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Abstract
In this paper, we study the existence of multiple positive solutions to the following
Kirchhoff equation with competing potential functions:

{
–(ε2a + εb

∫
R3 |∇v|2)�v + V(x)v = K (x)|v|p–1v in R

3,

v > 0, v ∈ H1(R3),

where ε > 0 is a small parameter, a,b > 0 are constants, 3 < p < 5. We relate the
number of solutions with the topology of the global minima set of the function

V
2

p–1 –
1
2 (x)/K

2
p–1 (x). The Nehari manifold and Ljusternik–Schnirelmann category theory

are applied in our study.
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1 Introduction
In this paper, we study the existence of multiple positive solutions to the Kirchhoff equa-
tion with competing potential functions:

⎧⎨
⎩–(ε2a + εb

∫
R3 |∇v|2)�v + V (x)v = K(x)|v|p–1v in R

3,

v > 0, v ∈ H1(R3),
(1.1)

where ε > 0 is a small parameter, a, b > 0 are constants, 3 < p < 5, V (x) and K(x) are positive
continuous functions satisfying

(H) infx∈R3 V (x) = V̄ > 0, K(x) > 0 and K(x) is bounded.
In recent years, the elliptic Kirchhoff type equations have been studied extensively by

many authors, and they are related to the stationary analogue of the equation

utt –
(

a + b
∫

Ω

|∇u|2
)

�u = g(x, t) (1.2)
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proposed by Kirchhoff [14] as an extension of the classical D’Alembert’s wave equation
for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations.

Some early classical studies of Kirchhoff equations were those by Bernstein [4] and Po-
hozaev [21]. Equation (1.2) received much attention after Lions [18] had proposed an ab-
stract framework to the problem. In 2006, Perera and Zhang [20, 31] obtained existence
and multiplicity of solutions via variational methods. Recently several interesting results
can be found in Azzollini [2], Li et al. [15], Li et al. [16], Liang et al. [17], Wu [29], Zhang
[30], etc.

On the other hand, the well-known Schrödinger equation

–ε2�v + V (x)v = f (v) in R
N , (1.3)

has been paid much attention to after the celebrated work of Floer and Weinstein [11].
Many famous mathematicians have obtained a lot of interesting results, we only refer to
[5, 6, 9, 22, 26, 27] and the references therein.

Recently, many authors have studied the existence and concentration behavior of pos-
itive solutions for Kirchhoff type equations in R

3. In [12], He and Zou studied (1.1) with
subcritical nonlinearity. In [23], Sun and Zhang investigated the uniqueness of positive
ground state solutions for Kirchhoff type equations with constant coefficients and then
studied the existence and concentration behavior of Kirchhoff type problems in R

3 with
competing potentials. For more interesting results, we refer to [10, 13, 24, 25] etc.

In [8], Cingolani and Lazzo studied the existence of multiple positive solutions to the
nonlinear Schrödinger equation with competing potential functions

–ε2�v + V (x)v = K(x)|v|p–2v + Q(x)|u|q–2u in R
N . (1.4)

They related the number of solutions with the topology of the global minima set of
a suitable ground energy function. If Q(x) = 0 in (1.4), the ground energy function is
V (2p+2N–Np)/(2p–4)(x)/K2/(p–2)(x).

Inspired by [8], we consider the existence of multiple positive solutions for the Kirchhoff
equation (1.1) where a nonlocal term

∫
R3 |∇v|2 appears in it. Because of the nonlocal term,

the method of proof in [8] cannot work directly for our case, and several special difficulties
would be faced. For example, we cannot get the Palais–Smale condition if we deal with it in
a completely the same way as in [8], which forces us to develop new techniques to solve it.
Moreover, the appearance of a competing potential function K(x) and the nonlocal term
in (1.1) will bring troubles to the uniform estimate in Sect. 4.

Let us denote by M the global minima set of the function g(x) := V
2

p–1 – 1
2 (x)

K
2

p–1 (x)
, i.e.,

M =
{
ξ ∈R

3 : g(ξ ) = inf
x∈R3

g(x)
}

. (1.5)

We recall that, if Y is a closed subset of a topological space X, catXY denotes the
Ljusternik–Schnirelmann category of Y in X, namely the least number of closed and con-
tractible sets in X which cover Y . For δ > 0, we denote

Mδ :=
{

x ∈R
3 : dist(x, M) ≤ δ

}
.
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Our main result is the following.

Theorem 1.1 Suppose that (H) holds and

lim inf|x|→∞ V
2

p–1 – 1
2 (x)

lim sup
|x|→∞

K
2

p–1 (x)
> inf

x∈R3

V
2

p–1 – 1
2 (x)

K
2

p–1 (x)
, (1.6)

then, for any δ > 0, there exists εδ > 0 such that equation (1.1) has at least catMδ
(M) solu-

tions for ε ∈ (0, εδ).

Remark 1.2 By assumption (1.6), the set M defined in (1.5) is not empty and is a bounded
closed set in R

3.

