x \in \mathbb{R}^{3}: \operatorname{dist}(x, M) \leq \delta\right\} .
$$

Our main result is the following.

Theorem 1.1 Suppose that (H) holds and

$$
\begin{equation*}
\frac{\liminf _{|x| \rightarrow \infty} V^{\frac{2}{p-1}-\frac{1}{2}}(x)}{\limsup _{|x| \rightarrow \infty} K^{\frac{2}{p-1}}(x)}>\inf _{x \in \mathbb{R}^{3}} \frac{V^{\frac{2}{p-1}-\frac{1}{2}}(x)}{K^{\frac{2}{p-1}}(x)}, \tag{1.6}
\end{equation*}
$$

then, for any $\delta>0$, there exists $\varepsilon_{\delta}>0$ such that equation (1.1) has at least $\operatorname{cat}_{M_{\delta}}(M)$ solutions for $\varepsilon \in\left(0, \varepsilon_{\delta}\right)$.

Remark 1.2 By assumption (1.6), the set M defined in (1.5) is not empty and is a bounded closed set in \mathbb{R}^{3}.

Remark 1.3 Consider the following Kirchhoff equation with constant coefficients:

$$
\left\{\begin{array}{l}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla v|^{2}\right) \Delta v+m v=n|v|^{p-1} v \quad \text { in } \mathbb{R}^{3} \tag{1.7}\\
v>0, \quad v \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

where $a, b>0$ are constants, $3<p<5, m, n>0$ are taken as variable parameters here. We define $c(m, n)$ by

$$
c(m, n):=\inf _{v \in \mathcal{N}^{(m, n)}} I^{(m, n)}(v)
$$

where $I^{(m, n)}$ is the energy functional and $\mathcal{N}^{(m, n)}$ is the Nehari manifold associated to (1.7), i.e.,

$$
I^{(m, n)}(v)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla v|^{2}+m v^{2}\right)+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla v|^{2}\right)^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}} n|v|^{p+1}
$$

and

$$
\mathcal{N}^{(m, n)}=\left\{v \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}: \int_{\mathbb{R}^{3}}\left(a|\nabla v|^{2}+m v^{2}\right)+b\left(\int_{\mathbb{R}^{3}}|\nabla v|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} n|v|^{p+1}\right\} .
$$

Then, by Lemma 3.6 in [23], we know that $c(m, n): \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous. Moreover, let $m_{1}, m_{2}, n_{1}, n_{2}>0$, then

$$
\begin{equation*}
c\left(m_{1}, n_{1}\right)<c\left(m_{2}, n_{2}\right) \text { if and only if } m_{1}^{\frac{2}{p-1}-\frac{1}{2}} / n_{1}^{\frac{2}{p-1}}<m_{2}^{\frac{2}{p-1}-\frac{1}{2}} / n_{2}^{\frac{2}{p-1}} . \tag{1.8}
\end{equation*}
$$

Now we define the ground energy function $G(\xi)$ which was first introduced in [27] by

$$
G(\xi):=c(V(\xi), K(\xi)) \quad \text { for } \xi \in \mathbb{R}^{3} .
$$

Then by (1.8) we know that $\xi \in \mathbb{R}^{3}$ satisfies $G(\xi)=\inf _{s \in \mathbb{R}^{3}} G(s)$ if and only if $\xi \in M$, where M is defined in (1.5). Now define $c_{0}:=\inf _{s \in \mathbb{R}^{3}} G(s)$.

Let V_{∞} and K_{∞} be defined as

$$
V_{\infty}:=\liminf _{|x| \rightarrow \infty} V(x), \quad K_{\infty}:=\limsup _{|x| \rightarrow \infty} K(x),
$$

and let $c_{\infty}:=c\left(V_{\infty}, K_{\infty}\right)$. If $V_{\infty}=+\infty$, define $c_{\infty}:=+\infty$. Then, by (1.8), we get that condition (1.6) is equivalent to

$$
\begin{equation*}
c_{0}<c_{\infty} . \tag{1.9}
\end{equation*}
$$

2 Preliminaries

First let $u(x)=v(\varepsilon x)$, then equation (1.1) becomes the following equivalent equation:

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \Delta u+V(\varepsilon x) u=K(\varepsilon x)|u|^{p-1} u \quad \text { in } \mathbb{R}^{3} . \tag{2.1}
\end{equation*}
$$

Let $E_{\varepsilon}:=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}} V(\varepsilon x) u^{2}<+\infty\right\}$ be the Hilbert subspace of $H^{1}\left(\mathbb{R}^{3}\right)$ with the norm

$$
\|u\|_{E_{\varepsilon}}:=\left(\int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+V(\varepsilon x) u^{2}\right)\right)^{1 / 2} .
$$

Then a weak solution of problem (2.1) in E_{ε} is a critical point of the energy functional $I_{\varepsilon}: E_{\varepsilon} \rightarrow \mathbb{R}$ given by

$$
I_{\varepsilon}(u):=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+V(\varepsilon x) u^{2}\right)+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1} .
$$

Moreover, $I_{\varepsilon} \in C^{1}\left(E_{\varepsilon}, \mathbb{R}\right)$. We define the Nehari manifold for (2.1) by

$$
\mathcal{N}_{\varepsilon}:=\left\{u \in E_{\varepsilon} \backslash\{0\}: \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+V(\varepsilon x) u^{2}\right)+b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1}\right\} .
$$

That is,

$$
\mathcal{N}_{\varepsilon}=\left\{u \in E_{\varepsilon} \backslash\{0\}:\left\langle I_{\varepsilon}^{\prime}(u), u\right\rangle=0\right\} .
$$

By [23], we have

Lemma 2.1 For any $u \in E_{\varepsilon} \backslash\{0\}$, there exists unique $t(u)>0$ such that $t(u) u \in \mathcal{N}_{\varepsilon}$ and the maximum of $I_{\varepsilon}(t u)$ for $t \geq 0$ is achieved at $t=t(u)$.

We denote by $S(u):=\left\langle I_{\varepsilon}^{\prime}(u), u\right\rangle$, then we have the following.

Lemma 2.2 For any $\varepsilon>0$, there exist $\sigma_{\varepsilon}, \tau_{\varepsilon}>0$ such that, for any $u \in \mathcal{N}_{\varepsilon}$,

$$
\begin{equation*}
\|u\|_{E_{\varepsilon}} \geq \sigma_{\varepsilon}, \quad\left\langle S^{\prime}(u), u\right\rangle \leq-\tau_{\varepsilon} . \tag{2.2}
\end{equation*}
$$

Proof Since the embedding $E_{\varepsilon} \hookrightarrow L^{r}\left(\mathbb{R}^{3}\right)$ is continuous for $2 \leq r \leq 6$, then we have that, for any $u \in \mathcal{N}_{\varepsilon}$,

$$
0<\|u\|_{E_{\varepsilon}}^{2} \leq \int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1} \leq C_{1}\|K\|_{\infty}\|u\|_{E_{\varepsilon}}^{p+1}
$$

where C_{1} is a positive constant, and which implies the first inequality in (2.2). Furthermore,

$$
\begin{aligned}
\left\langle S^{\prime}(u), u\right\rangle & =2\|u\|_{E_{\varepsilon}}^{2}+4 b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}-(p+1) \int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1} \\
& =-2\|u\|_{E_{\varepsilon}}^{2}-(p-3) \int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1} \leq-2\|u\|_{E_{\varepsilon}}^{2} \leq-2 \sigma_{\varepsilon}=:-\tau_{\varepsilon}
\end{aligned}
$$

which gives the second inequality in (2.2).

