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Abstract
In this paper, we study the convergence rates of solutions in homogenization of
nonlinear Stokes Dirichlet problems. The main difficulty of this work is twofold. On the
one hand, the nonlinear Stokes problems do not fit the standard framework of
second-order elliptic equations in divergence form. On the other hand, nonlinear
problems may cause new difficulties in the estimation of the quantity as well as
first-order approximate term. As a consequence, we establish the sharp rates of
convergence in H1 and L2. This work may be regarded as an extension of the
approach for the linear Stokes problems to the nonlinear case.
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1 Introduction
The main purpose of this paper is to establish the sharp rates of convergence in H1 and L2

for nonlinear Stokes problems with the Dirichlet boundary condition. More precisely, let
Ω be a bounded C1,1 domain in R

n, n ≥ 3. Let uε ∈ H1(Ω ;Rn) be a weak solution to the
following problem, which arose in fluid dynamics with porous media:

⎧
⎪⎪⎨

⎪⎪⎩

Lεuε + �pε = F in Ω ,

div uε = f in Ω ,

uε = g on ∂Ω ,

(1.1)

with the compatibility condition

∫

Ω

f dx =
∫

∂Ω

g · n dσ , (1.2)

where n is the outward unit normal to ∂Ω .
Throughout this paper, the summation convention is used. The nonlinear operator Lε

is defined by

Lε = – div A(x/ε,�). (1.3)
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We will assume that the function A satisfies the periodicity condition

A(y + Y , ξ ) = A(y, ξ ) for Y = [0, 1)n �R
n/Zn, (1.4)

coerciveness and growth conditions

〈
A(y, ξ ) – A

(
y, ξ ′), ξ – ξ ′〉 ≥ λ1

∣
∣ξ – ξ ′∣∣2, (1.5)

∣
∣A(y, ξ ) – A

(
y, ξ ′)∣∣ ≤ 1

λ1

∣
∣ξ – ξ ′∣∣, (1.6)

for all y ∈R
n and ξ , ξ ′ ∈R

n, where λ1 > 0. We impose the smoothness condition

∣
∣A(y, ξ ) – A

(
y′, ξ

)∣
∣ ≤ λ2

∣
∣y – y′∣∣α , F ∈ H–1(Ω), f ∈ L2(Ω), g ∈ H1/2(∂Ω), (1.7)

where λ2 > 0 and 0 < α ≤ 1. Without loss of generality, we also assume that

1
|Ω|

∫

Ω

pε dx = 0. (1.8)

Associated with (1.1) is the homogenized problem

⎧
⎪⎪⎨

⎪⎪⎩

L0u0 + �p0 = F in Ω ,

div u0 = f in Ω ,

u0 = g on ∂Ω .

(1.9)

The homogenized operator is defined by

L0 = – div Q(�),

where the function Q is given, for each ξ ∈R
n, by

Q(ξ ) =
∫

Y
A

(
y, ξ + �yN(y, ξ )

)
dy. (1.10)

The periodic functions (N ,χ ) ∈ H1(Rn) × L2(Rn) are the so-called correctors, satisfying
the following cell problem:

⎧
⎪⎪⎨

⎪⎪⎩

div A(y, ξ + �yN(y, ξ )) – �χ = 0 in Y ,

N(y + Y , ξ ) = N(y, ξ ),
∫

Y N(y, ξ ) dy = 0.

(1.11)

It is well known that, by the homogenization theory of Stokes problems, the solution
uε ⇀ u0 weakly in H1(Ω ;Rn), pε ⇀ p0 weakly in L2(Ω), and A(x/ε,�uε) ⇀ Q(�u0) weakly
in L2(Ω ,Rn×n), as ε → 0. The existence and convergence results of the weak solution to
problem (1.1) may be found in [4, 12].

