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Abstract
In this paper, Turing patterns and steady state bifurcation of a diffusive
Beddington–DeAngelis-type predator–prey model with density-dependent death
rate for the predator are considered. We first investigate the stability and Turing
instability of the unique positive equilibrium point for the model. Then the
existence/nonexistence, the local/global structure of nonconstant positive steady
state solutions, and the direction of the local bifurcation are established. Our results
demonstrate that a Turing instability is induced by the density-dependent death rate
under appropriate conditions, and both the general stationary pattern and Turing
pattern can be observed as a result of diffusion. Moreover, some specific examples are
presented to illustrate our analytical results.
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1 Introduction
Understanding the dynamical relationship between predator and prey is a central research
subject in ecology, and one significant component of the predator–prey relationship is
the predator’s rate of feeding upon prey, i.e., the so-called functional response. Functional
response is a double rate: It is the average number of prey killed per individual preda-
tor per unit of time. In general, the functional response can be classified into two types:
Prey-dependent and predator-dependent. Prey dependence means that the functional re-
sponse is only a function of the prey’s density, while predator dependence means that the
functional response is a function of both the prey’s and the predator’s densities. For the
functional response functions, there are many types, such as the Holling family which are
predominant in the literature [1].

Since 1959, the Holling II-type prey-dependent functional response has served as the
basis for a very large literature on predator–prey theory [2]. However, the prey-dependent
functional responses fail to describe the interference among predators, and have been fac-
ing challenges from the biology and physiology communities [3, 4]. Some biologists have
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argued that in many situations, especially when predators have to search for food (and
therefore, have to share or compete for food), the functional response in a predator–prey
model should be predator-dependent. There is much significant evidence to suggest that
predator dependence in the functional response occurs quite frequently in laboratory and
natural systems [5, 6]. Given that large numbers of experiments and observations suggest
that predators do indeed interfere with one another’s activities so as to result in compe-
tition effects and that prey alters its behavior under increased predator-threat, the mod-
els with predator-dependent functional response stand as reasonable alternatives to the
models with prey-dependent functional response [2]. Starting from this argument and
the traditional prey-dependent model, to describe mutual interference among predators,
Beddington [7] and DeAngelis [8] proposed that an individual from a population of more
than two predators not only allocates time in searching for and processing their prey but
also takes time in encountering other predators. This result in the so-called Beddington–
DeAngelis functional response p(u, v) = mu

a+u+bv . The Beddington–DeAngelis functional re-
sponse is similar to the well-known Holling type II functional response, but it has an extra
term bv in the denominator modelling mutual interference among predators, and it also
has some similar qualitative features as the ratio-dependent form but avoids the singu-
lar behaviors of ratio-dependent models at low densities which have been the source of
controversy.

We know the classical Beddington–DeAngelis-type predator–prey system which has
received considerable attention [9–17] and takes the form

⎧
⎨

⎩

du
dt = u(1 – u) – muv

a+u+bv ,
dv
dt = sv(–q + mu

a+u+bv ).
(1)

A salient statistical evidence from nineteen predator–prey systems prove that Bedding-
ton–DeAngelis functional response provides better description of predator feeding over
a range of predator–prey abundances [2]. In some cases, it performs even better than other
functional responses. The most crucial finding of Skalski and Gilliam [2] was that preda-
tor dependence in the functional response is a nearly ubiquitous property of the published
data sets. Cantrell and Cosner [10] have partially analyzed the dynamics of the system (1).
Hwang [13] has solved the problem for the uniqueness of a limit cycle of the system (1).
A detailed mathematical analysis of the dynamics for (1) with unlimited carrying capac-
ity for prey population was presented in [14]. Further, Kartina [15] found that predator
dependence is important at not only very high predator densities on per capita predation
rate but also at low predator densities. In ecology, we should consider the predator density
dependence, and we need to take into account realistic levels of predator dependence.

In this paper, we consider the following density-dependent Beddington–DeAngelis-type
predator–prey model:

⎧
⎨

⎩

du
dt = u(1 – u) – muv

a+u+bv ,
dv
dt = sv(–q – δv + mu

a+u+bv ),
(2)

where u and v represent prey and predator densities, respectively. q is the death rate of the
predator, s is the feed concentration and δ is the density-dependent death rate. Biologically
speaking, the positive density-dependent death rate δ has depressing effect on the growth
rate of the predator, i.e., causes the reduction in predator growth rate [16].
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In [17], the authors studied the dynamics of (2). They proved the permanence, locally
and globally asymptotic stability of the positive equilibrium for the model (2) by using sta-
bility theory of differential equations and Lyapunov functions. For the permanence, they
showed that the density dependence for predator gives some negative effect, compared to
the models without the density dependence. In addition, the authors compared results for
the model with Beddington–DeAngelis functional response on permanence, locally and
globally asymptotic stability to the system with Lotka–Volterra interaction or Holling type
II functional response or ratio-dependent functional response.