By Lemma 2.2, we know that (see Chap. 6 of [1]) $\mathcal{N}_{\varepsilon}$ is a C^{1} manifold of codimension one in E_{ε} and $\mathcal{N}_{\varepsilon}$ is a natural constraint for I_{ε}, i.e., if u is a critical point of $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}\left(I_{\varepsilon}\right.$ constrained on $\mathcal{N}_{\varepsilon}$), then u is a weak solution of (2.1) in E_{ε}.
Now define the ground energy c_{ε} of functional I_{ε} by $c_{\varepsilon}:=\inf _{u \in \mathcal{N}_{\varepsilon}} I_{\varepsilon}(u)$. By Lemma 3.4 of [23], we know that there exists $\bar{c}>0$ such that $c_{\varepsilon}>\bar{c}$ for each $\varepsilon>0$ and $\lim \sup _{\varepsilon \rightarrow 0^{+}} c_{\varepsilon} \leq c_{0}$, where c_{0} is defined in Remark 1.3. Moreover, we can prove the following.

Lemma 2.3

$$
\liminf _{\varepsilon \rightarrow 0^{+}} c_{\varepsilon} \geq c_{0}
$$

Proof By [23], there exists a positive ground state solution u_{ε} of (2.1) which satisfies $I_{\varepsilon}\left(u_{\varepsilon}\right)=c_{\varepsilon}$ for sufficiently small $\varepsilon>0$. Now, by contradiction, we assume that there exist $d_{0}>0$ and a subsequence $\left\{u_{\varepsilon_{k}}\right\}$ of $\left\{u_{\varepsilon}\right\}$ such that $c_{\varepsilon_{k}}=I_{\varepsilon_{k}}\left(u_{\varepsilon_{k}}\right) \rightarrow c_{0}-d_{0}$, i.e.,

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left[\frac{1}{4}\left(a\left|\nabla u_{\varepsilon_{k}}\right|^{2}+V\left(\varepsilon_{k} x\right) u_{\varepsilon_{k}}^{2}\right)+\left(\frac{1}{4}-\frac{1}{p+1}\right) K\left(\varepsilon_{k} x\right)\left|u_{\varepsilon_{k}}\right|^{p+1}\right] \rightarrow c_{0}-d_{0} \tag{2.3}
\end{equation*}
$$

From [23], we know there exists $\left\{y_{\varepsilon_{k}}\right\} \subset \mathbb{R}^{3}$ such that $\varepsilon_{k} y_{\varepsilon_{k}} \rightarrow x_{0} \in M$ (defined in (1.5)), and if we let $w_{k}(x):=u_{\varepsilon_{k}}\left(x+y_{\varepsilon_{k}}\right)$, then $w_{k} \rightarrow w_{0}$ in $H^{1}\left(\mathbb{R}^{3}\right)$, where w_{0} is the unique positive ground state solution of

$$
-\left(a+b \int_{\mathbb{R}^{3}}\left|\nabla w_{0}\right|^{2}\right) \Delta w_{0}+V\left(x_{0}\right) w_{0}=K\left(x_{0}\right) w_{0}^{p} .
$$

Then $c_{0}=\int_{\mathbb{R}^{3}}\left[\frac{1}{4}\left(a\left|\nabla w_{0}\right|^{2}+V\left(x_{0}\right) w_{0}^{2}\right)+\left(\frac{1}{4}-\frac{1}{p+1}\right) K\left(x_{0}\right)\left|w_{0}\right|^{p+1}\right]$ and there exists $\rho_{0}>0$ such that

$$
\begin{equation*}
\int_{B_{\rho_{0}}(0)}\left[\frac{1}{4}\left(a\left|\nabla w_{0}\right|^{2}+V\left(x_{0}\right) w_{0}^{2}\right)+\left(\frac{1}{4}-\frac{1}{p+1}\right) K\left(x_{0}\right)\left|w_{0}\right|^{p+1}\right]>c_{0}-\frac{1}{3} d_{0} . \tag{2.4}
\end{equation*}
$$

By (2.3) and $w_{k}(x)=u_{\varepsilon_{k}}\left(x+y_{\varepsilon_{k}}\right)$, we can choose large and fixed $\rho_{1}>\rho_{0}$ such that

$$
\begin{align*}
& \int_{B_{\rho_{1}(0)}}\left[\frac{1}{4}\left(a\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\varepsilon_{k} y_{\varepsilon_{k}}\right) w_{k}^{2}\right)\right. \tag{2.5}\\
& \left.\quad+\left(\frac{1}{4}-\frac{1}{p+1}\right) K\left(\varepsilon_{k} x+\varepsilon_{k} y_{\varepsilon_{k}}\right)\left|w_{k}\right|^{p+1}\right]<c_{0}-\frac{2}{3} d_{0}
\end{align*}
$$

Thus letting $k \rightarrow \infty$ in (2.5), by $\varepsilon_{k} y_{\varepsilon_{k}} \rightarrow x_{0}$ and $w_{k} \rightarrow w_{0}$ in H^{1}, we have

$$
\frac{1}{4} \int_{B_{\rho_{1}}(0)}\left(a\left|\nabla w_{0}\right|^{2}+V\left(x_{0}\right) w_{0}^{2}\right)+\left(\frac{1}{4}-\frac{1}{p+1}\right) \int_{B_{\rho_{1}}(0)} K\left(x_{0}\right)\left|w_{0}\right|^{p+1} \leq c_{0}-\frac{2}{3} d_{0}
$$

which contradicts (2.4).

To obtain the multiplicity result of problem (2.1), we need the following two results:

Lemma 2.4 (see Theorem 5.20 of [28]) If $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ is bounded frow below and satisfies the $(P S)_{c}$ condition for any $c \in\left[\inf _{\mathcal{N}_{\varepsilon}} I_{\varepsilon}, d\right]$, then $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ has a minimum and I_{ε}^{d} contains at least $\operatorname{cat}_{I_{\varepsilon}^{d}} I_{\varepsilon}^{d}$ critical points of $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$, where $I_{\varepsilon}^{d}:=\left\{u \in \mathcal{N}_{\varepsilon}: I_{\varepsilon}(u) \leq d\right\}$.

Lemma 2.5 (see Lemma 4.3 of [3]) Let $\Gamma, \Omega^{+}, \Omega^{-}$be closed sets with $\Omega^{-} \subset \Omega^{+}$. Let Φ : $\Omega^{-} \rightarrow \Gamma, \beta: \Gamma \rightarrow \Omega^{+}$be two continuous maps such that $\beta \circ \Phi$ is homotopically equivalent to the embedding Id : $\Omega^{-} \rightarrow \Omega^{+}$. Then $\operatorname{cat}_{\Gamma}(\Gamma) \geq \operatorname{cat}_{\Omega^{+}}\left(\Omega^{-}\right)$.

3 Palais-Smale condition

In this section, we prove that the functional I_{ε} satisfies the Palais-Smale condition on $\mathcal{N}_{\varepsilon}$. We say that $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ satisfies the $(P S)_{c}$ condition if any sequence $\left\{u_{n}\right\} \subset \mathcal{N}_{\varepsilon}$ such that $I_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ contains a convergent subsequence. Here $\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*}$ denotes the norm of the derivative of I_{ε} restricted to $\mathcal{N}_{\varepsilon}$ at the point $u_{n} \in \mathcal{N}_{\varepsilon}$.

Lemma 3.1 For $\varepsilon>0$ sufficiently small, the constrained functional $\left.I_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ satisfies the $(P S)_{c}$ condition for $c<c_{\infty}$, where c_{∞} is defined in Remark 1.3.

Proof Since the ground energy c_{ε} of functional I_{ε} satisfies $\limsup _{\varepsilon \rightarrow 0^{+}} c_{\varepsilon} \leq c_{0}$ and $c_{0}<c_{\infty}$ by (1.9), we know that the set $\left\{u \in \mathcal{N}_{\varepsilon}: I_{\varepsilon}(u)<c_{\infty}\right\}$ is not empty for $\varepsilon>0$ sufficiently small.