Remark 1.3 Consider the following Kirchhoff equation with constant coefficients:

⎧⎨
⎩–(a + b

∫
R3 |∇v|2)�v + mv = n|v|p–1v in R

3,

v > 0, v ∈ H1(R3),
(1.7)

where a, b > 0 are constants, 3 < p < 5, m, n > 0 are taken as variable parameters here. We
define c(m, n) by

c(m, n) := inf
v∈N (m,n)

I(m,n)(v),

where I(m,n) is the energy functional and N (m,n) is the Nehari manifold associated to (1.7),
i.e.,

I(m,n)(v) =
1
2

∫
R3

(
a|∇v|2 + mv2) +

b
4

(∫
R3

|∇v|2
)2

–
1

p + 1

∫
R3

n|v|p+1

and

N (m,n) =
{

v ∈ H1(
R

3)\{0} :
∫
R3

(
a|∇v|2 + mv2) + b

(∫
R3

|∇v|2
)2

=
∫
R3

n|v|p+1
}

.

Then, by Lemma 3.6 in [23], we know that c(m, n) : R+ × R
+ → R

+ is continuous. More-
over, let m1, m2, n1, n2 > 0, then

c(m1, n1) < c(m2, n2) if and only if m
2

p–1 – 1
2

1 /n
2

p–1
1 < m

2
p–1 – 1

2
2 /n

2
p–1
2 . (1.8)

Now we define the ground energy function G(ξ ) which was first introduced in [27] by

G(ξ ) := c
(
V (ξ ), K(ξ )

)
for ξ ∈ R

3.

Then by (1.8) we know that ξ ∈ R
3 satisfies G(ξ ) = infs∈R3 G(s) if and only if ξ ∈ M, where

M is defined in (1.5). Now define c0 := infs∈R3 G(s).
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Let V∞ and K∞ be defined as

V∞ := lim inf|x|→∞ V (x), K∞ := lim sup
|x|→∞

K(x),

and let c∞ := c(V∞, K∞). If V∞ = +∞, define c∞ := +∞. Then, by (1.8), we get that condi-
tion (1.6) is equivalent to

c0 < c∞. (1.9)

2 Preliminaries
First let u(x) = v(εx), then equation (1.1) becomes the following equivalent equation:

–
(

a + b
∫
R3

|∇u|2
)

�u + V (εx)u = K(εx)|u|p–1u in R
3. (2.1)

Let Eε := {u ∈ H1(R3) :
∫
R3 V (εx)u2 < +∞} be the Hilbert subspace of H1(R3) with the

norm

‖u‖Eε :=
(∫

R3

(
a|∇u|2 + V (εx)u2))1/2

.

Then a weak solution of problem (2.1) in Eε is a critical point of the energy functional
Iε : Eε →R given by

Iε(u) :=
1
2

∫
R3

(
a|∇u|2 + V (εx)u2) +

b
4

(∫
R3

|∇u|2
)2

–
1

p + 1

∫
R3

K(εx)|u|p+1.

Moreover, Iε ∈ C1(Eε ,R). We define the Nehari manifold for (2.1) by

Nε :=
{

u ∈ Eε\{0} :
∫
R3

(
a|∇u|2 + V (εx)u2) + b

(∫
R3

|∇u|2
)2

=
∫
R3

K(εx)|u|p+1
}

.

That is,

Nε =
{

u ∈ Eε\{0} :
〈
I ′
ε(u), u

〉
= 0

}
.

By [23], we have

Lemma 2.1 For any u ∈ Eε\{0}, there exists unique t(u) > 0 such that t(u)u ∈ Nε and the
maximum of Iε(tu) for t ≥ 0 is achieved at t = t(u).

We denote by S(u) := 〈I ′
ε(u), u〉, then we have the following.

Lemma 2.2 For any ε > 0, there exist σε , τε > 0 such that, for any u ∈Nε ,

‖u‖Eε ≥ σε ,
〈
S′(u), u

〉 ≤ –τε . (2.2)
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Proof Since the embedding Eε ↪→ Lr(R3) is continuous for 2 ≤ r ≤ 6, then we have that,
for any u ∈Nε ,

0 < ‖u‖2
Eε

≤
∫
R3

K(εx)|u|p+1 ≤ C1‖K‖∞‖u‖p+1
Eε

,

where C1 is a positive constant, and which implies the first inequality in (2.2). Furthermore,

〈
S′(u), u

〉
= 2‖u‖2

Eε
+ 4b

(∫
R3

|∇u|2
)2

– (p + 1)
∫
R3

K(εx)|u|p+1

= –2‖u‖2
Eε

– (p – 3)
∫
R3

K(εx)|u|p+1 ≤ –2‖u‖2
Eε

≤ –2σε =: –τε ,

which gives the second inequality in (2.2). �

By Lemma 2.2, we know that (see Chap. 6 of [1]) Nε is a C1 manifold of codimension one
in Eε and Nε is a natural constraint for Iε , i.e., if u is a critical point of Iε|Nε (Iε constrained
on Nε), then u is a weak solution of (2.1) in Eε .

Now define the ground energy cε of functional Iε by cε := infu∈Nε Iε(u). By Lemma 3.4 of
[23], we know that there exists c̄ > 0 such that cε > c̄ for each ε > 0 and lim supε→0+ cε ≤ c0,
where c0 is defined in Remark 1.3. Moreover, we can prove the following.

Lemma 2.3

lim inf
ε→0+

cε ≥ c0.

