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Abstract
This paper deals with the existence of solution for the fully fourth-order boundary
value problem

{
u(4)(x) = f (x,u(x),u′(x),u′′(1),u′′′(x)), x ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

which models a statically elastic beam fixed at the left and freed at the right, and it is
called cantilever beam in mechanics, where f : [0, 1]×R

4 → R is continuous. Some
inequality conditions on f guaranteeing the existence and uniqueness of solutions
are presented. The inequality conditions allow f (x, y0, y1, y2, y3) to grow superlinearly
on y0, y1, y2, and y3.
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1 Introduction and main results
In this paper we discuss the existence of solution for the fully fourth-order boundary value
problem (BVP)

⎧⎨
⎩u(4)(x) = f (x, u(x), u′(x), u′′(x), u′′′(x)), x ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.1)

where f : [0, 1] ×R
4 → R is continuous. This problem models deformations of an elastic

beam in equilibrium state, whose one end-point is fixed and the other one is freed. In me-
chanics, the problem is called cantilever beam equation, and in the equation, the physical
meaning of the derivatives of the deformation function u(x) is as follows: u(4) is the load
density stiffness, u′′′ is the shear force stiffness, u′′ is the bending moment stiffness, and u′

is the slope, see [1–4].
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For the special case of BVP (1.1) that f does not contain any derivative terms, namely
the boundary value problem

⎧⎨
⎩u(4)(t) = f (x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.2)

and f only contains first-order derivative term u′, namely the boundary value problem

⎧⎨
⎩u(4)(x) = f (t, u(x), u′(x)), x ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.3)

the existence of solutions has been discussed by some authors, see [5–9]. In References
[5–7], BVP (1.2) appears as a special case of the (p, n – p) focal boundary value problems
for p = 2 and n = 4. For the cantilever beam equation with a nonlinear boundary condition
of third-order derivative

⎧⎨
⎩u(4)(x) = f (x, u(x), u′(x)), x ∈ [0, 1],

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),
(1.4)

the existence of solution has also been discussed by some authors, see [10–13]. The bound-
ary condition in (1.4) means that the left end of the beam is fixed and the right end of the
beam is attached to an elastic bearing device, see [10]. The methods applied in these works
are not applicable to BVP (1.1) since they do not deal with the derivative terms u′′ and u′′′.

The purpose of this paper is to obtain existence results of solutions to the fully fourth-
order BVP (1.1). For fourth-order BVPs with the boundary condition in BVP (1.1) or other
boundary conditions, the existence of solutions has been discussed by several authors,
see [14–24]. In [14], Kaufmann and Kosmatov considered a symmetric fully fourth-order
nonlinear boundary value problem on [–1, 1]. They used a triple fixed point theorem of
cone mapping to obtain existence results of triple positive symmetric solutions under f
satisfying some range conditions dependent upon tree positive parameters a, b, and d.
Minhós, Gyulov, and Santos [15] used the method of lower and upper solutions to discuss
the existence of a fully fourth-order boundary value problem with a boundary condition
different from BVP (1.1) as the discussed problem has a pair of ordered lower and upper
solutions. Under the case that f (x, y0, y1, y2, y3) is linear and sublinear growth on y0, y1, y2,
y3, Li and Liang [16] discussed the existence of the following fully fourth-order boundary
value problem:

⎧⎨
⎩u(4)(x) = f (x, u(x), u′(x), u′′(x), u′′′(x)), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.5)

which models a statically bending elastic beam whose two ends are simply supported. In
this case, using the method in [16], one can obtain existence results for BVP (1.1). Usually
the superlinear problems are more difficult to treat than the sublinear problems. In [17],
the author discussed the case that f (x, y0, y1, y2, y3) may be superlinear growth on y0, y1,
y2, y3, when nonlinearity f is nonnegative by the fixed point index theory in cones. In this



Li and Chen Boundary Value Problems         (2019) 2019:83 Page 3 of 9

paper we shall discuss the general case that f may be superlinear growth and have negative
value. Our results are as follows.

