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1 Introduction
A graph Σu = {(x, u(x)) : x ∈ Ω} in the Euclidean space R

N+1 is determined by a smooth
function u(x) : Ω ⊆R

N →R. It is well known that the extrinsic mean curvature HR of Σu

is given by

HR =
1
N

div

( ∇u√
1 + |∇u|2

)
, (1.1)

where ∇ and div are the gradient and the divergence operator in R
N , respectively. The

celebrated Bernstein’s theorem (see [8]) says that the only entire graphs (i.e., Ω = R
2) in

R
3 with vanishing mean curvatures are necessarily the affine planes. Such a result holds

for all 2 ≤ N ≤ 7 but is no longer true for higher dimension (for more details, see [9]).
Let L

N+1 = {(t, x) ∈ R × R
N } be the flat Minkowski spacetime endowed with the

Lorentzian metric gL = –dt2 +
∑N

i=1 dx2
i . A graph Σu = {(u(x), x) : x ∈ Ω} in L

N+1 is de-
termined by a smooth function u(x) : Ω ⊆ R

N → R. Usually, a graph in L
N+1 is said to be

spacelike if the norm of the gradient of u is less than 1, or equivalently, the induced metric
on it from the ambient space L

N+1 is Riemannian. The extrinsic mean curvature HL of a
spacelike graph Σu in L

N+1 is given by

HL =
1
N

div

( ∇u√
1 – |∇u|2

)
. (1.2)
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It has been proved by Calabi (see [10]) that the only entire spacelike graphs (i.e., Ω = R
N )

in L
N+1, N ≤ 4, with vanishing mean curvatures are necessarily the hyperplanes. Later,

Cheng and Yau [11] extended Calabi’s theorem to arbitrary dimension.
In literature, (multiple) existence results for the Dirichlet problem involving prescribed

mean curvature equations arising from (1.1) in R
N+1 or (1.2) in L

N+1 have been widely
studied from various viewpoints and approaches. Among a large number of articles, we
refer the reader to some recent surveys (see, for example, [4–6, 12–15, 20–22], and [27]
related to (1.2) and [7, 17, 19, 23, 24], and [25] related to (1.1) and many references therein)
for some related results on this topic.

Taking into account mean curvature equations (1.1) and (1.2), one can consider the fol-
lowing quasilinear partial differential equation:

div

( ∇u√
1 + |∇u|2

)
– div

( ∇u√
1 – |∇u|2

)
= 0, (1.3)

which means that a spacelike graph has the same mean curvature both in R
N+1 and L

N+1.
In [16], Kobayashi pointed out that the only spacelike surface satisfying HR = HL = 0 for
dimension two is an open piece of a spacelike plane or of a spacelike helicoid in the region.
Recently, Albujer and Caballero [3] studied the HR = HL surface equation and in particular
they proved that the only spacelike graphs in L

3, defined over a domain Ω ⊆ R
2 of infi-

nite width, satisfying HR = HL and asymptotic to a spacelike plane are (pieces of ) spacelike
planes. This result holds true for higher dimension, for more details, see [2]. Affine func-
tions (whose gradient has norm less than 1) are clearly solutions to (1.3). Note that the
existence of solutions to (1.3) with non-null mean curvature was proved in [1].

Inspired by the above results, in this paper we consider the Dirichlet problem of a new
quasilinear elliptic partial differential equation

⎧⎨
⎩

div( ∇u√
1–|∇u|2 ) – div( ∇u√

1+|∇u|2 ) + f (|x|, u(x)) = 0 in Ω ,

u(x) = 0 on ∂Ω ,
(1.4)

where Ω denotes the unit ball in R
N and f : [0, 1] × [0, 1) → [0,∞) is a nonnegative con-

tinuous function. From a geometric point of view, the function f measures the proximity
of the two different mean curvatures HL and HR of a spacelike graph in Minkowski and
Euclidean spaces.