Proof By [23], there exists a positive ground state solution uε of (2.1) which satisfies
Iε(uε) = cε for sufficiently small ε > 0. Now, by contradiction, we assume that there exist
d0 > 0 and a subsequence {uεk } of {uε} such that cεk = Iεk (uεk ) → c0 – d0, i.e.,

∫
R3

[
1
4
(
a|∇uεk |2 + V (εkx)u2

εk

)
+

(
1
4

–
1

p + 1

)
K(εkx)|uεk |p+1

]
→ c0 – d0. (2.3)

From [23], we know there exists {yεk } ⊂ R
3 such that εkyεk → x0 ∈ M (defined in (1.5)),

and if we let wk(x) := uεk (x + yεk ), then wk → w0 in H1(R3), where w0 is the unique positive
ground state solution of

–
(

a + b
∫
R3

|∇w0|2
)

�w0 + V (x0)w0 = K(x0)wp
0.

Then c0 =
∫
R3 [ 1

4 (a|∇w0|2 + V (x0)w2
0) + ( 1

4 – 1
p+1 )K(x0)|w0|p+1] and there exists ρ0 > 0 such

that

∫
Bρ0 (0)

[
1
4
(
a|∇w0|2 + V (x0)w2

0
)

+
(

1
4

–
1

p + 1

)
K(x0)|w0|p+1

]
> c0 –

1
3

d0. (2.4)
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By (2.3) and wk(x) = uεk (x + yεk ), we can choose large and fixed ρ1 > ρ0 such that

∫
Bρ1(0)

[
1
4
(
a|∇wk|2 + V (εkx + εkyεk )w2

k
)

+
(

1
4

–
1

p + 1

)
K(εkx + εkyεk )|wk|p+1

]
< c0 –

2
3

d0.

(2.5)

Thus letting k → ∞ in (2.5), by εkyεk → x0 and wk → w0 in H1, we have

1
4

∫
Bρ1 (0)

(
a|∇w0|2 + V (x0)w2

0
)

+
(

1
4

–
1

p + 1

)∫
Bρ1 (0)

K(x0)|w0|p+1 ≤ c0 –
2
3

d0,

which contradicts (2.4). �

To obtain the multiplicity result of problem (2.1), we need the following two results:

Lemma 2.4 (see Theorem 5.20 of [28]) If Iε|Nε is bounded frow below and satisfies the
(PS)c condition for any c ∈ [infNε Iε , d], then Iε|Nε has a minimum and Id

ε contains at least
catId

ε
Id
ε critical points of Iε|Nε , where Id

ε := {u ∈Nε : Iε(u) ≤ d}.

Lemma 2.5 (see Lemma 4.3 of [3]) Let Γ , Ω+, Ω– be closed sets with Ω– ⊂ Ω+. Let Φ :
Ω– → Γ , β : Γ → Ω+ be two continuous maps such that β ◦Φ is homotopically equivalent
to the embedding Id : Ω– → Ω+. Then catΓ (Γ ) ≥ catΩ+ (Ω–).

3 Palais–Smale condition
In this section, we prove that the functional Iε satisfies the Palais–Smale condition on
Nε . We say that Iε|Nε satisfies the (PS)c condition if any sequence {un} ⊂ Nε such that
Iε(un) → c and ‖I ′

ε(un)‖∗ → 0 contains a convergent subsequence. Here ‖I ′
ε(un)‖∗ denotes

the norm of the derivative of Iε restricted to Nε at the point un ∈Nε .

Lemma 3.1 For ε > 0 sufficiently small, the constrained functional Iε|Nε satisfies the (PS)c

condition for c < c∞, where c∞ is defined in Remark 1.3.

Proof Since the ground energy cε of functional Iε satisfies lim supε→0+ cε ≤ c0 and c0 < c∞
by (1.9), we know that the set {u ∈Nε : Iε(u) < c∞} is not empty for ε > 0 sufficiently small.

Let {un} ⊂Nε be such that

Iε(un) → c and
∥∥I ′

ε(un)
∥∥∗ → 0. (3.1)

As {un} ⊂Nε , we have

Iε(un) =
(

1
2

–
1

p + 1

)∫
R3

a|∇un|2 + V (εx)u2
n +

(
1
4

–
1

p + 1

)
b
(∫

R3
|∇un|2

)2

≥
(

1
2

–
1

p + 1

)
‖un‖2

Eε
.

Then by Iε(un) → c and c < c∞ we know that {un} is bounded in Eε . Thus there exists
u ∈ Eε and if necessary a subsequence of {un} such that un ⇀ u in Eε , un → u in Lτ

loc(R3)



Sun Boundary Value Problems         (2019) 2019:85 Page 7 of 18

for 1 ≤ τ < 6, and un → u a.e. on R
3. We have to prove that un → u strongly in Eε and

u ∈Nε .
First we show that if ‖I ′

ε(un)‖∗ → 0 then I ′
ε(un) → 0, which implies that {un} is a (PS)c

sequence for the unconstrained functional Iε . Indeed, by ‖I ′
ε(un)‖∗ → 0, there exists μn ∈

R such that I ′
ε(un) – μnS′(un) → 0, where S(u) = 〈I ′

ε(u), u〉. Then we have

0 = S(un) =
〈
I ′
ε(un), un

〉
= μn

〈
S′(un), un

〉
+ o(1).

From Lemma 2.2, there exists τε > 0 such that 〈S′(un), un〉 ≤ –τε , then by the above equality
we have that μn → 0 as n → ∞. By the definition of S(u) and the boundedness of {un}
in Eε , we know that ‖S′(un)‖ is bounded. Thus from I ′

ε(un) = μnS′(un) + o(1) we can get
I ′
ε(un) → 0, as n → ∞.