Theorem 1.1 Assume that f : [0, 1] × R
4 → R is continuous and it satisfies the following

conditions:
(F1) There exist constants a0, a1, a2, a3 ≥ 0 satisfying a0

8 + a1
4 + a2

2 + a3 < 1 and b > 0 such
that

–f (x, y0, y1, y2, y3)y2 ≤ a0y2
0 + a1y2

1 + a2y2
2 + a3y2

3 + b

for all (x, y0, y1, y2, y3) ∈ [0, 1] ×R
4;

(F2) Given any M > 0, there is a positive continuous function φM(r) defined on R
+ satis-

fying

∫ +∞

0

r dr
φM(r)

= +∞ (1.6)

such that

∣∣f (x, y0, y1, y2, y3)
∣∣ ≤ φM

(|y3|
)

(1.7)

for any x ∈ [0, 1], |y0|, |y1|, |y2| ≤ M, y3 ∈ R.
Then BVP (1.1) has at least one solution.

In Theorem 1.1, Condition (F1) is easy to be verified and it allows f (x, y0, y1, y2, y3) be
superlinear growth on y0, y1, y2, y3. Condition (F2) is a Nagumo-type growth condition
on y3 which restricts f on y3 to be at most quadric growth. This Nagumo-type condition
is different from the one (F0) presented in [17], in which (F0) is a Nagumo-type growth
condition on y2 and y3, and (F2) is weaker than (F0). An applied example of Theorem 1.1
will be given at the end of the paper. Strengthening Condition (F1) of Theorem 1.1, we can
obtain the following uniqueness result.

Theorem 1.2 Assume that f : [0, 1] × R
4 → R is continuous and it satisfies (F2) and the

following condition:
(F3) There exist constants a0, a1, a2, a3 ≥ 0 satisfying a0

8 + a1
4 + a2

2 + a3 < 1 and b > 0 such
that

–
[
f (x, y0, y1, y2, y3) – f (x, z0, z1, z2, z3)

]
(y2 – z2) ≤

3∑
i=0

ai(yi – zi)2

for all (x, y0, y1, y2, y3), (x, z0, z1, z2, z3) ∈ [0, 1] ×R
4.

Then BVP (1.1) has a unique solution.

In Condition (F3), by choosing z0 = z1 = z2 = z3 = 0, it follows that (F1) holds, in which
b = max0≤x≤1 |f (x, 0, 0, 0, 0)|. Hence Condition (F3) is the strengthening of (F1) and Theo-
rem 1.2 is an improvement of Theorem 1.1. The proof of Theorem 1.1 and Theorem 1.2
is based on Leray–Schauder fixed point theorem and a prior estimate method, which will
be given in the next section.
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2 Proof of the main results
Let I = [0, 1], C(I) denote the Banach space of all continuous functions u(t) on I with
norm ‖u‖C = maxt∈I |u(t)|, L2(I) be the usual Hilbert space with the inner product (u, v) =∫ 1

0 u(t)v(t) dt and the norm ‖u‖2 = (
∫ 1

0 |u(t)|2 dt)1/2. Generally, for n ∈ N, Cn(I) denotes
the Banach space of all nth-order continuous differentiable functions on I with the norm
‖u‖Cn = max{‖u‖C ,‖u′‖C , . . . ,‖u(n)‖C}, Hn(I) is the usual Sobolev space with the norm
‖u‖n,2 = (

∑n
i=0 ‖u(i)‖2

2)1/2. u ∈ Hn(I) means that u ∈ Cn–1(I), u(n–1)(t) is absolutely con-
tinuous on I and u(n) ∈ L2(I).

To discuss BVP (1.1), we consider the corresponding linear fourth-order boundary value
problem (LBVP)

⎧⎨
⎩u(4)(x) = h(x), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(2.1)

with nonhomogeneous term h ∈ L2(I).