Let $\left\{u_{n}\right\} \subset \mathcal{N}_{\varepsilon}$ be such that

$$
\begin{equation*}
I_{\varepsilon}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

As $\left\{u_{n}\right\} \subset \mathcal{N}_{\varepsilon}$, we have

$$
\begin{aligned}
I_{\varepsilon}\left(u_{n}\right) & =\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathbb{R}^{3}} a\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right)^{2} \\
& \geq\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|_{E_{\varepsilon}}^{2} .
\end{aligned}
$$

Then by $I_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $c<c_{\infty}$ we know that $\left\{u_{n}\right\}$ is bounded in E_{ε}. Thus there exists $u \in E_{\varepsilon}$ and if necessary a subsequence of $\left\{u_{n}\right\}$ such that $u_{n} \rightharpoonup u$ in $E_{\varepsilon}, u_{n} \rightarrow u$ in $L_{\text {loc }}^{\tau}\left(\mathbb{R}^{3}\right)$
for $1 \leq \tau<6$, and $u_{n} \rightarrow u$ a.e. on \mathbb{R}^{3}. We have to prove that $u_{n} \rightarrow u$ strongly in E_{ε} and $u \in \mathcal{N}_{\varepsilon}$.

First we show that if $\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ then $I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$, which implies that $\left\{u_{n}\right\}$ is a $(P S)_{c}$ sequence for the unconstrained functional I_{ε}. Indeed, by $\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$, there exists $\mu_{n} \in$ \mathbb{R} such that $I_{\varepsilon}^{\prime}\left(u_{n}\right)-\mu_{n} S^{\prime}\left(u_{n}\right) \rightarrow 0$, where $S(u)=\left\langle I_{\varepsilon}^{\prime}(u), u\right\rangle$. Then we have

$$
0=S\left(u_{n}\right)=\left\langle I_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\mu_{n}\left\langle S^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o(1) .
$$

From Lemma 2.2, there exists $\tau_{\varepsilon}>0$ such that $\left\langle S^{\prime}\left(u_{n}\right), u_{n}\right\rangle \leq-\tau_{\varepsilon}$, then by the above equality we have that $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$. By the definition of $S(u)$ and the boundedness of $\left\{u_{n}\right\}$ in E_{ε}, we know that $\left\|S^{\prime}\left(u_{n}\right)\right\|$ is bounded. Thus from $I_{\varepsilon}^{\prime}\left(u_{n}\right)=\mu_{n} S^{\prime}\left(u_{n}\right)+o(1)$ we can get $I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$.

Now we prove if $u_{n} \rightarrow u$ strongly in E_{ε}, then $u \in \mathcal{N}_{\varepsilon}$. Since $u_{n} \in \mathcal{N}_{\varepsilon}$, we have

$$
\int_{\mathbb{R}^{3}}\left(a\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right)+b\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} K(\varepsilon x)\left|u_{n}\right|^{p+1} .
$$

If $u_{n} \rightarrow u$ in E_{ε}, then passing to a limit in the above equality, we have

$$
\int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+V(\varepsilon x) u^{2}\right)+b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} K(\varepsilon x)|u|^{p+1},
$$

which implies that $u \in \mathcal{N}_{\varepsilon}$.
In order to prove $u_{n} \rightarrow u$ in E_{ε}, it suffices to show that, for any $\delta>0$, there exists $R>0$ such that

$$
\begin{equation*}
\int_{|x| \geq R}\left(a\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right)<\delta \quad \text { for each } n \in \mathbb{N}^{+} \tag{3.2}
\end{equation*}
$$

Indeed, by (3.2), we first show that $u_{n} \rightarrow u$ in $L^{p+1}\left(\mathbb{R}^{3}\right)$. For any $\delta>0$, by (3.2), there exists $R>0$ such that

$$
\begin{equation*}
\left(\int_{|x| \geq R}\left|u_{n}\right|^{p+1}\right)^{\frac{1}{p+1}} \leq C\left(\int_{|x| \geq R} a\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right)^{\frac{1}{2}} \leq C \delta^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

where $C>0$ is a constant which is not dependent on R and n. Since $u_{n} \rightarrow u$ in $L_{\mathrm{loc}}^{p+1}\left(\mathbb{R}^{3}\right)$, we have that for the fixed δ and R in (3.3), there exists $N \in \mathbb{N}^{+}$such that, for $n>N$,

$$
\begin{equation*}
\left(\int_{|x| \leq R}\left|u_{n}-u\right|^{p+1}\right)^{\frac{1}{p+1}} \leq \delta \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4), we can know that $u_{n} \rightarrow u$ in $L^{p+1}\left(\mathbb{R}^{3}\right)$. Next we show that by (3.2), we can prove $u_{n} \rightarrow u$ in E_{ε}. Note that

$$
\begin{aligned}
& \left\langle I_{\varepsilon}^{\prime}\left(u_{n}\right)-I_{\varepsilon}^{\prime}(u), u_{n}-u\right\rangle \\
& \quad=\left(a+b \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right) \int_{\mathbb{R}^{3}} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\mathbb{R}^{3}} V(\varepsilon x)\left(u_{n}-u\right)^{2}-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla\left(u_{n}-u\right) \\
& -\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right) \\
= & \left(a+b \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right) \cdot \int_{\mathbb{R}^{3}}\left|\nabla\left(u_{n}-u\right)\right|^{2}+\int_{\mathbb{R}^{3}} V(\varepsilon x)\left(u_{n}-u\right)^{2} \\
& +b\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}-\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \cdot \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla\left(u_{n}-u\right) \\
& -\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right) \\
\geq & \left\|u_{n}-u\right\|_{\varepsilon}^{2}-b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right) \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla\left(u_{n}-u\right) \\
& -\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|u_{n}-u\right\|_{\varepsilon}^{2} \leq & \left|I_{\varepsilon}^{\prime}\left(u_{n}\right)-I_{\varepsilon}^{\prime}(u), u_{n}-u\right\rangle+b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right) \\
& \cdot \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla\left(u_{n}-u\right)+\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right) .
\end{aligned}
$$

Since $u_{n} \rightharpoonup u$ and $I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$, we have $\left\langle I_{\varepsilon}^{\prime}\left(u_{n}\right)-I_{\varepsilon}^{\prime}(u), u_{n}-u\right\rangle \rightarrow 0$ as $n \rightarrow \infty$. By the boundedness of $\left\{u_{n}\right\}$ in E_{ε}, we have

$$
b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right) \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla\left(u_{n}-u\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Furthermore,

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right)\right| \\
& \quad \leq\|K\|_{\infty}\left(\left.\int_{\mathbb{R}^{3}}| | u_{n}\right|^{p-1} u_{n}-\left.|u|^{p-1} u\right|^{\frac{p+1}{p}}\right)^{\frac{p}{p+1}}\left(\int_{\mathbb{R}^{3}}\left|u_{n}-u\right|^{p+1}\right)^{\frac{1}{p+1}} .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $L^{p+1}\left(\mathbb{R}^{3}\right)$ and $u_{n} \rightarrow u$ in $L^{p+1}\left(\mathbb{R}^{3}\right)$, we have

$$
\int_{\mathbb{R}^{3}} K(\varepsilon x)\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Thus we have $\left\|u_{n}-u\right\|_{\varepsilon} \rightarrow 0$ as $n \rightarrow \infty$, i.e., $u_{n} \rightarrow u$ in E_{ε}.
Now we are in a position to prove (3.2) to complete the proof of Lemma 3.1. By contradiction assume that for some subsequence $\left\{u_{n_{k}}\right\}$ (we denote $\left\{u_{k}\right\}$ for the simplicity of notations) and some $\delta_{0}>0$

$$
\begin{equation*}
\int_{|x| \geq k} a\left|\nabla u_{k}\right|^{2}+V(\varepsilon x) u_{k}^{2} \geq \delta_{0} \tag{3.5}
\end{equation*}
$$

for any k. By the choice of c and Remark 1.3, there exists $\eta>0$ such that $c<c\left(V_{\infty}-\eta, K_{\infty}+\right.$ $\eta)=: c_{\eta}$ and $c_{\eta}<c_{\infty}$. Let $R(\eta)>0$ be an integer and such that $V(\varepsilon x) \geq V_{\infty}-\eta$ and $K(\varepsilon x) \leq$
$K_{\infty}+\eta$ for $|x| \geq R(\eta)$. For any $r>0$, we define $A_{r}:=\left\{x \in \mathbb{R}^{3}: r \leq|x| \leq r+1\right\}$. Then as in [8], we can know that there exists $r>R(\eta)$ and if necessary a subsequence of $\left\{u_{k}\right\}$ such that

$$
\begin{equation*}
\int_{A_{r}} a\left|\nabla u_{k}\right|^{2}+V(\varepsilon x) u_{k}^{2}<\eta \tag{3.6}
\end{equation*}
$$