Now we prove if un → u strongly in Eε , then u ∈Nε . Since un ∈Nε , we have

∫
R3

(
a|∇un|2 + V (εx)u2

n
)

+ b
(∫

R3
|∇un|2

)2

=
∫
R3

K(εx)|un|p+1.

If un → u in Eε , then passing to a limit in the above equality, we have

∫
R3

(
a|∇u|2 + V (εx)u2) + b

(∫
R3

|∇u|2
)2

=
∫
R3

K(εx)|u|p+1,

which implies that u ∈Nε .
In order to prove un → u in Eε , it suffices to show that, for any δ > 0, there exists R > 0

such that
∫

|x|≥R

(
a|∇un|2 + V (εx)u2

n
)

< δ for each n ∈N
+. (3.2)

Indeed, by (3.2), we first show that un → u in Lp+1(R3). For any δ > 0, by (3.2), there exists
R > 0 such that

(∫
|x|≥R

|un|p+1
) 1

p+1 ≤ C
(∫

|x|≥R
a|∇un|2 + V (εx)u2

n

) 1
2 ≤ Cδ

1
2 , (3.3)

where C > 0 is a constant which is not dependent on R and n. Since un → u in Lp+1
loc (R3),

we have that for the fixed δ and R in (3.3), there exists N ∈N
+ such that, for n > N ,

(∫
|x|≤R

|un – u|p+1
) 1

p+1 ≤ δ. (3.4)

Combining (3.3) and (3.4), we can know that un → u in Lp+1(R3). Next we show that by
(3.2), we can prove un → u in Eε . Note that

〈
I ′
ε(un) – I ′

ε(u), un – u
〉

=
(

a + b
∫
R3

|∇un|2
)∫

R3
∇un · ∇(un – u)
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+
∫
R3

V (εx)(un – u)2 –
(

a + b
∫
R3

|∇u|2
)∫

R3
∇u · ∇(un – u)

–
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u)

=
(

a + b
∫
R3

|∇un|2
)

·
∫
R3

∣∣∇(un – u)
∣∣2 +

∫
R3

V (εx)(un – u)2

+ b
(∫

R3
|∇un|2 –

∫
R3

|∇u|2
)

·
∫
R3

∇u · ∇(un – u)

–
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u)

≥ ‖un – u‖2
ε – b

(∫
R3

|∇u|2 –
∫
R3

|∇un|2
)∫

R3
∇u · ∇(un – u)

–
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u),

which implies that

‖un – u‖2
ε ≤ 〈

I ′
ε(un) – I ′

ε(u), un – u
〉
+ b

(∫
R3

|∇u|2 –
∫
R3

|∇un|2
)

·
∫
R3

∇u · ∇(un – u) +
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u).

Since un ⇀ u and I ′
ε(un) → 0, we have 〈I ′

ε(un) – I ′
ε(u), un – u〉 → 0 as n → ∞. By the bound-

edness of {un} in Eε , we have

b
(∫

R3
|∇u|2 –

∫
R3

|∇un|2
)∫

R3
∇u · ∇(un – u) → 0,

as n → ∞. Furthermore,
∣∣∣∣
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u)

∣∣∣∣
≤ ‖K‖∞

(∫
R3

∣∣|un|p–1un – |u|p–1u
∣∣ p+1

p

) p
p+1

(∫
R3

|un – u|p+1
) 1

p+1
.

Since {un} is bounded in Lp+1(R3) and un → u in Lp+1(R3), we have
∫
R3

K(εx)
(|un|p–1un – |u|p–1u

)
(un – u) → 0,

as n → ∞. Thus we have ‖un – u‖ε → 0 as n → ∞, i.e., un → u in Eε .
Now we are in a position to prove (3.2) to complete the proof of Lemma 3.1. By con-

tradiction assume that for some subsequence {unk } (we denote {uk} for the simplicity of
notations) and some δ0 > 0

∫
|x|≥k

a|∇uk|2 + V (εx)u2
k ≥ δ0 (3.5)

for any k. By the choice of c and Remark 1.3, there exists η > 0 such that c < c(V∞ – η, K∞ +
η) =: cη and cη < c∞. Let R(η) > 0 be an integer and such that V (εx) ≥ V∞ – η and K(εx) ≤
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K∞ + η for |x| ≥ R(η). For any r > 0, we define Ar := {x ∈R
3 : r ≤ |x| ≤ r + 1}. Then as in [8],

we can know that there exists r > R(η) and if necessary a subsequence of {uk} such that

∫
Ar

a|∇uk|2 + V (εx)u2
k < η. (3.6)

Now we fix r = r(η) > R(η) so that (3.6) holds. Let ρ ∈ C∞(R3) be such that ρ(x) = 0 for
|x| ≤ r, ρ(x) = 1 for |x| ≥ r + 1, 0 ≤ ρ ≤ 1, and |∇ρ(x)| ≤ 2 for any x ∈ R

3. Define wk := ρuk .
As uk ∈Nε , we have

Iε(uk) =
(

1
2

–
1

p + 1

)∫
R3

a|∇uk|2 + V (εx)u2
k +

(
1
4

–
1

p + 1

)
b
(∫

R3
|∇uk|2

)2

.