This paper is arranged as follows. In Section 2, we introduce the simplified Leggett–
Williams’s fixed point theorem. In Section 3, by applying this theorem, we establish several
sufficient conditions for the Dirichlet problem (1.4) and the corresponding one-parameter
problem (see Eq. (3.6)) to have multiple (at least three) positive radial solutions. Some
corollaries are also given.

2 Key lemmas
In this section, we collect some necessary lemmas and notations. Let E be a real Banach
space and P ⊂ E be a closed and convex subset. P is said to be a (positive) cone if there
hold

(i) λ ≥ 0 and x ∈ P ⇒ λx ∈ P;
(ii) x ∈ P and –x ∈ P ⇒ x = 0.
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Let P ⊂ E be a cone. A map α is a nonnegative, continuous, and concave functional on P
if it satisfies the following two conditions:

(iii) α : P → [0, +∞) is continuous;
(iv) α(tx + (1 – t)y) ≥ tα(x) + (1 – t)α(y) for any x, y ∈ P and 0 ≤ t ≤ 1.
For simplicity, we set Pc := {x ∈ P : ‖x‖ ≤ c} and P(α, a, b) = {x ∈ P : a ≤ α(x),‖x‖ ≤ b}.

By a completely continuous map we mean a continuous function which takes bounded
sets into relative compact sets. Now we are ready to give Leggett–Williams’ fixed point
theorem (see [18, Theorem 3.3]).

Lemma 2.1 ([18]) Let P be a cone in a real Banach space E, and let A : Pc → Pc be
completely continuous and α be a nonnegative continuous concave functional on P with
α(x) ≤ ‖x‖ for any x ∈ Pc. Suppose that there exist 0 < a < b < d ≤ c such that the following
conditions hold:

(1) {x ∈ P(α, b, d) : α(x) > b} 
= ∅ and α(Ax) > b for all x ∈ P(α, b, d);
(2) ‖Ax‖ < a for any x ∈ Pa;
(3) α(Ax) > b for any x ∈ P(α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 in Pc satisfying

‖x1‖ < a, b < α(x2), ‖x3‖ > a with α(x3) < b.

In particular, taking c = d, we obtain the simplified Leggett–Williams’ fixed point theo-
rem as follows.

Lemma 2.2 Let P be a cone in a real Banach space E, and let A : Pc → Pc be completely
continuous and α be a nonnegative continuous concave functional on P with α(x) ≤ ‖x‖ for
any x ∈ Pc. Suppose that there exist 0 < a < b < c such that the following conditions hold:

(4) {x ∈ P(α, b, c) : α(x) > b} 
= ∅ and α(Ax) > b for all x ∈ P(α, b, c);
(5) ‖Ax‖ < a for any x ∈ Pa.

Then A has at least three fixed points x1, x2, and x3 in Pc satisfying

‖x1‖ < a, b < α(x2), ‖x3‖ > a with α(x3) < b.

3 Existence of multiple positive radial solutions
Taking the radial coordinates r = |x| and the change u(x) = v(r), then (1.4) becomes the
following boundary value problem:

⎧⎨
⎩

(rN–1φ(v′))′ = –rN–1f (r, v(r)), r ∈ (0, 1),

v′(0) = 0, v(1) = 0,
(3.1)

where N ≥ 1 and φ is defined by

φ(s) =
s√

1 – s2
–

s√
1 + s2

, s ∈ (–1, 1). (3.2)

By a solution to (3.1) we mean a function v ∈ C1(0, 1) with ‖v′‖ < 1 such that rN–1φ(v′) is
differentiable and (3.1) is satisfied. Notice that existence results for solutions to (3.1) have
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been given in [6]. But the hypothesis on f and techniques used in [6] are different from
the ones used in this manuscript.

It is clear that φ(s) is odd and strictly increasing and φ(s) ∈ (0, +∞) for all s ∈ (0, 1). Let
us consider two arbitrary positive constants t, s ∈ (0, 1) such that ts < 1. It is easily seen
that

s√
1 – t2s2

<
s√

1 – s2
and

s√
1 + t2s2

>
s√

1 + s2
.