Now we fix $r=r(\eta)>R(\eta)$ so that (3.6) holds. Let $\rho \in C^{\infty}\left(\mathbb{R}^{3}\right)$ be such that $\rho(x)=0$ for $|x| \leq r, \rho(x)=1$ for $|x| \geq r+1,0 \leq \rho \leq 1$, and $|\nabla \rho(x)| \leq 2$ for any $x \in \mathbb{R}^{3}$. Define $w_{k}:=\rho u_{k}$.

As $u_{k} \in \mathcal{N}_{\varepsilon}$, we have

$$
I_{\varepsilon}\left(u_{k}\right)=\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathbb{R}^{3}} a\left|\nabla u_{k}\right|^{2}+V(\varepsilon x) u_{k}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{k}\right|^{2}\right)^{2} .
$$

Define

$$
\bar{I}_{\varepsilon}\left(w_{k}\right):=\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathbb{R}^{3}} a\left|\nabla w_{k}\right|^{2}+V(\varepsilon x) w_{k}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2}\right)^{2}
$$

then by the definition of w_{k} and (3.6), we have

$$
\begin{equation*}
\bar{I}_{\varepsilon}\left(w_{k}\right) \leq I_{\varepsilon}\left(u_{k}\right)+O(\eta) \tag{3.7}
\end{equation*}
$$

where $|O(\eta)|<C \eta$ and $C>0$ is a constant.
Now let $\theta_{k}>0$ be such that $\theta_{k} w_{k} \in \mathcal{N}_{\varepsilon}$. If $\theta_{k} \leq 1$ (up to a subsequence) for $k=1,2,3, \ldots$, then by (3.7) we have

$$
\begin{align*}
I_{\varepsilon} & \left(\theta_{k} w_{k}\right) \\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right) \theta_{k}^{2} \int_{\mathbb{R}^{3}} a\left|\nabla w_{k}\right|^{2}+V(\varepsilon x) w_{k}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b \theta_{k}^{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2}\right)^{2} \\
& \leq\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathbb{R}^{3}} a\left|\nabla w_{k}\right|^{2}+V(\varepsilon x) w_{k}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2}\right)^{2} \\
& =\bar{I}_{\varepsilon}\left(w_{k}\right) \leq I_{\varepsilon}\left(u_{k}\right)+O(\eta) . \tag{3.8}
\end{align*}
$$

Now we assume $\theta_{k}>1$ for each k. Since $\left\langle I_{\varepsilon}^{\prime}\left(\theta_{k} w_{k}\right), \theta_{k} w_{k}\right\rangle=0$, we have $\left\langle I_{\varepsilon}^{\prime}\left(w_{k}\right), w_{k}\right\rangle>0$ by Lemma 2.1. Denote $\tilde{I}\left(w_{k}\right)$ by

$$
\tilde{I}\left(w_{k}\right)=\int_{\mathbb{R}^{3}} a\left|\nabla w_{k}\right|^{2}+V(\varepsilon x) w_{k}^{2}+b \int_{\mathbb{R}^{3}}\left|\nabla u_{k}\right|^{2} \int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2}-\int_{\mathbb{R}^{3}} K(\varepsilon x)\left|w_{k}\right|^{p+1},
$$

then we have

$$
\left|\left\langle I_{\varepsilon}^{\prime}\left(u_{k}\right), w_{k}\right\rangle-\tilde{I}\left(w_{k}\right)\right| \leq C_{1} \int_{A_{r}} a\left|\nabla u_{k}\right|^{2}+V(\varepsilon x) u_{k}^{2}
$$

where $C_{1}>0$ is a constant which does not depend on r. Then, by (3.1) and (3.6), we have $\tilde{I}\left(w_{k}\right)=O(\eta)+o(1)$. Since $\left\langle I_{\varepsilon}^{\prime}\left(w_{k}\right), w_{k}\right\rangle>0$, we have

$$
\begin{align*}
\left\langle I_{\varepsilon}^{\prime}\left(w_{k}\right), w_{k}\right\rangle & =\tilde{I}\left(w_{k}\right)+b\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{k}\right|^{2}\right) \int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2} \\
& \leq \tilde{I}\left(w_{k}\right)+b \int_{A_{r}}\left|\nabla w_{k}\right|^{2} \int_{\mathbb{R}^{3}}\left|\nabla w_{k}\right|^{2} \\
& \leq \tilde{I}\left(w_{k}\right)+O(\eta)=O(\eta)+o(1) . \tag{3.9}
\end{align*}
$$

By the definition of w_{k} and (3.5), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} a\left|\nabla w_{k}\right|^{2}+V(\varepsilon x) w_{k}^{2} \geq \delta_{0}+O(\eta) \tag{3.10}
\end{equation*}
$$

Then by $\theta_{k} w_{k} \in \mathcal{N}_{\varepsilon}$, (3.9) and (3.10), we have that $\left\{\theta_{k}\right\}$ is bounded and (see the similar result (6.13) in [8])

$$
\begin{equation*}
\theta_{k}=1+O(\eta)+o(1) \tag{3.11}
\end{equation*}
$$

Thus by (3.7) and (3.11) we have

$$
\begin{equation*}
I_{\varepsilon}\left(\theta_{k} w_{k}\right) \leq I_{\varepsilon}\left(u_{k}\right)+O(\eta) \tag{3.12}
\end{equation*}
$$

From (3.8) and (3.12), up to a subsequence of $\left\{w_{k}\right\}$, we have

$$
\begin{equation*}
I_{\varepsilon}\left(\theta_{k} w_{k}\right) \leq I_{\varepsilon}\left(u_{k}\right)+O(\eta) \tag{3.13}
\end{equation*}
$$

Let $\tilde{w}_{k}:=\theta_{k} w_{k}$, and let $\tilde{\theta}_{k}$ be such that $\tilde{\theta}_{k} \tilde{w}_{k} \in \mathcal{N}_{\eta}$, the Nehari manifold defined as in Remark 1.3, with $m=V_{\infty}-\eta$ and $n=K_{\infty}+\eta$ in (1.7). From