Lemma 2.1 For every h ∈ L2(I), LBVP (2.1) has a unique solution u := Sh ∈ H4(I), which
satisfies

∥∥u(i–1)∥∥
2 ≤ 1√

2

∥∥u(i)∥∥
2, i = 1, 2, 3, 4. (2.2)

Moreover, the solution operator S : L2(I) → H4(I) is a linear bounded operator.

Proof For any given h ∈ L2(I), it is easy to verify that

u(x) =
∫ x

0
(x – s)

∫ 1

s
(t – s)h(t) dt ds := Sh(x), x ∈ I, (2.3)

belongs to H4(I) and it is a unique solution of LBVP (2.1). By the boundary condition in
BVP (2.1),

u(x) =
∫ x

0
u′(t) dt, x ∈ I. (2.4)

Hence, by the Hölder inequality,

∣∣u(x)
∣∣ ≤

∫ x

0

∣∣u′(t)
∣∣dt ≤ x1/2

(∫ x

0

∣∣u′(t)
∣∣2 dt

)1/2

≤ x1/2∥∥u′∥∥
2, x ∈ I,

so we obtain that ‖u‖2 ≤ 1√
2‖u′‖2. Similarly, from the equations

u′(x) =
∫ x

0
u′′(t) dt, x ∈ I, (2.5)

u′′(x) = –
∫ 1

x
u′′′(t) dt, x ∈ I, (2.6)

u′′′(x) = –
∫ 1

x
u(4)(t) dt, x ∈ I, (2.7)
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we can get that ‖u′‖2 ≤ 1√
2‖u′′‖2, ‖u′′‖2 ≤ 1√

2‖u′′′‖2, ‖u′′′‖2 ≤ 1√
2‖u(4)‖2, respectively.

Hence, (2.2) holds. From expression (2.3), we easily see that S : L2(I) → H4(I) is a linear
bounded operator. �

When h ∈ C(I), u = Sh ∈ C4(I) is a classical solution of LBVP (2.1). By the compact-
ness of the Sobolev embedding H4(I) ↪→ C3(I), the solution operator S : C(I) → C3(I) is a
completely continuous operator.

Let f : [0, 1] ×R
4 → R be continuous. Define a mapping F : C3(I) → C(I) by

F(u)(x) := f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
, x ∈ I. (2.8)

By the continuity of f , F : C3(I) → C(I) is continuous. Define a composite mapping by

A = S ◦ F . (2.9)

By the complete continuousness of S : C(I) → C3(I), A : C3(I) → C3(I) is completely con-
tinuous. By the definition of the solution operator S of LBVP (2.1), the solution of BVP
(1.1) is equivalent to the fixed point of A.

Proof of Theorem 1.1 Let A : C3(I) → C3(I) be the completely continuous mapping defined
by (2.9). Then the solution of BVP (1.1) is equivalent to the fixed point of A. We use the
Leray–Schauder fixed point theorem [25] to show that A has a fixed point. For this, we
consider the homotopic family of the operator equations

u = λAu, 0 < λ < 1. (2.10)

We show that the set of solutions of Eqs. (2.10) is bounded in C3(I).
Let u ∈ C3(I) be a solution of an equation of (2.10) for λ ∈ (0, 1). Set h = λF(u), then

u = λAu = λS(F(u)) = S(λF(u)) = Sh. By the definition of S, u = Sh is the unique solution of
LBVP (2.1). Hence u1 ∈ C4(I) satisfies the differential equation

⎧⎨
⎩u(4)(x) = λf (x, u(x), u′(x), u′′(x), u′′′(x)), x ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(2.11)

Multiplying this equation by –u′′(x), by Condition (F1), we have

–u(4)(x)u′′(x) = –λf
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
u′′(x)

≤ λ
[
a0u2(x) + a1u′2(x) + a2u′′2(x) + a3u′′′2(x) + b

]
≤ a0u2(x) + a1u′2(x) + a2u′′2(x) + a3u′′′2(x) + b, x ∈ I.