Thus, we have the following.

Lemma 3.1 For any positive constants t, s ∈ (0, 1) such that ts < 1, we have

tφ(s) > φ(ts).

We consider the Banach space E = C[0, 1] with the supremum norm ‖ · ‖. Let P = {v(r) ∈
E : v(r) is nonnegative, nonincreasing on [0, 1], and v′(0) = v(1) = 0}, then it is easy to check
that P is a cone in E. We define a nonlinear operator A on P ∩ B1 as follows:

(Av)(r) =
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1f

(
s, v(s)

)
ds

)
dt, v(r) ∈ P ∩ B1, (3.3)

where Bρ denotes the open ball in E, centered at 0 with radius ρ > 0. By means of φ(–s) =
–φ(s), we observe that v is a positive radial solution of problem (3.1) if v ∈ P ∩ B1 is a fixed
point of the nonlinear operator A. It is clear that (Av)(r) is nonnegative for any r ∈ [0, 1].
Also, we have

Lemma 3.2 A(P ∩ B1) ⊂ P.

Proof Since both f and φ–1 are nonnegative, we get

(Av)′(r) = –φ–1
(

1
rN–1

∫ r

0
sN–1f

(
s, v(s)

)
ds

)
≤ 0

for all r ∈ (0, 1]. In view of (Av)(1) = 0 and (Av)′(0) = 0, then Av ∈ P for any v ∈ P ∩ B1. �

The well-known Arzéla–Ascoli theorem says that if M ⊆ C([0, T],Rn) is uniformly
bounded and equicontinuous, then M is relatively compact in C([0, T],Rn). Following a
standard argument in [6], we know that A is compact on P ∩ Bρ for any ρ ∈ (0, 1). Since f
is continuous, following similar arguments in [26, 28], we have

Lemma 3.3 A : (P ∩ B1) → P is completely continuous.

Now we define a nonnegative continuous concave functional α : P → [0, +∞) by

α
(
v(r)

)
= min

r∈[0,η]
v(r), v(r) ∈ P,

where η ∈ (0, 1). Obviously, we have α(Av) = (Av)(η) for any v ∈ P.
Our main result is given as follows.



Wang Boundary Value Problems         (2019) 2019:86 Page 5 of 10

Theorem 3.1 Assume that there exist four positive constants a, b, c, η with 0 < a < b < c < 1
and b < 1 – η < 1 such that

(C1) f (r, s) ≤ Nφ(a) for all (r, s) ∈ [0, 1] × [0, a];
(C2) f (r, s) ≤ Nφ(c) for all (r, s) ∈ [0, 1] × [0, c];
(C3) f (r, s) ≥ N

ηN φ( b
1–η

) for all (r, s) ∈ [0,η] × [b, c].
Then problem (3.1) has at least three positive radial solutions u1 = v1(r), u2 = v2(r), and
u3 = v3(r) such that

‖v1‖ < a, b < α(v2), ‖v3‖ > a with α(v3) < b. (3.4)

Proof In what follows, we aim to prove that Lemma 2.2 is applicable under the above
assumptions. Our discussion is divided into three steps.

Step 1. We show that APc ⊂ Pc. For any v ∈ Pc, we have v(r) ≤ ‖v‖ ≤ c for any r ∈ [0, 1],
and hence by applying condition (C2), we have

‖Av‖ =
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1f

(
s, v(s)

)
ds

)
dt

≤
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1Nφ(c) ds

)
dt

=
∫ 1

0
φ–1(φ(c)t

)
dt

<
∫ 1

0
φ–1(φ(c)

)
dt

= c.