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} a\left|\nabla \tilde{w}_{k}\right|^{2}+\left(V_{\infty}-\eta\right) \tilde{w}_{k}^{2}+b\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2} \\
& \quad \leq \int_{\mathbb{R}^{3}} a\left|\nabla \tilde{w}_{k}\right|^{2}+V(\varepsilon x) \tilde{w}_{k}^{2}+b\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2} \\
& \quad=\int_{\mathbb{R}^{3}} K(\varepsilon x)\left|\tilde{w}_{k}\right|^{p+1} \\
& \quad \leq \int_{\mathbb{R}^{3}}\left(K_{\infty}+\eta\right)\left|\tilde{w}_{k}\right|^{p+1},
\end{aligned}
$$

we can know that $\tilde{\theta}_{k} \leq 1$, the above equality holds because $\tilde{w}_{k}=\theta_{k} w_{k} \in \mathcal{N}_{\varepsilon}$. Now, by Lemma 2.1, the function

$$
\begin{aligned}
h(t):= & \frac{t^{2}}{2} \int_{\mathbb{R}^{3}}\left(a\left|\nabla \tilde{w}_{k}\right|^{2}+V(\varepsilon x) \tilde{w}_{k}^{2}\right)+\frac{t^{4}}{4} b\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2} \\
& -\frac{t^{p+1}}{p+1} \int_{\mathbb{R}^{3}} K(\varepsilon x)\left|\tilde{w}_{k}\right|^{p+1}
\end{aligned}
$$

is nondecreasing for $t \in(0,1)$. Thus, by (3.13) and (3.1),

$$
\begin{aligned}
c_{\eta} \leq & \frac{\tilde{\theta}_{k}^{2}}{2} \int_{\mathbb{R}^{3}} a\left|\nabla \tilde{w}_{k}\right|^{2}+\left(V_{\infty}-\eta\right) \tilde{w}_{k}^{2}+\frac{b}{4} \tilde{\theta}_{k}^{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2} \\
& -\frac{\tilde{\theta}_{k}^{p+1}}{p+1} \int_{\mathbb{R}^{3}}\left(K_{\infty}+\eta\right)\left|\tilde{w}_{k}\right|^{p+1} \leq \frac{\tilde{\theta}_{k}^{2}}{2} \int_{\mathbb{R}^{3}} a\left|\nabla \tilde{w}_{k}\right|^{2}+V(\varepsilon x) \tilde{w}_{k}^{2} \\
& +\frac{b}{4} \tilde{\theta}_{k}^{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2}-\frac{\tilde{\theta}_{k}^{p+1}}{p+1} \int_{\mathbb{R}^{3}} K(\varepsilon x)\left|\tilde{w}_{k}\right|^{p+1} \\
\leq & \frac{1}{2} \int_{\mathbb{R}^{3}} a\left|\nabla \tilde{w}_{k}\right|^{2}+V(\varepsilon x) \tilde{w}_{k}^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla \tilde{w}_{k}\right|^{2}\right)^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}} K(\varepsilon x)\left|\tilde{w}_{k}\right|^{p+1} \\
= & I_{\varepsilon}\left(\tilde{w}_{k}\right)=I_{\varepsilon}\left(\theta_{k} w_{k}\right) \leq I_{\varepsilon}\left(u_{k}\right)+O(\eta) \leq c+O(\eta)+o(1) .
\end{aligned}
$$

Letting $k \rightarrow \infty, \eta \rightarrow 0$ and by the continuity of c_{η} with respect to η (see Remark 1.3), we know that $c_{\infty} \leq c$, a contradiction which concludes the proof.

4 The maps $\boldsymbol{\Phi}_{\varepsilon}$ and $\boldsymbol{\beta}_{\varepsilon}$

In this section we construct two mappings Φ_{ε} and β_{ε} in order to apply Lemma 2.5 to prove Theorem 1.1.
Let $\delta>0$ be fixed and $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ such that $0 \leq \eta \leq 1, \eta=1$ on $B_{1}(0), \eta=0$ on $\mathbb{R}^{3} \backslash B_{2}(0)$, $|\nabla \eta| \leq C$ for some $C>0$. For any $y \in M$ (defined in (1.5)), we define

$$
\Psi_{\varepsilon, y}(x)=\eta\left(\frac{\varepsilon x-y}{\sqrt{\varepsilon}}\right) w^{y}\left(\frac{\varepsilon x-y}{\varepsilon}\right),
$$

where w^{y} is the unique positive ground state solution (see [23]) of

$$
\left\{\begin{array}{l}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla v|^{2}\right) \Delta v+V(y) v=K(y)|v|^{p-1} v \quad \text { in } \mathbb{R}^{3} \tag{4.1}\\
v>0, \quad v \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

Let w be such that $w^{y}=\lambda w(\mu x)$, where $\mu^{2}=V(y)$ and $\lambda=(V(y) / K(y))^{\frac{1}{p-1}}$, then w satisfies

$$
\left\{\begin{array}{l}
-\left(a+b \frac{\lambda^{2}}{\mu} \int_{\mathbb{R}^{3}}|\nabla v|^{2}\right) \Delta v+v=|v|^{p-1} v \quad \text { in } \mathbb{R}^{3} \tag{4.2}\\
v>0, \quad v \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

Since $\frac{\lambda^{2}}{\mu}=\frac{V^{\frac{2}{p-1}-\frac{1}{2}}(y)}{K^{\frac{2}{p-1}}(y)}$, then by the definition of M we know that, for any $y \in M$,

$$
\frac{\lambda^{2}}{\mu}=\frac{V^{\frac{2}{p-1}-\frac{1}{2}}(y)}{K^{\frac{2}{p-1}}(y)} \equiv L
$$

where L is a positive constant. Thus we have that, for $y \in M$,

$$
\begin{equation*}
w^{y}=\lambda w(\mu x), \tag{4.3}
\end{equation*}
$$

where w is the unique positive ground state solution of (4.2) with $\frac{\lambda^{2}}{\mu}=L$.

Now let $t_{\varepsilon, y}>0$ be such that $I_{\varepsilon}\left(t_{\varepsilon, y} \Psi_{\varepsilon, y}\right)=\max _{t \geq 0} I_{\varepsilon}\left(t \Psi_{\varepsilon, y}\right)$ and $\left.\frac{d I_{\varepsilon}\left(t \Psi_{\varepsilon, y}\right)}{d t}\right|_{t=t_{\varepsilon, y}}=0$. We define $\Phi_{\varepsilon}: M \rightarrow \mathcal{N}_{\varepsilon}$ by $\Phi_{\varepsilon}(y):=t_{\varepsilon, y} \Psi_{\varepsilon, y}$.

Lemma 4.1 Uniformly for $y \in M$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} I_{\varepsilon}\left(\Phi_{\varepsilon}(y)\right)=c_{0} \tag{4.4}
\end{equation*}
$$

where c_{0} is defined in Remark 1.3.

Proof We first show that $t_{\varepsilon, y} \rightarrow 1$ as $\varepsilon \rightarrow 0^{+}$. Since $t_{\varepsilon, y} \Psi_{\varepsilon, y}=\Phi_{\varepsilon}(y) \in \mathcal{N}_{\varepsilon}$, we have

$$
\int_{\mathbb{R}^{3}}\left(a\left|\nabla \Psi_{\varepsilon, y}\right|^{2}+V(\varepsilon x) \Psi_{\varepsilon, y}^{2}\right)+t_{\varepsilon, y}^{2} b\left(\int_{\mathbb{R}^{3}}\left|\nabla \Psi_{\varepsilon, y}\right|^{2}\right)^{2}=t_{\varepsilon, y}^{p-1} \int_{\mathbb{R}^{3}} K(\varepsilon x)\left|\Psi_{\varepsilon, y}\right|^{p+1}
$$

By the definition of $\Psi_{\varepsilon, y}$ and (4.3), after a change of variable, we get

$$
\begin{align*}
& \int_{B \frac{\mu}{\sqrt{\varepsilon}}}(0) \\
& \quad=t_{\varepsilon, y}^{p-1}\left(\frac{L}{K(y)} \int_{B_{\frac{\mu}{\sqrt{\varepsilon}}}(0)} K\left(\frac{\varepsilon x}{\mu}+y\right) w^{p+1}+o(1)\right) . \tag{4.5}
\end{align*}
$$