When the densities of the prey and predator are spatially inhomogeneous in a bounded
domain, and the prey and predator move randomly-described as Brownian random mo-
tion [18–20], we need consider the following reaction–diffusion model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = u(1 – u) – muv
a+u+bv , x ∈ Ω , t > 0,

vt – d2�v = sv(–q – δv + mu
a+u+bv ), x ∈ Ω , t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x) ≥ (�≡)0, v(x, 0) = v0(x) ≥ (�≡)0, x ∈ Ω ,

(3)

where Ω is a bounded domain with smooth boundary ∂Ω and ν is the outward unit normal
vector of the boundary ∂Ω . The positive constants d1 and d2 are the diffusion coefficients
of u(x, t) and v(x, t), respectively. � is the Laplacian operator which describes the random
moving.

In the case b = 0, Huang et al. in [21] derived the conditions for the existence of non-
constant steady states of the model (3) with δ > 0. At the same time, they proved that the
same system without the density-dependent death rate for the predators does not admit
pattern formations. Hence, in the case b > 0, a natural question is raised: Is the density-
dependent death rate δ also a decisive factor inducing Turing instability in the model (3)?
We will answer this problem in this paper.

To study the stationary patterns, we need consider the steady state problem associated
with (3)

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = u(1 – u) – muv
a+u+bv , x ∈ Ω ,

–d2�v = sv(–q – δv + mu
a+u+bv ), x ∈ Ω ,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω .

(4)

The rest of this paper is organized as follows: In Sect. 2, the stability and Turing instabil-
ity of the positive equilibrium point (u∗, v∗) in (3) are discussed. In Sect. 3, we investigate
the nonexistence/existence of nonconstant positive steady states. In Sect. 4, the local and
global structure of nonconstant positive steady state are established, and the direction of
the local bifurcation is given.

2 Stability and Turing instability of positive equilibrium point
In this section, we mainly discuss the stability and Turing instability of the positive equi-
librium point of (3). For convenience, we denote

f (u, v) = u(1 – u) –
muv

a + u + bv
, g(u, v) = sv

(

–q – δv +
mu

a + u + bv

)

.
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Obviously, the model (2) has a trivial equilibrium point E0 = (0, 0), a semitrivial equilib-
rium point E1 = (1, 0) and at least one positive equilibrium point E∗ = (u∗, v∗) if

m > (a + 1)q,

where

u∗ =
bδv∗2 + (aδ + bq)v∗ + aq

m – q – δv∗

and v∗ is the positive roots of polynomial equation

δ
(
b2 + δ

)
v3 +

[
(2ab + b – 2m + 2q)δ + b2q

]
v2

+
[(

a2 + a
)
δ + q2 + (2ab + b – 2m)q + m(m – b)

]
v + a

[
(a + 1)q – m

]
= 0. (5)

To illustrate the uniqueness of the positive equilibrium point, we first give the following
lemma.

Lemma 1 (Shengjins discriminant [22]) For the equation x3 + Bx2 + Cx + D = 0, where
B, C, D ∈ R, denote A = B2 – 3C, B = BC – 9D, C = C2 – 3BD and � = B

2 – 4AC.
(i) The equation has three real roots if and only if � ≤ 0.

(ii) The equation has one real root and a pair of conjugate complex roots if and only if
� > 0.

For Eq. (5), corresponding to Lemma 1, let

B :=
[
(2ab + b – 2m + 2q)δ + b2q

]
/
[
δ
(
b2 + δ

)]
,

D := a
[
(a + 1)q – m

]
/
[
δ
(
b2 + δ

)]
,

C :=
[(

a2 + a
)
δ + q2 + (2ab + b – 2m)q + m(m – b)

]
/
[
δ
(
b2 + δ

)]
,

(6)

and

A := B2 – 3C, B := BC – 9D, C := C2 – 3BD, � := B
2 – 4AC. (7)

Then we can obtained the following conclusion.

Theorem 2.1 Assume that

(H1) m > (a + 1)q, � > 0

hold, then Eq. (5) has a unique positive root, and (2) has a unique positive equilibrium point
E∗ = (u∗, v∗).

Now we discuss the stability and instability of E∗ for the ODE model (2) and PDE model
(3), respectively. By simple calculation, we can see that the Jacobian matrix of (2) evaluated
at E∗ is given by

J
(
E∗) =

(
a11 a12

a21 a22

)

,
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where

a11 =
mu∗v∗

(bv∗ + a + u∗)2 – u∗, a12 = –
mu∗(a + u∗)

(bv∗ + a + u∗)2 < 0,

a21 =
m(bv∗ + a)

(bv∗ + a + u∗)2 > 0, a22 = –sv∗
(

δ +
mbu∗

(bv∗ + a + u∗)2

)

< 0.
(8)

The characteristic equation of J(E∗) is

η2 – Qη + P = 0,

where

Q = a11 + a22, P = a11a22 – a12a21. (9)

Obviously that E∗ is locally asymptotically stable if Q < 0 and P > 0. Thus, we can obtain
the following theorem.