This means that APc ⊂ Pc.
Step 2. We show that ‖Av‖ < a for any v ∈ Pa. Since the proof for this step is very similar

to that of Step 1, with the aid of condition (C1), we omit it.
Step 3. Let us consider v := b+c

2 . One can check easily that v ∈ P, ‖v‖ < c, and α(v) = b+c
2 >

b. This implies that the set {v ∈ P(α, b, c) : α(v) > b,‖v‖ < c} is nonempty. On the other
hand, for any v ∈ P(α, b, c), we have α(v) ≥ b, ‖v‖ ≤ c, and hence b ≤ α(v) ≤ v(r) ≤ ‖v‖ ≤ c
for any r ∈ [0,η]. Thus, with the aid of condition (C3), we have

α(Av) =
∫ 1

η

φ–1
(

1
tN–1

∫ t

0
sN–1f

(
s, v(s)

)
ds

)
dt

≥
∫ 1

η

φ–1
(

1
tN–1

∫ η

0
sN–1f

(
s, v(s)

)
ds

)
dt

>
∫ 1

η

φ–1
(

1
tN–1

∫ η

0
sN–1 N

ηN φ

(
b

1 – η

)
ds

)
dt

=
∫ 1

η

φ–1
(

1
tN–1 φ

(
b

1 – η

))
dt

≥
∫ 1

η

φ–1
(

φ

(
b

1 – η

))
dt

= b.
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Taking into account Lemmas 3.2, 3.3, we see that now Lemma 2.2 is applicable and hence
conclusions of Theorem 3.1 hold. �

The application of Lemma 3.1 gives another existence result as follows.

Theorem 3.2 Assume that there exist four positive constants a, b, c, η with 0 < a < b < c < 1
and 2b < 1 – η2 < 1 such that

(C1) f (r, s) ≤ Nφ(a) for all (r, s) ∈ [0, 1] × [0, a];
(C2) f (r, s) ≤ Nφ(c) for all (r, s) ∈ [0, 1] × [0, c];
(C4) f (r, s) ≥ Nφ( 2b

1–η2 ) for all (r, s) ∈ [0,η] × [b, c].
Then problem (3.1) has at least three positive radial solutions u1, u2, and u3 satisfying (3.4).

Proof Firstly, we show that if condition (C4) is true, then condition (4) of Lemma 2.2 holds.
Let v ∈ P(α, b, c); we have α(v) ≥ b, ‖v‖ ≤ c and hence b ≤ α(v) ≤ v(r) ≤ ‖v‖ ≤ c for any
r ∈ [0, 1]. Also, from the assumption we have 2b

1–η2 t < 1 for any t ∈ (η, 1). Thus, with the aid
of condition (C4), we have

α(Av) =
∫ 1

η

φ–1
(

1
tN–1

∫ t

0
sN–1f

(
s, v(s)

)
ds

)
dt

≥
∫ 1

η

φ–1
(

1
tN–1

∫ t

0
sN–1Nφ

(
2b

1 – η2

)
ds

)
dt

=
∫ 1

η

φ–1
(

φ

(
2b

1 – η2

)
t
)

dt

>
∫ 1

η

2bt
1 – η2 dt

= b,

where in the last inequality we have used Lemma 3.1. The remaining proof follows directly
from Theorem 3.1. �

We continue considering some other conditions different from those in Theorems 3.1
and 3.2 as follows:

(C5) f 1 := lims→1– maxr∈[0,1]
f (r,s)
φ(s) < N .

If the above condition holds, then there exist two positive constants θ , δ with 0 < f 1 < θ < N
and δ > 0 such that f (r, s) ≤ θφ(s) for all (r, s) ∈ [0, 1] × (1 – δ, 1). We set M := max{f (r, s) :
(r, s) ∈ [0, 1] × [0, 1 – δ]}. It follows immediately that

f (r, s) ≤ M + θφ(s) for all (r, s) ∈ [0, 1] × [0, 1). (3.5)

Applying the above relation, together with Lemma 2.2, we have

Corollary 3.1 Assume that there exist four positive constants a, b, c, η with 0 < φ–1( M
N–θ

) ≤
a < b < c < 1 and b < 1 – η < 1 such that conditions (C3) and (C5) hold. Then problem (3.1)
has at least three positive radial solutions.