The convergence rate estimate is one of the fundamental issues in quantitative homoge-
nization. There are many such classic works about convergence results of solutions in ho-
mogenization of second-order elliptic equations with the various settings. In 2011, Gérard
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and Masmoudi [6] got the L2 convergence for the Neumann boundary layer problems. In
2012, Kenig, Lin, and Shen [13] established L2 as well as H 1

2 convergence in Lipschitz
domains for Dirichlet and Neumann problems. In 2013, Aleksanyan, Shahgholian, and
Sjölin [1, 2] proved pointwise and Lp convergence estimates for fixed operators and os-
cillating Dirichlet boundary data. In 2014, Kenig, Lin, and Shen [14] also obtained W k,p

convergence rates of Dirichlet or Neumann problems for the second-order equations with
rapidly oscillating periodic coefficients by using the asymptotic estimates of the Green or
Neumann functions. In 2015, the second author [24] proved the pointwise as well as W 1,p

convergence estimates for the fixed operators and oscillating Neumann boundary data by
utilizing oscillation integral estimates in Fourier analysis. In 2016, Shen [17] proved the
Lq convergence rates with Dirichlet or Neumann problems with no smoothness assump-
tion on the coefficients. In 2018, Shen and Zhuge [19] got the L2 convergence rate for the
Neumann problems with first-order oscillating Neumann boundary data.

For the case of Stokes problems, some outstanding results about regularity and con-
vergence of solutions in homogenization were established by Gu and Shen in a series of
papers. The uniform interior estimates and boundary Hölder estimates for the Dirichlet
problem have been established in [8]. Then, the authors in [9] obtained the sharp boundary
regularity estimates in homogenization of Dirichlet problem. In 2015, Gu [7] also proved
convergence rates in L2 and H1 of Dirichlet problems for linear Stokes systems. In 2017,
Gu and Shen [10] got the asymptotic behaviors of the Green functions as well as the con-
vergence rates in Lp and L∞ for solutions. Recently, other authors have also been interested
in the regularity estimates for the Stokes problems, see [3, 5, 11, 23] and their references
for more results.

The main difficulty of this work is twofold. On the one hand, the nonlinear Stokes prob-
lems do not fit the standard framework of second-order elliptic equations in divergence
form, which is caused by the pressure term. On the other hand, nonlinear problems may
cause new difficulties in the estimation of the quantity as well as first-order approximate
term.

The motivation for studying this paper is inspired by the technology used to deal with
linear Stokes problems studied by Gu in [7]. The novelty of this paper lies in that it may be
regarded as an extension of the approach for the linear Stokes problems to the nonlinear
case. As the author knows, very few convergence rate results are known in the field of
nonlinear Stokes problems.

The following are the main results of this paper.

Theorem 1 Let Ω be a bounded C1,1 domain in R
n. Let uε ∈ H1(Ω ;Rn) and u0 ∈

H2(Ω ;Rn) be the weak solutions of the mixed boundary value problems (1.1) and (1.9),
respectively. Then, under assumptions (1.2)–(1.8), there exists a constant C such that

∥
∥uε – u0 – εN

(
x/ε, Tε(�ũ0)

)
+ ωε

∥
∥

H1
0 (Ω) ≤ Cε‖u0‖H2(Ω), (1.12)

where Tε is the smoothing operator, ũ0 is an extension of u0, and ωε is an approximate
function.

Theorem 2 Under the same assumptions as Theorem 1, there exists a constant C such that

∥
∥uε – u0 – εN

(
x/ε, Tε(�ũ0)

)∥
∥

H1(Ω) ≤ Cε1/2‖u0‖H2(Ω).
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Theorem 3 Under the same conditions as Theorem 1, there exists a constant C such that

‖uε – u0‖L2(Ω) ≤ Cε1/2‖u0‖H2(Ω).

The rest of the paper is organized as follows. Section 2 contains some basic definitions
and useful propositions which will play important roles in obtaining convergence rates.
In Sect. 3, we show that the solution uε of nonlinear Stokes problems is convergent to
the solution u0 of the corresponding homogenized problems, this is based on using of a
smoothing operator as well as homogenization tools.

2 Preliminaries
We begin by specifying some of our notations.

Let Br(x) denote an open ball with center x and radius r. Ωε = {x ∈R
n : dist(x, ∂Ω) ≤ ε}.