Theorem 2.2 Assume (H1) hold. For the model (2), the following statements are true.
(i) If mu∗v∗ < (u∗ + δsv∗)(bv∗ + a + u∗)2 + bsmu∗v∗ and

(H21) sv∗[m2bu∗v∗ + m
(
δv∗ – bu∗)(bv∗ + a + u∗)2]

< m2(a + u∗)(a + bv∗) + δsv∗(bv∗ + a + u∗)4,

then equilibrium point E∗ is locally asymptotically stable.
(ii) If mu∗v∗ > (u∗ + δsv∗)(bv∗ + a + u∗)2 + bsmu∗v∗ or

(H22) sv∗[m2bu∗v∗ + m
(
δv∗ – bu∗)(bv∗ + a + u∗)2]

> m2(a + u∗)(a + bv∗) + δsv∗(bv∗ + a + u∗)4,

then equilibrium point E∗ is unstable.

To consider Turing instability of E∗ for PDE model (3), we denote 0 = λ0 < λ1 < · · · , the
sequence of eigenvalues for the problem

–�φ = λφ, x ∈ Ω ,
∂φ

∂ν
= 0, x ∈ ∂Ω , (10)

and λi (i ≥ 1) has multiplicity mi ≥ 1, whose corresponding normalized eigenfunctions
are given by φij, where j = 1, 2, . . . , mi. This set of eigenfunctions form an orthogonal basis
in L2(Ω).

If a11 > 0 and

d1λ1 < a11, (11)

then we define i0 be the largest positive integer such that d1λi < a11.
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Clearly, if (11) is satisfied, then 1 ≤ i0 < ∞. In this case, let

d̄2 = min
0≤i≤i0

di
2
(
E∗), (12)

where di
2(E∗) is given by

di
2
(
E∗) =

d1a22λi – a11a22 + a12a21

λi(d1λi – a11)
. (13)

Theorem 2.3 Assume that (H1) holds. Then the following conclusions for the model (3)
are true.

(i) If a11 < 0, then E∗ is locally asymptotically stable.
(ii) Let a11 > 0, (H21) and mu∗v∗ < (u∗ + δsv∗)(bv∗ + a + u∗)2 + bsmu∗v∗ hold.

(ii-1) If d1λ1 < a11 and 0 < d2 < d̄2, then E∗ is locally asymptotically stable.
(ii-2) If d1λ1 < a11 and d2 > d̄2, then E∗ is unstable, and hence in the model (3)

Turing instability occurs.

Proof Consider the linearization operator of (3) at E∗

L =

(
d1� + a11 a12

a21 d2� + a22

)

.

Suppose that Φ = (ϕ,ψ) ∈ L2(Ω) × L2(Ω) is an eigenfunction of L corresponding to an
eigenvalue η, then

(
d1�ϕ + (a11 – η)ϕ + a12ψ , d2�ψ + (a22 – η)ψ + a21ϕ

)
= (0, 0).

Writing ϕ =
∑

0≤i≤∞,1≤j≤mi
aijφij, ψ =

∑
0≤i≤∞,1≤j≤mi

bijφij, then

∑

0≤i≤∞,1≤j≤mi

Bi

(
aij

bij

)

φij = 0,

where

Bi =

(
a11 – d1λi – η a12

a21 a22 – d2λi – η

)

.

We easily see that η is the eigenvalue of L if and only if det Bi = 0 for some i, which leads to

η2 + Qiη + Pi = 0, (14)

where

Qi = (d1 + d2)λi – a11 – a22,

Pi = λi(d1λi – a11)
(

d2 –
d1a22λi – a11a22 + a12a21

λi(d1λi – a11)

)

.
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(i) If a11 < 0, then Qi > 0 and Pi > 0 for all i, which implies that Re{ηi} < 0 for all i, where
ηi are the eigenvalues of (14). Therefore, the equilibrium point E∗ is locally asymptotically
stable.

(ii) If (H21) and mu∗v∗ < (u∗ + δsv∗)(bv∗ + a + u∗)2 + bsmu∗v∗ hold, then Qi > 0 and
d1a22λi – a11a22 + a12a21 < 0.

(ii-1) If a11 > 0, d1λ1 < a11 and 0 < d2 < d̄2, then d1λi < a11 and d2 < di
2 for all i ∈ [1, i0].

Thus,

Pi = λi(d1λi – a11)
{

d2 –
d1a22λi – a11a22 + a12a21

λi(d1λi – a11)

}

> 0.