Proof Taking into account Theorem 3.1, we need only to prove that conditions (C1) and
(C2) are true when assumption (C5) holds. Because 0 < φ–1( M

N–θ
) ≤ a and both φ and φ–1
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are strictly increasing, then we have M
N–θ

≤ φ(a) and hence φ–1( M+θφ(a)
N ) ≤ a. For any v ∈ Pa,

we have v(r) ≤ ‖v‖ ≤ a for any r ∈ [0, 1]. Consequently, with the aid of (3.5), we obtain

‖Av‖ =
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1f

(
s, v(s)

)
ds

)
dt

≤
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1(M + θφ(a)

)
ds

)
dt

=
∫ 1

0
φ–1

(
M + θφ(a)

N
t
)

dt

<
∫ 1

0
φ–1

(
M + θφ(a)

N

)
dt

≤ a.

This implies that APa ⊂ Pa. Similarly, following the above calculation and the assump-
tion 0 < φ–1( M

N–θ
) < c < 1, we obtain APc ⊂ Pc. The remaining proof follows immediately

from Theorem 3.1. �

Next we consider a condition similar to that defined by (C5):
(C6) f 0 := lims→0+ maxr∈[0,1]

f (r,s)
φ(s) < N .

If the above condition holds, then there exist two positive constants θ0, δ0 with 0 < f 0 < θ0 <
N and δ0 > 0 such that f (r, s) ≤ θ0φ(s) for all (r, s) ∈ [0, 1] × (0, δ0). Let M0 := max{f (r, s) :
(r, s) ∈ [0, 1] × [δ0, 1]}. It follows that

f (r, s) ≤ M0 + θ0φ(s) for all (r, s) ∈ [0, 1] × (0, 1]. (3.6)

Applying (3.6), together with Lemma 2.2, we have the following.

Corollary 3.2 Assume that there exist four positive constants a, b, c, η with 0 < φ–1( M0
N–θ0

) ≤
a < b < c < 1 and b < 1 – η < 1 such that conditions (C3) and (C6) hold. Then problem (3.1)
has at least three positive radial solutions.

The proof for the above corollary is similar to that of Corollary 3.1, we omit it. From
Theorem 3.1, we also establish the existence result of arbitrarily many positive radial so-
lutions of problem (1.4).

Theorem 3.3 Assume that there exist some positive constants satisfying 0 < a1 < b1 < c1 ≤
a2 < b2 < c2 < · · · < cn–1 ≤ an < 1 (n ∈N

∗) and bi < 1 – ηi < 1 (1 ≤ i ≤ n) such that
(C7) f (r, s) ≤ Nφ(ai) for all (r, s) ∈ [0, 1] × [0, ai];
(C8) f (r, s) ≤ Nφ(ci) for all (r, s) ∈ [0, 1] × [0, ci];
(C9) f (r, s) ≥ N

ηN
i

φ( bi
1–ηi

) for all (r, s) ∈ [0,ηi] × [bi, ci].
Then problem (3.1) has at least 2n – 1 positive radial solutions.

Proof When n = 1, making use of condition (C7) and proof of Theorem 3.1, we have
APa1 ⊂ Pa1 . By applying the Schauder fixed point theorem, problem (3.1) has at least one
solution. When n = 2, conclusions of Theorem 3.1 still hold if c1 = a2. In this case, problem
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(3.1) has at least three solutions. Following such approaches, we conclude that problem
(3.1) has at least 2n – 1 positive radial solutions under the given assumptions. �

According to Theorem 3.2, another version of the existence result of arbitrarily many
positive radial solutions of problem (3.1) is given as follows.