By the definition of μ and (H), we know that as $\varepsilon \rightarrow 0^{+}, \frac{\mu}{\sqrt{\varepsilon}} \rightarrow+\infty$ uniformly for $y \in M$. Moreover, for $|x| \leq \frac{\mu}{\sqrt{\varepsilon}},\left|\frac{\varepsilon x}{\mu}+y\right|$ is bounded and $\frac{\varepsilon x}{\mu}+y \rightarrow y$ as $\varepsilon \rightarrow 0^{+}$uniformly for $y \in M$. Then we have as $\varepsilon \rightarrow 0^{+}$and uniformly for $y \in M$,

$$
\begin{aligned}
& \int_{B \frac{\mu}{\sqrt{\varepsilon}}} L(0) \\
& \int_{B \frac{\mu}{\sqrt{\varepsilon}}}(0) \\
& \frac{L}{\mu^{2}} V\left(\frac{\varepsilon x}{\mu}+y\right) w^{2} \rightarrow \int_{\mathbb{R}^{3}} \frac{L}{\mu^{2}} V(y) w^{2}=L \int_{\mathbb{R}^{3}}|\nabla w|^{2}, \\
& \frac{L}{K(y)} \int_{\frac{R}{\frac{\mu}{\sqrt{\varepsilon}}}^{2}(0)} K\left(\frac{\varepsilon x}{\mu}+y\right) w^{p+1} \rightarrow \frac{L}{K(y)} \int_{\mathbb{R}^{3}} K(y) w^{p+1}=L \int_{\mathbb{R}^{3}} w^{p+1} .
\end{aligned}
$$

Now assume that there exist t_{0}, T_{0} such that $0<t_{0} \leq t_{\varepsilon, y} \leq T_{0}$, and let $t_{\varepsilon, y} \rightarrow T>0$ as $\varepsilon \rightarrow 0^{+}$, then by the above estimates we have

$$
\int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+b T^{2} L\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2}=T^{p-1} \int_{\mathbb{R}^{3}} w^{p+1} .
$$

Since w is the ground state solution of (4.2), we have

$$
\int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+b L\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} w^{p+1}
$$

these imply that

$$
\left(T^{p-1}-1\right) \int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+b L\left(T^{p-1}-T^{2}\right)\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2}=0 .
$$

If $T<1$, then the left part of the above equality is less than 0 , and if $T>1$, it will be larger than 0 , which yields that $T=1$.

Now we prove that $t_{\varepsilon, y} \rightarrow 0$. Otherwise, from (4.5), we have

$$
\int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)=0,
$$

which is a contradiction. Also from (4.5), we have that $t_{\varepsilon, y} \nrightarrow+\infty$ as $p-1>2$. By the above arguments, we can see that $t_{\varepsilon, y} \rightarrow 1$ uniformly for $y \in M$ as $\varepsilon \rightarrow 0^{+}$.
Note that

$$
\begin{align*}
I_{\varepsilon}\left(\Phi_{\varepsilon}(y)\right)= & I_{\varepsilon}\left(t_{\varepsilon, y} \Psi_{\varepsilon, y}\right) \\
= & \frac{t_{\varepsilon, y}^{2}}{2}\left(L \int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+o(1)\right)+\frac{t_{\varepsilon, y}^{4}}{4} b\left(\left(\int_{\mathbb{R}^{3}} L|\nabla w|^{2}\right)^{2}+o(1)\right) \\
& -\frac{t_{\varepsilon, y}^{p+1}}{p+1}\left(L \int_{\mathbb{R}^{3}} w^{p+1}+o(1)\right)=\frac{L}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+\frac{L^{2}}{4} b\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2} \\
& -\frac{L}{p+1} \int_{\mathbb{R}^{3}} w^{p+1}+o(1)=L I_{L}(w)+o(1), \tag{4.6}
\end{align*}
$$

where I_{L} is the energy functional of equation (4.2) with $\frac{\lambda^{2}}{\mu}=L$ in it. Let I^{y} be the energy functional of (4.1), then we have

$$
\begin{aligned}
c_{0}= & I^{y}\left(w^{y}\right) \\
= & \frac{1}{2} \int_{\mathbb{R}^{3}} a\left|\nabla w^{y}\right|^{2}+V(y)\left(w^{y}\right)^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}\left|\nabla w^{y}\right|^{2}\right)^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}} K(y)\left(w^{y}\right)^{p+1} \\
= & \frac{1}{2} \frac{\lambda^{2}}{\mu} \int_{\mathbb{R}^{3}} a|\nabla w|^{2}+\frac{1}{2} \frac{\lambda^{2}}{\mu^{3}} \int_{\mathbb{R}^{3}} V(y) w^{2}+\frac{b}{4} \frac{\lambda^{4}}{\mu^{2}}\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2} \\
& -\frac{1}{p+1} \frac{\lambda^{p+1}}{\mu^{3}} \int_{\mathbb{R}^{3}} K(y) w^{p+1} \\
= & L\left(\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla w|^{2}+w^{2}\right)+\frac{L}{4} b\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}} w^{p+1}\right)=L I_{L}(w),
\end{aligned}
$$

thus from (4.6), we prove that $\lim _{\varepsilon \rightarrow 0^{+}} I_{\varepsilon}\left(\Phi_{\varepsilon}(y)\right)=c_{0}$.

Remark 4.2 If there is no competing potential function $K(x)$ in (1.1), i.e., $K(x) \equiv 1$, then in equation (4.1), $K(y) \equiv 1$. In this case, for different $y \in M, V(y)$ is the same, then the positive ground state solution w^{y} of (4.1) is the same function for every $y \in M$. But in our case, because of the competing function $K(y)$ in (4.1), the ground state solution w^{y} may change for different $y \in M$, this causes troubles in the proof of (4.4), and we develop the technique of rescaling to solve the problem.

Let $\rho>0$ be such that $M_{\delta} \subset B_{\rho}(0):=\left\{x \in \mathbb{R}^{3}:|x| \leq \rho\right\}$. Define $\gamma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $\gamma(x)=x$ for $|x| \leq \rho$ and $\gamma(x)=\rho x /|x|$ for $|x| \geq \rho$. Consider the mapping $\beta_{\varepsilon}: \mathcal{N}_{\varepsilon} \rightarrow \mathbb{R}^{3}$ given by $\beta_{\varepsilon}(u):=\frac{\int_{\mathbb{R}^{3}} \gamma(\varepsilon x) u^{2}}{\int_{\mathbb{R}^{3}} u^{2}}$, then as the proof in [8] and by (4.3) we have that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \beta_{\varepsilon}\left(\Phi_{\varepsilon}(y)\right)=y \quad \text { uniformly for } y \in M \tag{4.7}
\end{equation*}
$$

Now define $h(\varepsilon):=\sup _{y \in M}\left|I_{\varepsilon}\left(\Phi_{\varepsilon}(y)\right)-c_{0}\right|$, then Lemma 4.1 yields that $h(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow$ 0^{+}. Let

$$
\begin{equation*}
\tilde{\mathcal{N}}_{\varepsilon}:=\left\{u \in \mathcal{N}_{\varepsilon}: I_{\varepsilon}(u) \leq c_{0}+h(\varepsilon)\right\} \tag{4.8}
\end{equation*}
$$

then by the definition of $h(\varepsilon)$ we know that, for any $y \in M$ and $\varepsilon>0, \Phi_{\varepsilon}(y) \in \tilde{\mathcal{N}}_{\varepsilon}$ and $\tilde{\mathcal{N}}_{\varepsilon} \neq \emptyset$.

Lemma 4.3 Let $\varepsilon_{n} \rightarrow 0^{+}$and $u_{n} \in \tilde{\mathcal{N}}_{\varepsilon_{n}}$. Then there exists $\left\{y_{n}\right\} \subset \mathbb{R}^{3}$ such that the sequence $\left\{u_{n}\left(x+y_{n}\right)\right\}$ has a convergent subsequence in $H^{1}\left(\mathbb{R}^{3}\right)$ and $\varepsilon_{n} y_{n} \rightarrow y \in M$.