Integrating this inequality on I , using integration by parts and the boundary condition of
(2.11) for the left side and Lemma 2.1 for the right side, we have

∥∥u′′′∥∥
2

2 ≤ a0‖u‖2
2 + a1

∥∥u′∥∥
2

2 + a2
∥∥u′′∥∥

2
2 + a3

∥∥u′′′∥∥
2

2 + b

≤
(

a0

8
+

a1

4
+

a2

2
+ a3

)∥∥u′′′∥∥
2

2 + b.
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From this inequality it follows that

∥∥u′′′∥∥
2

2 ≤ b
1 – ( a0

8 + a1
4 + a2

2 + a3)
:= M0. (2.12)

By this inequality and (2.2) of Lemma 2.1, we have

‖u‖3,2 ≤
( 3∑

i=0

∥∥u(i)∥∥
2

2
)1/2

≤
(

1
8

+
1
4

+
1
2

+ 1
)1/2∥∥u′′′∥∥

2 ≤ 2M1/2
0 . (2.13)

Hence, by the boundedness of the Sobolev embedding H3(I) ↪→ C2(I),

‖u‖C2 ≤ C‖u‖3,2 ≤ 2CM1/2
0 =: M, (2.14)

where C is the constant of the Sobolev embedding H3(I) ↪→ C2(I).
For this M > 0, by Condition (F2), there is a positive continuous function φM(r) on R

+

satisfying (1.6) such that (1.7) holds. By (2.14),

∣∣u(x)
∣∣, ∣∣u′(x)

∣∣, ∣∣u′′(x)
∣∣ ≤ ‖u‖C2 ≤ M, x ∈ I.

Hence from (1.7) it follows that

∣∣f (x, u(x), u′(x), u′′(x), u′′′(x)
)∣∣ ≤ φM

(∣∣u′′′(x)
∣∣), x ∈ I. (2.15)

By (1.6), there exists M1 > M such that

∫ M1

0

r dr
φM(r)

> 2M. (2.16)

We use (2.15) and (2.16) to show that

∥∥u′′′∥∥
C ≤ M1. (2.17)

Let ‖u′′′‖ > 0. Since u′′′(1) = 0, by the maximum theorem of continuous functions, there
exists ξ0 ∈ [0, 1) such that

∥∥u′′′∥∥
C = max

x∈I

∣∣u′′′(x)
∣∣ =

∣∣u′′′(ξ0)
∣∣, (2.18)

and u′′′(ξ0) > 0 or u′′′(ξ0) < 0. We only consider the case of that u′′′(ξ0) > 0, the other case
can be dealt with by a similar method. Set

ξ1 = inf
{

x ∈ (ξ0, 1] : u′′′(x) = 0
}

. (2.19)

Then, by the continuousness of u′′′, ξ1 ∈ (ξ0, 1], u′′′(ξ1) = 0 and

u′′′(x) > 0, x ∈ [ξ0, ξ1). (2.20)
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Hence, by (2.11) and (2.15), we have

–u(4)(x) = –λf
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
≤ ∣∣f (x, u(x), u′(x), u′′(x), u′′′(x)

)∣∣
≤ φM

(
u′′′(x)

)
, x ∈ [ξ0, ξ1].

From this it follows that

–
u′′′(x)u(4)(x)
φM(u′′′(x))

≤ u′′′(x), x ∈ [ξ0, ξ1]. (2.21)

Integrating both sides of this inequality on [ξ0, ξ1] and making the variable transformation
r = u′′′(x) for the left side, we have

∫ u′′′(ξ0)

0

r dr
φM(r)

≤ u′′(ξ1) – u′′(ξ0) ≤ 2
∥∥u′′∥∥

C ≤ 2‖u‖C2 ≤ 2M. (2.22)

From this inequality and (2.16) it follows that u′′′(ξ0) ≤ M1. Hence by (2.18), ‖u′′′‖C =
u′′′(ξ0) ≤ M1, namely (2.17) holds.