Since Ω is Lipschitz, then there exists a bounded extension operator E : H2(Ω) → H2(Rn)
such that ũ0 is an extension of u0 satisfying ‖̃u0‖H2(Rn) ≤ C‖u0‖H2(Ω). We also set ϕ ∈
C∞

0 (Ω ;Rn) is a smooth function and ‖ϕ‖H1(Rn) ≤ C‖ϕ‖H1(Ω). We choose a cut-off function
ηε ∈ C∞

0 (Rn), which satisfies the conditions: supp (ηε) ⊂ Ωε , ηε|∂Ω ≡ 1 and |�ηε| ≤ C/ε.
In this paper, C always denotes a positive constant which may vary in different formulas.

Associated with operator Lε in (1.1), the homogenized operator is

L0 = – div Q(�) in Ω , (2.1)

the function Q and corrector function N(x/ε,�u0) are defined in (1.10), (1.11), respec-
tively, and they satisfy the following properties.

Proposition 2.1 The function Q defined in (1.10) satisfies the analogous properties as
function A:

∣
∣Q(ξ ) – Q

(
ξ ′)∣∣ ≤ C

∣
∣ξ – ξ ′∣∣

and

〈
Q(ξ ) – Q

(
ξ ′), ξ – ξ ′〉 ≥ C

∣
∣ξ – ξ ′∣∣2

for all ξ , ξ ′ ∈R
n.

Proof The proof could be found in [16], which is similar to the linear operator case. Ob-
viously, this shows that the homogenized operator L0 still satisfies the same coerciveness
and growth conditions. �

Proposition 2.2 The function N(·, ξ ) ∈ H1(Y ) is a weak solution to (1.11). Then we have

∥
∥N(y, ξ )

∥
∥

L∞(Y ) ≤ C|ξ |,
∫

Y

∣
∣�ξ N(y, ξ )

∣
∣2 dy ≤ C

and
∫

Y

∣
∣N(y, ξ )

∣
∣2 dy +

∫

Y

∣
∣�yN(y, ξ )

∣
∣2 dy ≤ C|ξ |2

for all y, ξ ∈R
n.
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Proof These estimates have been proved in [16] and [22]. Multiplying both sides of (1.11)
by N(y, ξ ) and integrating by parts, one could get the desired results. �

The next proposition is the special relation between Q and A in homogenization. We
also call them the flux correctors.

Proposition 2.3 Let

F(y, ξ ) = Q(ξ ) – A
(
y, ξ + �N(y, ξ )

)
,

where y ∈ Y and ξ ∈ R
n. Together with (1.10) and (1.11), it is easy to know that F(·, ξ ) sat-

isfies conditions
∫

Y F(y, ξ ) dy = 0 and divy F(y, ξ ) = �χ . Then there exists Φij(·, ξ ) ∈ H1(Rn)
such that

Φij(y, ξ ) = –Φji(y, ξ ) and Fj(y, ξ ) =
∂Φij(y, ξ )

∂yi
+ χj.

Moreover,
∫

Y

∣
∣Φij(y, ξ )

∣
∣2 dy +

∫

Y

∣
∣�ξΦij(y, ξ )

∣
∣2 dy ≤ C.

Proof The linear operator case is well known (see, for example, [13], Lemma 3.1). This
proposition is quite similar to the linear case. Let fj ∈ H2(Y ) be the solution to the cell
problem �fj + χj = Fj in Y . Then, we could define Φij(y, ξ ) = ∂

∂yi
[fj(y, ξ )] – ∂

∂yj
[fi(y, ξ )]. From

every estimate and (1.11), we may get the desired properties. We refer the reader to [7] for
more details. �

Recently, the smoothing operators were introduced by Suslina in [20, 21], which was
used to establish the convergence estimate in L2 for a broad class of elliptic or parabolic
operators. This work seems to extend the usage of smoothing operators to the case of
nonlinear Stokes problems.

Fix ψ ∈ C∞
0 (B1(0)) such that ψ ≥ 0 and

∫

Rn ψ dx = 1. Define operator Tε on L2 as

Tε(u)(x) = u ∗ ψε =
∫

Rn
u(x – y)ψε(y) dy,

where ψε(x) = ε–nψ(x/ε).