Define

Īε(wk) :=
(

1
2

–
1

p + 1

)∫
R3

a|∇wk|2 + V (εx)w2
k +

(
1
4

–
1

p + 1

)
b
(∫

R3
|∇wk|2

)2

,

then by the definition of wk and (3.6), we have

Īε(wk) ≤ Iε(uk) + O(η), (3.7)

where |O(η)| < Cη and C > 0 is a constant.
Now let θk > 0 be such that θkwk ∈ Nε . If θk ≤ 1 (up to a subsequence) for k = 1, 2, 3, . . . ,

then by (3.7) we have

Iε(θkwk)

=
(

1
2

–
1

p + 1

)
θ2

k

∫
R3

a|∇wk|2 + V (εx)w2
k +

(
1
4

–
1

p + 1

)
bθ4

k

(∫
R3

|∇wk|2
)2

≤
(

1
2

–
1

p + 1

)∫
R3

a|∇wk|2 + V (εx)w2
k +

(
1
4

–
1

p + 1

)
b
(∫

R3
|∇wk|2

)2

= Īε(wk) ≤ Iε(uk) + O(η). (3.8)

Now we assume θk > 1 for each k. Since 〈I ′
ε(θkwk), θkwk〉 = 0, we have 〈I ′

ε(wk), wk〉 > 0 by
Lemma 2.1. Denote Ĩ(wk) by

Ĩ(wk) =
∫
R3

a|∇wk|2 + V (εx)w2
k + b

∫
R3

|∇uk|2
∫
R3

|∇wk|2 –
∫
R3

K(εx)|wk|p+1,

then we have

∣∣〈I ′
ε(uk), wk

〉
– Ĩ(wk)

∣∣ ≤ C1

∫
Ar

a|∇uk|2 + V (εx)u2
k ,
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where C1 > 0 is a constant which does not depend on r. Then, by (3.1) and (3.6), we have
Ĩ(wk) = O(η) + o(1). Since 〈I ′

ε(wk), wk〉 > 0, we have

〈
I ′
ε(wk), wk

〉
= Ĩ(wk) + b

(∫
R3

|∇wk|2 –
∫
R3

|∇uk|2
)∫

R3
|∇wk|2

≤ Ĩ(wk) + b
∫

Ar

|∇wk|2
∫
R3

|∇wk|2

≤ Ĩ(wk) + O(η) = O(η) + o(1). (3.9)

By the definition of wk and (3.5), we have

∫
R3

a|∇wk|2 + V (εx)w2
k ≥ δ0 + O(η). (3.10)

Then by θkwk ∈ Nε , (3.9) and (3.10), we have that {θk} is bounded and (see the similar
result (6.13) in [8])

θk = 1 + O(η) + o(1). (3.11)

Thus by (3.7) and (3.11) we have

Iε(θkwk) ≤ Iε(uk) + O(η). (3.12)

From (3.8) and (3.12), up to a subsequence of {wk}, we have

Iε(θkwk) ≤ Iε(uk) + O(η). (3.13)

Let w̃k := θkwk , and let θ̃k be such that θ̃kw̃k ∈ Nη , the Nehari manifold defined as in Re-
mark 1.3, with m = V∞ – η and n = K∞ + η in (1.7). From

∫
R3

a|∇w̃k|2 + (V∞ – η)w̃2
k + b

(∫
R3

|∇w̃k|2
)2

≤
∫
R3

a|∇w̃k|2 + V (εx)w̃2
k + b

(∫
R3

|∇w̃k|2
)2

=
∫
R3

K(εx)|w̃k|p+1

≤
∫
R3

(K∞ + η)|w̃k|p+1,

we can know that θ̃k ≤ 1, the above equality holds because w̃k = θkwk ∈ Nε . Now, by
Lemma 2.1, the function

h(t) :=
t2

2

∫
R3

(
a|∇w̃k|2 + V (εx)w̃2

k
)

+
t4

4
b
(∫

R3
|∇w̃k|2

)2

–
tp+1

p + 1

∫
R3

K(εx)|w̃k|p+1
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is nondecreasing for t ∈ (0, 1). Thus, by (3.13) and (3.1),

cη ≤ θ̃2
k
2

∫
R3

a|∇w̃k|2 + (V∞ – η)w̃2
k +

b
4
θ̃4

k

(∫
R3

|∇w̃k|2
)2

–
θ̃

p+1
k

p + 1

∫
R3

(K∞ + η)|w̃k|p+1 ≤ θ̃2
k
2

∫
R3

a|∇w̃k|2 + V (εx)w̃2
k

+
b
4
θ̃4

k

(∫
R3

|∇w̃k|2
)2

–
θ̃

p+1
k

p + 1

∫
R3

K(εx)|w̃k|p+1

≤ 1
2

∫
R3

a|∇w̃k|2 + V (εx)w̃2
k +

b
4

(∫
R3

|∇w̃k|2
)2

–
1

p + 1

∫
R3

K(εx)|w̃k|p+1

= Iε(w̃k) = Iε(θkwk) ≤ Iε(uk) + O(η) ≤ c + O(η) + o(1).

Letting k → ∞, η → 0 and by the continuity of cη with respect to η (see Remark 1.3), we
know that c∞ ≤ c, a contradiction which concludes the proof. �

4 The maps Φε and βε

In this section we construct two mappings Φε and βε in order to apply Lemma 2.5 to prove
Theorem 1.1.