Now from (2.14) and (2.17), we conclude that

‖u‖C3 = max
{‖u‖C2 ,

∥∥u′′′∥∥
C

} ≤ M1. (2.23)

This means that the set of the solutions of Eqs. (2.10) is bounded in C3(I). By the Leray–
Schauder fixed point theorem [18], A has a fixed point in C3(I), which is a solution of BVP
(1.1).

The proof of Theorem 1.1 is completed. �

Proof of Theorem 1.2 Let b = max{|f (x, 0, 0, 0, 0)| : x ∈ I} + 1. In Condition (F3), choosing
z0 = z1 = z2 = z3 = 0, we conclude that (F1) holds. Hence, by Theorem 1.1, BVP (1.1) has at
least one solution.

Let u1, u2 ∈ C4(I) be two solutions of BVP (1.1). Set u = u2 – u1 and h = F(u2) – F(u1).
Then u = u2 – u1 = Au2 – Au2 = S(F(u2)) – S(F(u2)) = Sh. Hence u is a solution of LBVP
(2.1), and it satisfies the equation

u(4)(x) = F(u2)(x) – F(u1)(x), x ∈ I. (2.24)

Multiplying this equation by –u′′(x) = –(u2
′′(x) – u1

′′(x)), by Condition (F3) we obtain that

–u(4)(x)u′′(x) = –
[
F(u2)(x) – F(u1)(x)

](
u2

′′(x) – u1
′′(x)

)
≤

3∑
i=0

ai
(
u(i)

2 (x) – u(i)
1 (x)

)2

=
3∑

i=0

ai
(
u(i)(x)

)2, x ∈ I.



Li and Chen Boundary Value Problems         (2019) 2019:83 Page 8 of 9

Integrating this inequality on I and using Lemma 2.1, we obtain that

∥∥u′′′∥∥
2

2 ≤ a0‖u‖2
2 + a1

∥∥u′∥∥
2

2 + a2
∥∥u′′∥∥

2
2 + a3

∥∥u′′′∥∥
2

2

≤
(

a0

8
+

a1

4
+

a2

2
+ a3

)∥∥u′′′∥∥
2

2.

Since a0
8 + a1

4 + a2
2 +a3 < 1, this inequality implies that ‖u′′′‖2 = 0. By (2.2), ‖u‖2 ≤ 1

2
√

2‖u′′′‖2,
so we have ‖u‖2 = 0. Hence u1 = u2. This means that BVP (1.1) has only one solution.

The proof of Theorem 1.2 is completed. �

Example 2.1 Consider the following superlinear fourth-order boundary value problem:

⎧⎨
⎩u(4) = 2u + 3u′2u′′ + 5u′′3u′′′2 + x sinπx, x ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(2.25)

We verify that the corresponding nonlinearity

f (x, y0, y1, y2, y3) = 2y0 + 3y1
2y2 + 5y2

3y3
2 + x sinπx (2.26)

satisfies the conditions of Theorem 1.1. Choose a0 = 1, a1 = 0, a2 = 5
4 , a3 = 0, and b = 1,

then a0
8 + a1

4 + a2
2 + a3 = 3

4 < 1. For every (x, y0, y1, y2, y3) ∈ [0, 1] ×R
4, we have

–f (x, y0, y1, y2, y3)y2 = –2y0y2 – 3y1
2y2

2 – 5y2
4y3

2 + (x sinπx)y2

≤ 2|y0||y2| + |y2| ≤ y0
2 + y2

2 +
1
4

y2
2 + 1

= a0y0
2 + a1y1

2 + a2y2
2 + a3y3

2 + b.

Hence, f satisfies Condition (F1). Since f (x, y0, y1, y2, y3) is quadratic growth on y2 by (2.26),
it follows that (F2) holds. Hence, by Theorem 1.1, BVP (2.25) has at least one solution. It
should be pointed out that this conclusion cannot be obtained from the known results of
References [1–17].
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