Proposition 2.4 If u0 ∈ H2(Rn), then

∥
∥�u0 – Tε(�u0)

∥
∥

L2(Rn) ≤ Cε
∥
∥�2u0

∥
∥

L2(Rn)

and

∥
∥Tε

(�2u0
)∥
∥

L2(Rn) ≤ C
∥
∥�2u0

∥
∥

L2(Rn).

Proof By Parseval’s theorem and Hölder’s inequality, we could get the desired result. The
proof could be found in [17]. �
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Proposition 2.5 If u0 ∈ H2(Rn), then

∥
∥Tε(�u0)

∥
∥

L2(Ωε ) ≤ Cε1/2‖u0‖H2(Rn).

Proof This estimate could be proved by Fubini’s theorem. See [15] or [18] for the detailed
proof. �

3 Proofs of theorems
The goal of this section is to establish H1 and L2 convergence rates of solutions.

Proof of Theorem 1 Let ωε ∈ H1(Ω) be a weak solution of

⎧
⎪⎪⎨

⎪⎪⎩

Lεωε + �(pε – p0 – χ ) = 0 in Ω ,

divωε = ε div N(x/ε, Tε(�ũ0)) in Ω ,

ωε = εN(x/ε, Tε(�ũ0)) on ∂Ω .

(3.1)

We will use ωε to approximate the difference of pressure term.
Introduce the first-order approximation of uε :

vε = u0 + εN
(
x/ε, Tε(�ũ0)

)
– ωε .

Note that, for any ϕ ∈ C∞
0 (Ω ;Rn),

∫

Ω

A(x/ε,�uε) · �ϕ dx –
∫

Ω

pε divϕ dx =
∫

Ω

Q(�u0) · �ϕ dx –
∫

Ω

p0 divϕ dx.

A simple calculation then gives that

∫

Ω

[
A(x/ε,�uε) – A(x/ε,�vε)

] · �ϕ dx +
∫

Ω

(p0 – pε) divϕ dx

=
∫

Ω

[
Q(�u0) – Q

(
Tε(�ũ0)

)] · �ϕ dx

+
∫

Ω

[
Q

(
Tε(�ũ0)

)
– A

(
x/ε, Tε(�ũ0) + �N

(
x/ε, Tε(�ũ0)

))] · �ϕ dx

+
∫

Ω

[
A

(
x/ε, Tε(�ũ0) + �N

(
x/ε, Tε(�ũ0)

))
– A(x/ε,�vε)

] · �ϕ dx

.= I1 + I2 + I3. (3.2)

To estimate I1, we note that by Proposition 2.1 and Proposition 2.4,

|I1| ≤ C
∫

Ω

∣
∣Q(�u0) – Q

(
Tε(�ũ0)

)∣
∣ · |�ϕ|dx

≤ C
∥
∥�ũ0 – Tε(�ũ0)

∥
∥

L2(Rn)‖�ϕ‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖�ϕ‖L2(Ω). (3.3)
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Next, we shall estimate I2. Let

F
(
x/ε, Tε(�ũ0)

)
= Q

(
Tε(�ũ0)

)
– A

(
x/ε, Tε(�ũ0) + �N

(
x/ε, Tε(�ũ0)

))
.

Note that F(x/ε, Tε(�ũ0)) is a periodic function with respect to the first variable, and it
satisfies the conditions of Proposition 2.3. Then there exists Φij(·, ξ ) ∈ H1(Rn) satisfying

Qj
(
Tε(�ũ0)

)
– Aj

(
y, Tε(�ũ0) + �N

(
y, Tε(�ũ0)

))
=

∂Φij(y, Tε(�ũ0))
∂yi

+ χj.

Thus, it gives that

I2 =
∫

Ω

F
(
x/ε, Tε(�ũ0)

) · �ϕ dx

=
∫

Ω

[
∂Φij(y, Tε(�ũ0))

∂yi
+ χj

]
∂ϕ

∂xj
dx

.= I21 + I22.