Let δ > 0 be fixed and η ∈ C∞
0 (R3) such that 0 ≤ η ≤ 1, η = 1 on B1(0), η = 0 on R

3 \B2(0),
|∇η| ≤ C for some C > 0. For any y ∈ M (defined in (1.5)), we define

Ψε,y(x) = η

(
εx – y√

ε

)
wy

(
εx – y

ε

)
,

where wy is the unique positive ground state solution (see [23]) of

⎧⎨
⎩–(a + b

∫
R3 |∇v|2)�v + V (y)v = K(y)|v|p–1v in R

3,

v > 0, v ∈ H1(R3).
(4.1)

Let w be such that wy = λw(μx), where μ2 = V (y) and λ = (V (y)/K(y))
1

p–1 , then w satisfies

⎧⎨
⎩–(a + b λ2

μ

∫
R3 |∇v|2)�v + v = |v|p–1v in R

3,

v > 0, v ∈ H1(R3).
(4.2)

Since λ2

μ
= V

2
p–1 – 1

2 (y)

K
2

p–1 (y)
, then by the definition of M we know that, for any y ∈ M,

λ2

μ
=

V
2

p–1 – 1
2 (y)

K
2

p–1 (y)
≡ L,

where L is a positive constant. Thus we have that, for y ∈ M,

wy = λw(μx), (4.3)

where w is the unique positive ground state solution of (4.2) with λ2

μ
= L.
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Now let tε,y > 0 be such that Iε(tε,yΨε,y) = maxt≥0 Iε(tΨε,y) and dIε(tΨε,y)
dt |t=tε,y = 0. We define

Φε : M →Nε by Φε(y) := tε,yΨε,y.

Lemma 4.1 Uniformly for y ∈ M, we have

lim
ε→0+

Iε
(
Φε(y)

)
= c0, (4.4)

where c0 is defined in Remark 1.3.

Proof We first show that tε,y → 1 as ε → 0+. Since tε,yΨε,y = Φε(y) ∈Nε , we have

∫
R3

(
a|∇Ψε,y|2 + V (εx)Ψ 2

ε,y
)

+ t2
ε,yb

(∫
R3

|∇Ψε,y|2
)2

= tp–1
ε,y

∫
R3

K(εx)|Ψε,y|p+1.

By the definition of Ψε,y and (4.3), after a change of variable, we get

∫
B μ√

ε

(0)

(
La|∇w|2 +

L
μ2 V

(
εx
μ

+ y
)

w2
)

+ o(1) + t2
ε,yb

(
L

∫
B μ√

ε

(0)
|∇w|2 + o(1)

)2

= tp–1
ε,y

(
L

K(y)

∫
B μ√

ε

(0)
K

(
εx
μ

+ y
)

wp+1 + o(1)
)

. (4.5)

By the definition of μ and (H), we know that as ε → 0+, μ√
ε

→ +∞ uniformly for y ∈ M.
Moreover, for |x| ≤ μ√

ε
, | εx

μ
+ y| is bounded and εx

μ
+ y → y as ε → 0+ uniformly for y ∈ M.

Then we have as ε → 0+ and uniformly for y ∈ M,

∫
B μ√

ε

(0)
La|∇w|2 → La

∫
R3

|∇w|2,

∫
B μ√

ε

(0)

L
μ2 V

(
εx
μ

+ y
)

w2 →
∫
R3

L
μ2 V (y)w2 = L

∫
R3

w2,

L
K(y)

∫
B μ√

ε

(0)
K

(
εx
μ

+ y
)

wp+1 → L
K(y)

∫
R3

K(y)wp+1 = L
∫
R3

wp+1.

Now assume that there exist t0, T0 such that 0 < t0 ≤ tε,y ≤ T0, and let tε,y → T > 0 as
ε → 0+, then by the above estimates we have

∫
R3

(
a|∇w|2 + w2) + bT2L

(∫
R3

|∇w|2
)2

= Tp–1
∫
R3

wp+1.

Since w is the ground state solution of (4.2), we have

∫
R3

(
a|∇w|2 + w2) + bL

(∫
R3

|∇w|2
)2

=
∫
R3

wp+1,

these imply that

(
Tp–1 – 1

)∫
R3

(
a|∇w|2 + w2) + bL

(
Tp–1 – T2)(∫

R3
|∇w|2

)2

= 0.
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If T < 1, then the left part of the above equality is less than 0, and if T > 1, it will be larger
than 0, which yields that T = 1.

Now we prove that tε,y � 0. Otherwise, from (4.5), we have

∫
R3

(
a|∇w|2 + w2) = 0,

which is a contradiction. Also from (4.5), we have that tε,y � +∞ as p – 1 > 2. By the above
arguments, we can see that tε,y → 1 uniformly for y ∈ M as ε → 0+.

Note that

Iε
(
Φε(y)

)
= Iε(tε,yΨε,y)

=
t2
ε,y

2

(
L

∫
R3

(
a|∇w|2 + w2) + o(1)

)
+

t4
ε,y

4
b
((∫

R3
L|∇w|2

)2

+ o(1)
)

–
tp+1
ε,y

p + 1

(
L

∫
R3

wp+1 + o(1)
)

=
L
2

∫
R3

(
a|∇w|2 + w2) +

L2

4
b
(∫

R3
|∇w|2

)2

–
L

p + 1

∫
R3

wp+1 + o(1) = LIL(w) + o(1), (4.6)

where IL is the energy functional of equation (4.2) with λ2

μ
= L in it. Let Iy be the energy

functional of (4.1), then we have

c0 = Iy(wy)
=

1
2

∫
R3

a
∣∣∇wy∣∣2 + V (y)