Proof As in [23], for $u_{n} \in \tilde{\mathcal{N}}_{\varepsilon_{n}}$, we define a measure μ_{n} on \mathbb{R}^{3} by

$$
\mu_{n}(\Omega)=\int_{\Omega}\left[\frac{1}{4}\left(a\left|\nabla u_{n}\right|^{2}+V\left(\varepsilon_{n} x\right) u_{n}^{2}\right)+\left(\frac{1}{4}-\frac{1}{p+1}\right) K\left(\varepsilon_{n} x\right)\left|u_{n}\right|^{p+1}\right]
$$

Since $0 \leq \mu_{n}\left(\mathbb{R}^{3}\right)=I_{\varepsilon_{n}}\left(u_{n}\right) \leq c_{0}+h\left(\varepsilon_{n}\right)$, then along a subsequence if necessary, as $\varepsilon_{n} \rightarrow 0^{+}$,

$$
\begin{equation*}
\mu_{n}\left(\mathbb{R}^{3}\right) \rightarrow \tilde{c} \leq c_{0} \tag{4.9}
\end{equation*}
$$

Moreover, let $\bar{V}=\inf _{x \in \mathbb{R}^{3}} V(x)$ and $\bar{K}=\sup _{x \in \mathbb{R}^{3}} K(x)$, then by Lemma 3.3 of [23], $\tilde{c} \geq \bar{c}>0$ where $\bar{c}=c(\bar{V}, \bar{K})$ is defined in Remark 1.3.

By the concentration-compactness lemma of P.L. Lions in [19] and as the proof in Lemma 4.1 in [23], we know that there exists a sequence $\left\{y_{n}\right\} \subset \mathbb{R}^{3}$ such that, for any $h>0$, there is $\rho>0$ such that

$$
\begin{equation*}
\int_{B_{\rho}\left(y_{n}\right)} d \mu_{n} \geq \tilde{c}-h \tag{4.10}
\end{equation*}
$$

Now we prove that $\left\{\varepsilon_{n} y_{n}\right\}$ is bounded. Otherwise, assume that $\left|\varepsilon_{n} y_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Since $\mu_{n}\left(\mathbb{R}^{3}\right)$ is bounded, we know that $w_{n}:=u_{n}\left(x+y_{n}\right)$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$. Therefore there exists $w_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ such that up to a subsequence, $w_{n} \rightharpoonup w_{0}$ in $H^{1}\left(\mathbb{R}^{3}\right), w_{n} \rightarrow w_{0}$ in $L_{\text {loc }}^{\tau}\left(\mathbb{R}^{3}\right)$ for $1 \leq \tau<6$, and almost everywhere in \mathbb{R}^{3}. Furthermore, by (4.10), we can prove that $w_{n} \rightarrow w_{0}$ in $L^{\tau}\left(\mathbb{R}^{3}\right)$ for $1 \leq \tau<6$ and $w_{0} \neq 0$ in $H^{1}\left(\mathbb{R}^{3}\right)$. Let $\theta_{\infty}>0$ be such that $\theta_{\infty} w_{0} \in \mathcal{N}_{\infty}$, the Nehari manifold associated to (1.7) with $m=V_{\infty}$ and $n=K_{\infty}$ in it. Then as the proof in the Appendix of [8], we have $\theta_{\infty} \leq 1$; and furthermore, $\left\{\varepsilon_{n} y_{n}\right\}$ is bounded. Assume that $\left\{\varepsilon_{n} y_{n}\right\}$ converges to some y (up to a subsequence), we now prove that $y \in M$ and that $w_{n} \rightarrow w$ strongly in $H^{1}\left(\mathbb{R}^{3}\right)$. Since $u_{n} \in \mathcal{N}_{\varepsilon_{n}}$ and $w_{n}=u_{n}\left(x+y_{n}\right)$, we have

$$
\int_{\mathbb{R}^{3}} a\left|\nabla w_{n}\right|^{2}+V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right) w_{n}^{2}+b\left(\int_{\mathbb{R}^{3}}\left|\nabla w_{n}\right|^{2}\right)^{2}=\int_{\mathbb{R}^{3}} K\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)\left|w_{n}\right|^{p+1}
$$

Taking the lower limit of both sides of the above equality and by $\varepsilon_{n} y_{n} \rightarrow y$, we have

$$
\int_{\mathbb{R}^{3}} a|\nabla w|^{2}+V(y) w^{2}+b\left(\int_{\mathbb{R}^{3}}|\nabla w|^{2}\right)^{2} \leq \int_{\mathbb{R}^{3}} K(y)|w|^{p+1} .
$$

Now let $\theta_{y}>0$ be such that $\theta_{y} w \in \mathcal{N}_{y}$, the Nehari manifold associated to (4.1), we have that $\theta_{y} \leq 1$ by Lemma 2.1. Let I^{y} be the energy functional associated to (4.1). Then

$$
\begin{align*}
c_{0} \leq & c(V(y), K(y)) \leq I^{y}\left(\theta_{y} w\right) \\
= & \frac{1}{4} \theta_{y}^{2} \int_{\mathbb{R}^{3}} a|\nabla w|^{2}+V(y) w^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) \theta_{y}^{p+1} \int_{\mathbb{R}^{3}} K(y)|w|^{p+1} \\
\leq & \frac{1}{4} \int_{\mathbb{R}^{3}} a|\nabla w|^{2}+V(y) w^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) \int_{\mathbb{R}^{3}} K(y)|w|^{p+1} \\
\leq & \liminf _{n \rightarrow \infty}\left[\frac{1}{4} \int_{\mathbb{R}^{3}} a\left|\nabla w_{n}\right|^{2}+V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right) w_{n}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right)\right. \\
& \left.\cdot \int_{\mathbb{R}^{3}} K\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)\left|w_{n}\right|^{p+1}\right]=\liminf _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(u_{n}\right)=\tilde{c} \leq c_{0} \tag{4.11}
\end{align*}
$$

which implies that $\theta_{y}=1$ and $c(V(y), K(y))=c_{0}$. Thus we have $y \in M$. Moreover, $I_{y}(w)=c_{0}$, hence w is a ground state solution of (4.1). The strong convergence $w_{n} \rightarrow w$ in $L^{\tau}\left(\mathbb{R}^{3}\right)$ for $1 \leq \tau<6$ and (4.11) give

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{3}} a\left|\nabla w_{n}\right|^{2}+V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right) w_{n}^{2}=\int_{\mathbb{R}^{3}} a|\nabla w|^{2}+V(y) w^{2} . \tag{4.12}
\end{equation*}
$$

From (4.12) we can prove that $w_{n} \rightarrow w$ in $H^{1}\left(\mathbb{R}^{3}\right)$.

Lemma 4.4 For any $\delta>0$, we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{u \in \tilde{N}_{\varepsilon}} \operatorname{dist}\left(\beta_{\varepsilon}(u), M_{\delta}\right)=0
$$

Proof The proof is similar to the proof of Lemma 5.1 in [8] or Lemma 4.7 in [13], we omit it here.