For the first term,

I21 =
∫

Ω

∂

∂xi

(
εΦij

(
x/ε, Tε(�ũ0)

)) · ∂ϕ

∂xj
dx –

∫

Ω

ε
∂Φij(x/ε, ξ )

∂ξh

∂ξh

∂xi

∂ϕ

∂xj
dx

= –
∫

Ω

ε
∂Φij(x/ε, ξ )

∂ξh

∂ξh

∂xi

∂ϕ

∂xj
dx,

where the first term vanishes in the last equality, which depends on the antisymmetry of
Φij.

As a result, using Proposition 2.3 and Proposition 2.4, we get that

|I21| ≤ Cε
∥
∥Tε

(
�2ũ0

)∥
∥

L2(Rn)‖�ϕ‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖�ϕ‖L2(Ω). (3.4)

For I3, it follows from the growth condition of (1.4) as well as Proposition 2.4 that

|I3| ≤ C
(∥
∥�ũ0 – Tε(�ũ0)

∥
∥

L2(Rn) + ε
∥
∥�ξ N(y, ξ )

∥
∥

L2(Ω)

∥
∥Tε

(
�2ũ0

)∥
∥

L2(Rn)

)‖�ϕ‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖�ϕ‖L2(Ω), (3.5)

where we have used Proposition 2.2.
Then we rearrange equation (3.1), together with (3.3)–(3.5), to show that

∣
∣
∣
∣

∫

Ω

[
A(x/ε,�uε) – A(x/ε,�vε)

] · �ϕ dx +
∫

Ω

(p0 – pε – χ ) divϕ dx
∣
∣
∣
∣

≤ Cε‖u0‖H2(Ω)‖�ϕ‖L2(Ω).

Then let ϕ = uε – vε = uε – u0 – εN(x/ε, Tε(�ũ0)) + ωε . By the coercive condition and the
equation satisfied by ωε , we can get the desired result, which completes the proof. �
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Proof of Theorem 2 According to Theorem 1, we obtain the estimate

∥
∥uε – u0 – εN

(
x/ε, Tε(�ũ0)

)
+ ωε

∥
∥

H1
0 (Ω) ≤ Cε‖u0‖H2(Ω).

Hence, it suffices to show that

‖ωε‖H1(Ω) ≤ Cε1/2‖u0‖H2(Ω).

In fact, by equation (3.1) and energy estimate, we obtain

‖ωε‖H1(Ω)

≤ Cε
∥
∥div N

(
x/ε, Tε(�ũ0)

)∥
∥

L2(Ω) + Cε
∥
∥N

(
x/ε, Tε(�ũ0)

)∥
∥

H1/2(∂Ω)

≤ Cε
∥
∥ηεN

(
x/ε, Tε(�ũ0)

)∥
∥

H1(Ω)

≤ Cε
∥
∥�ξ N(y, ξ )Tε

(
�2ũ0

)∥
∥

L2(Ωε ) + C
∥
∥�yN(y, Tε(�ũ0)

∥
∥

L2(Ωε )

+ Cε
∥
∥ηεN

(
x/ε, Tε(�ũ0)

)∥
∥

L2(Ω) + C
∥
∥N

(
x/ε, Tε(�ũ0)

)∥
∥

L2(Ωε )

≤ Cε
∥
∥Tε

(
�2ũ0

)∥
∥

L2(Ω) + C
∥
∥Tε(�ũ0)

∥
∥

L2(Ωε ) + Cε
∥
∥Tε(�ũ0)

∥
∥

L2(Ω)

≤ Cε1/2‖u0‖H2(Ω), (3.6)

where we have used the estimates in Proposition 2.2, Proposition 2.4, and Proposition 2.5.
This completes the proof of Theorem 2. �

Proof of Theorem 3 It follows from Theorem 2 and Proposition 2.2, together with
Minkowski’s inequality, that

‖uε – u0‖L2(Ω) ≤ Cε1/2‖u0‖H2(Ω) +
∥
∥εN

(
x/ε, Tε(�ũ0)

)∥
∥

L2(Ω)

≤ Cε1/2‖u0‖H2(Ω) + Cε
∥
∥Tε(�ũ0)

∥
∥

L2(Rn)

≤ Cε1/2‖u0‖H2(Ω), (3.7)

which completes the proof of Theorem 3. �
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