Remark 3.1 If bi < 1 – ηi < 1 and f (r, s) ≥ N
ηN

i
φ( bi

1–ηi
) for all (r, s) ∈ [0, 1] × [bi, ci] in Theo-

rem 3.3 are replaced by 2bi < 1 – η2
i < 1 and f (r, s) ≥ Nφ( 2b

1–η2
i

) for all (r, s) ∈ [0,ηi] × [bi, ci],
respectively, then conclusion of Theorem 3.3 is still true provided that (C9) is replaced by
f (r, s) ≥ Nφ( 2bi

1–η2
i

) for all (r, s) ∈ [0, 1] × [bi, ci].

Before closing this paper, let us consider the Dirichlet problem of the corresponding
one-parameter problem of (1.4) as the following:

⎧⎨
⎩

div( ∇u√
1+|∇u|2 ) – div( ∇u√

1–|∇u|2 ) + λf (|x|, u(x)) = 0 in Ω ,

u(x) = 0 on ∂Ω ,
(3.7)

where Ω denotes the unit ball in R
N and λ > 0 is a parameter. Taking the radial coordinates

r = |x| and the change u(x) = v(r), then (3.7) becomes

⎧⎨
⎩

(rN–1φ(v′))′ = –λrN–1f (r, v(r)), r ∈ (0, 1),

v′(0) = 0, v(1) = 0,
(3.8)

where φ is defined by (3.2).
Consider those constants a, b, c, ε, η defined in Theorem 3.1. For simplicity, we set

fa :=
φ(a)

max[0,1]×[0,a] f (r, s)
, fc :=

φ(c)
max[0,1]×[0,c] f (r, s)

, f b :=
φ( b

1–η
)

min[0,η]×[b,c] f (r, s)ηN .

From the proof of Theorem 3.1, we have the following.

Theorem 3.4 Suppose that there exist four positive constants a, b, c, η satisfying 0 < a <
b < c < 1 and b < 1 – η < 1 such that f b ≤ min{fa, fc}. If the parameter λ satisfies

f b < λ < min{fa, fc},

then problem (3.7) has at least three positive radial solutions satisfying (3.4).

Consider those ai, bi, ci, ηi defined in Theorem 3.3, and let

fa,i :=
φ(ai)

max[0,1]×[0,ai] f (r, s)
, fci ,i :=

φ(ci)
max[0,1]×[0,ci] f (r, s)

,

f b,i :=
φ( bi

1–η
)

min[0,ηi]×[bi ,ci] f (r, s)ηN .

From Theorems 3.3, 3.4, we have the following.
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Corollary 3.3 Assume that there exist some positive constants satisfying 0 < a1 < b1 <
c1 ≤ a2 < b2 < c2 < · · · < cn–1 ≤ an < 1 (n ∈ N

∗) and bi < 1 – ηi < 1 (1 ≤ i ≤ n) such that
max{f b,1, . . . , f b,n} ≤ min{fa,1, . . . , fa,n, fc,1, . . . , fc,n}. If the parameter λ satisfies

max
{

f b,1, . . . , f b,n} < λ < min{fa,1, . . . , fa,n, fc,1, . . . , fc,n},

then problem (3.7) has at least 2n – 1 positive radial solutions.

By considering a special nonlinearity f , we construct an example to illustrate our main
results.

Example 3.1 For any given 0 < a < b < c < 1 and φ(s) = s√
1–s2 – s√

1+s2 with s ∈ (0, 1), since
lims→1– φ(s) = +∞, then there exists positive η (close enough to 1 – b from left) such that
φ(c) = 1

ηN φ( b
1–η

). We denote by α = Nφ(c) and consider the following nonlinearity f (r, s)
defined by

f (r, s) =

⎧⎪⎪⎨
⎪⎪⎩

0, s ∈ (0, a),
s–a
b–aα, s ∈ [a, b),

α, s ∈ [b, 1).

Therefore, applying Theorem 3.1, problem (3.1) with the above nonlinearity f has at least
three solutions.
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