5 Proof of Theorem 1.1

For $\delta>0$, by Lemma 4.1, Lemma 4.4, and (4.7), there exists $\varepsilon_{\delta}>0$ such that, for any $\varepsilon \in$ $\left(0, \varepsilon_{\delta}\right)$, the diagram

$$
M \xrightarrow{\Phi_{\varepsilon}} \tilde{\mathcal{N}}_{\varepsilon} \xrightarrow{\beta_{\varepsilon}} M_{\delta}
$$

is well defined. Moreover, by (4.7), the mapping $\beta_{\varepsilon} \circ \Phi_{\varepsilon}$ is homotopic to the inclusion Id : $M \rightarrow M_{\delta}$. Now set $\tilde{\mathcal{N}}_{\varepsilon}^{+}:=\tilde{\mathcal{N}}_{\varepsilon} \cap\left\{u \in \mathcal{N}_{\varepsilon}: u \geq 0\right.$ in $\left.\mathbb{R}^{3}\right\}$, then similar to [8] (or [7]), by Lemma 2.5 we have that $\operatorname{cat}_{\tilde{\mathcal{N}}_{\varepsilon}}\left(\tilde{\mathcal{N}}_{\varepsilon}^{+}\right) \geq \operatorname{cat}_{M_{\delta}}(M)$; and furthermore, cat $\tilde{\mathcal{N}}_{\varepsilon}\left(\tilde{\mathcal{N}}_{\varepsilon}\right) \geq$ $2 \operatorname{cat}_{M_{\delta}}(M)$. Lemma 2.4 shows that I_{ε} has at least $2 \operatorname{cat}_{M_{\delta}}(M)$ critical points on $\tilde{\mathcal{N}}_{\varepsilon}$. Now, in order to prove Theorem 1.1, we only need to show that the critical point $u \in \tilde{\mathcal{N}}_{\varepsilon}$ cannot change sign for sufficiently small $\varepsilon>0$. Indeed, if $u=u^{+}+u^{-}$with $u^{+} \not \equiv 0$ and $u^{-} \not \equiv 0$. First, because $u \in \tilde{\mathcal{N}}_{\varepsilon}$, we have

$$
\begin{equation*}
I_{\varepsilon}(u) \leq c_{0}+h(\varepsilon), \tag{5.1}
\end{equation*}
$$

where $h(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$. Since $u \in \mathcal{N}_{\varepsilon}$, we have

$$
\begin{align*}
I_{\varepsilon}(u)= & \left(\frac{1}{2}-\frac{1}{p+1}\right)\|u\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2} \\
\geq & \left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u^{+}\right\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}\right)^{2} \\
& +\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u^{-}\right\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla u^{-}\right|^{2}\right)^{2} \\
= & \tilde{I}_{\varepsilon}\left(u^{+}\right)+\tilde{I}_{\varepsilon}\left(u^{-}\right), \tag{5.2}
\end{align*}
$$

where $\tilde{I}_{\varepsilon}(u)$ is defined by $\tilde{I}_{\varepsilon}(u):=\left(\frac{1}{2}-\frac{1}{p+1}\right)\|u\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}$.
Since $u^{+} \not \equiv 0$, there exists $t^{+}>0$ such that $t^{+} u^{+} \in \mathcal{N}_{\varepsilon}$. Multiplying equation (2.1) by u^{+} and integrating over \mathbb{R}^{3}, we have

$$
\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}+\int_{\mathbb{R}^{3}} V(\varepsilon x) u^{+2}-\int_{\mathbb{R}^{3}} K(\varepsilon x)\left|u^{+}\right|^{p+1}=0,
$$

which implies that

$$
\begin{align*}
\left\langle I_{\varepsilon}^{\prime}\left(u^{+}\right), u^{+}\right\rangle= & \left(a+b \int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}\right) \int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}+\int_{\mathbb{R}^{3}} V(\varepsilon x) u^{+2} \\
& -\int_{\mathbb{R}^{3}} K(\varepsilon x)\left|u^{+}\right|^{p+1}<0 \tag{5.3}
\end{align*}
$$

Since $t^{+} u^{+} \in \mathcal{N}_{\varepsilon}$, we have $\left\langle I_{\varepsilon}{ }^{\prime}\left(t^{+} u^{+}\right), t^{+} u^{+}\right\rangle=0$. Then from (5.3) we get that $0<t^{+}<1$. Now

$$
\begin{align*}
c_{\varepsilon} & =\inf _{u \in \mathcal{N}_{\varepsilon}} I_{\varepsilon}(u) \leq I_{\varepsilon}\left(t^{+} u^{+}\right) \\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right) t^{+2}\left\|u^{+}\right\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b t^{+4}\left(\int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}\right)^{2} \\
& <\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u^{+}\right\|_{E_{\varepsilon}}^{2}+\left(\frac{1}{4}-\frac{1}{p+1}\right) b\left(\int_{\mathbb{R}^{3}}\left|\nabla u^{+}\right|^{2}\right)^{2}=\tilde{I}_{\varepsilon}\left(u^{+}\right) . \tag{5.4}
\end{align*}
$$

Similar to (5.4), we can also prove that $\tilde{I}_{\varepsilon}\left(u^{-}\right)>c_{\varepsilon}$. Now by (5.2), we have that $I_{\varepsilon}(u) \geq$ $\tilde{I}_{\varepsilon}\left(u^{+}\right)+\tilde{I}_{\varepsilon}\left(u^{-}\right)>2 c_{\varepsilon}$, which contradicts (5.1) by Lemma 2.3. Thus we can assume that there exist at least $\operatorname{cat}_{M_{\delta}}(M)$ critical points that are positive on \mathbb{R}^{3} and by the maximum principle they are strictly positive. Now the proof of Theorem 1.1 is complete.

Acknowledgements

This work was completed while the author was visiting the Academy of Mathematics and Systems Science at the Chinese Academy of Sciences, and the author is grateful for the kind hospitality of the host institution. The author would like to express sincere thanks to the anonymous referees for carefully reading the manuscript and valuable comments and suggestions.

Funding

The paper is supported by the Youth Foundation of Qilu Normal University (2017L0602), Natural Science Foundation of Shandong Province (ZR2018MA009).

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors declare that this study was independently finished. All authors read and approved the final manuscript

Authors' information

Not applicable.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 December 2018 Accepted: 17 April 2019 Published online: 30 April 2019

References

1. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)
2. Azzollini, A.: The elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity. Differ. Integral Equ. 25(5-6), 543-554 (2012)
3. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29-48 (1994)
4. Bernstein, S.: Sur une classe d'équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Ser. Math. [lzvestia Akad. Nauk SSSR] 4, 17-26 (1940)
5. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185-200 (2007)
6. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295-316 (2002)
7. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1-13 (1997)
8. Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160(1), 118-138 (2000)
9. Del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var Partial Differ. Equ. 4(2), 121-137 (1996)
10. Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3), 931-979 (2014)
11. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397-408 (1986)
12. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^{3}. J. Differ. Equ. 252(2), 1813-1834 (2012)
13. He, Y., Li, G.B., Peng, S.J.: Concentrating bound states for Kirchhoff type problems in \mathbb{R}^{3} involving critical Sobolev exponents. Adv. Nonlinear Stud. 14(2), 483-510 (2014)
14. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
15. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}. J. Differ. Equ. 257(2), 566-600 (2014)
16. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253(7), 2285-2294 (2012)
17. Liang, Z.P., Li, F.Y., Shi, J.P.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31(1), 155-167 (2014)
18. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977). North-Holland Math. Stud., vol. 30, pp. 284-346. North-Holland, Amsterdam (1978)
19. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case parts 1 and 2. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 109-145 and 223-283 (1984)
20. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1) 246-255 (2006)
21. Pohožaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N.S.) 96(138), 152-166, 168 (1975)
22. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270-291 (1992)
23. Sun, D.D., Zhang, Z.T.: Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in \mathbb{R}^{3}. J. Math. Anal. Appl. 461(1), 128-149 (2018)
24. Sun, D.D., Zhang, Z.T.: Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials. Z. Angew. Math. Phys. 70(1), Article ID 37 (2019)
25. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314-2351 (2012)
26. Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 53(2), 224-229 (1993)
27. Wang, X.F., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28(3), 633-655 (1997)
28. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
29. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \mathbb{R}^{N} Nonlinear Anal., Real World Appl. 12(2), 1278-1287 (2011)
30. Zhang, Z.T.:. Variational, Topological, and Partial Order Methods with Their Applications. Developments in Mathematics, vol. 29. Springer, Heidelberg (2013)
31. Zhang, Z.T., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math Anal. Appl. 317(2), 456-463 (2006)

Submit your manuscript to a SpringerOpen ${ }^{\circ}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