(
wy)2 +

b
4

(∫
R3

∣∣∇wy∣∣2
)2

–
1

p + 1

∫
R3

K(y)
(
wy)p+1

=
1
2

λ2

μ

∫
R3

a|∇w|2 +
1
2

λ2

μ3

∫
R3

V (y)w2 +
b
4

λ4

μ2

(∫
R3

|∇w|2
)2

–
1

p + 1
λp+1

μ3

∫
R3

K(y)wp+1

= L
(

1
2

∫
R3

(
a|∇w|2 + w2) +

L
4

b
(∫

R3
|∇w|2

)2

–
1

p + 1

∫
R3

wp+1
)

= LIL(w),

thus from (4.6), we prove that limε→0+ Iε(Φε(y)) = c0. �

Remark 4.2 If there is no competing potential function K(x) in (1.1), i.e., K(x) ≡ 1, then
in equation (4.1), K(y) ≡ 1. In this case, for different y ∈ M, V (y) is the same, then the
positive ground state solution wy of (4.1) is the same function for every y ∈ M. But in our
case, because of the competing function K(y) in (4.1), the ground state solution wy may
change for different y ∈ M, this causes troubles in the proof of (4.4), and we develop the
technique of rescaling to solve the problem.

Let ρ > 0 be such that Mδ ⊂ Bρ(0) := {x ∈ R
3 : |x| ≤ ρ}. Define γ : R3 → R

3 by γ (x) = x
for |x| ≤ ρ and γ (x) = ρx/|x| for |x| ≥ ρ . Consider the mapping βε : Nε → R

3 given by
βε(u) :=

∫
R3 γ (εx)u2∫

R3 u2 , then as the proof in [8] and by (4.3) we have that

lim
ε→0+

βε

(
Φε(y)

)
= y uniformly for y ∈ M. (4.7)



Sun Boundary Value Problems         (2019) 2019:85 Page 14 of 18

Now define h(ε) := supy∈M |Iε(Φε(y)) – c0|, then Lemma 4.1 yields that h(ε) → 0 as ε →
0+. Let

Ñε :=
{

u ∈Nε : Iε(u) ≤ c0 + h(ε)
}

, (4.8)

then by the definition of h(ε) we know that, for any y ∈ M and ε > 0, Φε(y) ∈ Ñε and
Ñε �= ∅.

Lemma 4.3 Let εn → 0+ and un ∈ Ñεn . Then there exists {yn} ⊂R
3 such that the sequence

{un(x + yn)} has a convergent subsequence in H1(R3) and εnyn → y ∈ M.

Proof As in [23], for un ∈ Ñεn , we define a measure μn on R
3 by

μn(Ω) =
∫

Ω

[
1
4
(
a|∇un|2 + V (εnx)u2

n
)

+
(

1
4

–
1

p + 1

)
K(εnx)|un|p+1

]
.

Since 0 ≤ μn(R3) = Iεn (un) ≤ c0 + h(εn), then along a subsequence if necessary, as εn → 0+,

μn
(
R

3) → c̃ ≤ c0. (4.9)

Moreover, let V̄ = infx∈R3 V (x) and K̄ = supx∈R3 K(x), then by Lemma 3.3 of [23], c̃ ≥ c̄ > 0
where c̄ = c(V̄ , K̄) is defined in Remark 1.3.

By the concentration-compactness lemma of P.L. Lions in [19] and as the proof in
Lemma 4.1 in [23], we know that there exists a sequence {yn} ⊂ R

3 such that, for any
h > 0, there is ρ > 0 such that

∫
Bρ (yn)

dμn ≥ c̃ – h. (4.10)

Now we prove that {εnyn} is bounded. Otherwise, assume that |εnyn| → ∞ as n → ∞.
Since μn(R3) is bounded, we know that wn := un(x + yn) is bounded in H1(R3). Therefore
there exists w0 ∈ H1(R3) such that up to a subsequence, wn ⇀ w0 in H1(R3), wn → w0

in Lτ
loc(R3) for 1 ≤ τ < 6, and almost everywhere in R

3. Furthermore, by (4.10), we can
prove that wn → w0 in Lτ (R3) for 1 ≤ τ < 6 and w0 �= 0 in H1(R3). Let θ∞ > 0 be such that
θ∞w0 ∈N∞, the Nehari manifold associated to (1.7) with m = V∞ and n = K∞ in it. Then
as the proof in the Appendix of [8], we have θ∞ ≤ 1; and furthermore, {εnyn} is bounded.

Assume that {εnyn} converges to some y (up to a subsequence), we now prove that y ∈ M
and that wn → w strongly in H1(R3). Since un ∈Nεn and wn = un(x + yn), we have

∫
R3

a|∇wn|2 + V (εnx + εnyn)w2
n + b

(∫
R3

|∇wn|2
)2

=
∫
R3

K(εnx + εnyn)|wn|p+1.

Taking the lower limit of both sides of the above equality and by εnyn → y, we have

∫
R3

a|∇w|2 + V (y)w2 + b
(∫

R3
|∇w|2

)2

≤
∫
R3

K(y)|w|p+1.
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Now let θy > 0 be such that θyw ∈Ny, the Nehari manifold associated to (4.1), we have that
θy ≤ 1 by Lemma 2.1. Let Iy be the energy functional associated to (4.1). Then

c0 ≤ c
(
V (y), K(y)

) ≤ Iy(θyw)

=
1
4
θ2

y

∫
R3

a|∇w|2 + V (y)w2 +
(

1
4

–
1

p + 1

)
θp+1

y

∫
R3

K(y)|w|p+1

≤ 1
4

∫
R3

a|∇w|2 + V (y)w2 +
(

1
4

–
1

p + 1

)∫
R3

K(y)|w|p+1

≤ lim inf
n→∞

[
1
4

∫
R3

a|∇wn|2 + V (εnx + εnyn)w2
n +

(
1
4

–
1

p + 1

)

·
∫
R3

K(εnx + εnyn)|wn|p+1
]

= lim inf
n→∞ Iεn (un) = c̃ ≤ c0, (4.11)

which implies that θy = 1 and c(V (y), K(y)) = c0. Thus we have y ∈ M. Moreover, Iy(w) = c0,
hence w is a ground state solution of (4.1). The strong convergence wn → w in Lτ (R3) for
1 ≤ τ < 6 and (4.11) give

lim inf
n→∞

∫
R3

a|∇wn|2 + V (εnx + εnyn)w2
n =

∫
R3

a|∇w|2 + V (y)w2. (4.12)

From (4.12) we can prove that wn → w in H1(R3). �

Lemma 4.4 For any δ > 0, we have

lim
ε→0+

sup
u∈Ñε

dist
(
βε(u), Mδ

)
= 0.

Proof The proof is similar to the proof of Lemma 5.1 in [8] or Lemma 4.7 in [13], we omit
it here. �

5 Proof of Theorem 1.1
For δ > 0, by Lemma 4.1, Lemma 4.4, and (4.7), there exists εδ > 0 such that, for any ε ∈
(0, εδ), the diagram

M Φε−→ Ñε

βε−→ Mδ

is well defined. Moreover, by (4.7), the mapping βε ◦ Φε is homotopic to the inclu-
sion Id : M → Mδ . Now set Ñ +

ε := Ñε ∩ {u ∈ Nε : u ≥ 0 in R
3}, then similar to [8] (or

[7]), by Lemma 2.5 we have that catÑε
(Ñ +

ε ) ≥ catMδ
(M); and furthermore, catÑε

(Ñε) ≥
2catMδ

(M). Lemma 2.4 shows that Iε has at least 2catMδ
(M) critical points on Ñε . Now, in

order to prove Theorem 1.1, we only need to show that the critical point u ∈ Ñε cannot
change sign for sufficiently small ε > 0. Indeed, if u = u+ + u– with u+ �≡ 0 and u– �≡ 0. First,
because u ∈ Ñε , we have

Iε(u) ≤ c0 + h(ε), (5.1)
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where h(ε) → 0 as ε → 0+. Since u ∈Nε , we have

Iε(u) =
(

1
2

–
1

p + 1

)
‖u‖2

Eε
+

(
1
4

–
1

p + 1

)
b
(∫

R3
|∇u|2

)2

≥
(

1
2

–
1

p + 1

)∥∥u+∥∥2
Eε

+
(

1
4

–
1

p + 1

)
b
(∫

R3

∣∣∇u+∣∣2
)2

+
(

1
2

–
1

p + 1

)∥∥u–∥∥2
Eε

+
(

1
4

–
1

p + 1

)
b
(∫

R3

∣∣∇u–∣∣2
)2

=: Ĩε
(
u+)

+ Ĩε
(
u–)

, (5.2)

where Ĩε(u) is defined by Ĩε(u) := ( 1
2 – 1

p+1 )‖u‖2
Eε

+ ( 1
4 – 1

p+1 )b(
∫
R3 |∇u|2)2.

Since u+ �≡ 0, there exists t+ > 0 such that t+u+ ∈ Nε . Multiplying equation (2.1) by u+

and integrating over R3, we have

(
a + b

∫
R3

|∇u|2
)∫

R3

∣∣∇u+∣∣2 +
∫
R3

V (εx)u+2 –
∫
R3

K(εx)
∣∣u+∣∣p+1 = 0,

which implies that

〈
I ′
ε

(
u+)

, u+〉
=

(
a + b

∫
R3

∣∣∇u+∣∣2
)∫

R3

∣∣∇u+∣∣2 +
∫
R3

V (εx)u+2

–
∫
R3

K(εx)
∣∣u+∣∣p+1 < 0. (5.3)

Since t+u+ ∈Nε , we have 〈Iε ′(t+u+), t+u+〉 = 0. Then from (5.3) we get that 0 < t+ < 1. Now

cε = inf
u∈Nε

Iε(u) ≤ Iε
(
t+u+)

=
(

1
2

–
1

p + 1

)
t+2∥∥u+∥∥2

Eε
+

(
1
4

–
1

p + 1

)
bt+4

(∫
R3

∣∣∇u+∣∣2
)2

<
(

1
2

–
1

p + 1

)∥∥u+∥∥2
Eε

+
(

1
4

–
1

p + 1

)
b
(∫

R3

∣∣∇u+∣∣2
)2

= Ĩε
(
u+)

. (5.4)

Similar to (5.4), we can also prove that Ĩε(u–) > cε . Now by (5.2), we have that Iε(u) ≥
Ĩε(u+) + Ĩε(u–) > 2cε , which contradicts (5.1) by Lemma 2.3. Thus we can assume that there
exist at least catMδ

(M) critical points that are positive onR
3 and by the maximum principle

they are strictly positive. Now the proof of Theorem 1.1 is complete.
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