On the other hand, if i > i0, then d1λi > a11, and Pi > 0. The analysis yields the locally
asymptotical stability of E∗.

(ii-2) If a11 > 0, d1λ1 < a11 and d2 > d̄2, then we may assume the minimum in (13) is
attained at j ∈ [1, i0]. Thus d2 > dj

2, which implies

Pj = λj(d1λj – a11)
{

d2 –
d1a22λj – a11a22 + a12a21

λj(d1λj – a11)

}

< 0.

Hence, E∗ is unstable in this case. The proof of Theorem 2.3 is complete. �

Example 2 We take the parameters in model (2) and (3) as

a = 0.1, b = 0.2, m = 0.6, s = 2, q = 0.25, δ = 0.1.

It is easy to verify that there is a unique positive equilibrium point E∗(u∗, v∗) = (0.22, 0.56).
For the ODE model (2), from Theorem 2.2, we can verify that E∗ is stable. For the PDE

model (3) in one-dimensional interval (0,π ), after fixing d1 = 0.015, from Theorem 2.3,
we know that if d2 > d̄2 = 0.31, then E∗ is Turing unstable, and model (3) exhibits Turing
pattern. In Fig. 1, we show the numerical results of model (3) with different values for d2.
Figure 1(a) shows the numerical simulations of Turing instability in model (3) with d2 =
0.75 > d̄2. And Fig. 1(b) is for the numerical simulations of the stable positive equilibrium
point of model (3) with d2 = 0.20 < d̄2. From Fig. 2 we can observe the Turing patterns for
the different values of d2. One can see that the model exhibits pattern formation, including
a cold spots pattern in Fig. 2(a) and a spot–stripe pattern in Fig. 2(b).

3 Nonexistence/existence of nonconstant positive steady state
In this section, we consider the nonexistence/existence of nonconstant positive steady
states of (4).

Let N(λi) be the eigenspace corresponding to λi in H1(Ω). Let X = [H1(Ω)]2, {φij; j =
1, . . . , dim N(λi)} be an orthonormal basis of N(λi), and Xij = {cΦij : c ∈ R2}. Then we de-
compose X as

X =
∞⊕

i=1

Xi, Xi =
dim N(λi)⊕

j=1

Xij.
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Figure 1 Numerical simulations of the long time behavior of solution (u(x, t), v(x, t)) of model (3) with different
values of d2. (a) d2 = 0.75; (b) d2 = 0.20

Figure 2 Turing pattern with different values of d2. (a) Cold spots pattern with d2 = 0.35; (b) spot-stripe
pattern with d2 = 1

3.1 A priori estimates for positive steady states
In this subsection, by using the maximum principle, we establish a priori estimates of
positive steady state for (4).

Lemma 3 (Maximum principle [23]) Suppose that g ∈ C(Ω ×R).
(i) Assume that w ∈ C2(Ω) ∩ C1(Ω), and

�w(x) + g
(
x, w(x)

) ≥ 0, x ∈ Ω ,
∂w
∂ν

≤ 0, x ∈ ∂Ω .
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If w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.
(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω), and

�w(x) + g
(
x, w(x)

) ≤ 0, x ∈ Ω ,
∂w
∂ν

≥ 0, x ∈ ∂Ω .

If w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Theorem 3.1 Assume m > (a + 1)q. Let (u(x), v(x)) be a positive solution of (4). If

aδ(a + 1) > max
{

m
(
m – (a + 1)q

)
, m2 + aq – m

}
,

then (u(x), v(x)) satisfies

1 –
mα

a
≤ u(x) ≤ 1,

1
δ

(
m(a – mα)

a2 + a + (a – m)α
– q

)

≤ v(x) ≤ α,

where α = m–(a+1)q
δ(a+1) .

Proof A direct application of Lemma 3 to (4) yields u(x) ≤ 1 and v(x) ≤ α. To obtain the
lower bound for u(x) and v(x), we let

u(x0) = min
Ω̄

u(x), v(y0) = min
Ω̄

v(x), v(y1) = max
Ω̄

v(x).

By virtue of Lemma 3, we have

1 – u(x0) –
mα

a
≤ 1 – u(x0) –

mv(x0)
a + u(x0) + bv(x0)

≤ 0.

Since aδ(a + 1) > m(m – (a + 1)q), 1 – mα
a > 0 and u(x0) ≥ 1 – mα

a .
Notice that

–q – δv(y0) +
mu(x0)

a + u(x0) + bv(y1)
≤ –q – δv(y0) +

mu(x0)
a + u(x0) + bv(y0)

≤ 0,

we have v(y0) ≥ 1
δ
( m(a–mα)

a(a+1+α)–mα
– q). The proof is complete. �

3.2 Nonexistence of nonconstant positive steady state
In this subsection, we apply the energy method to prove the nonexistence of the noncon-
stant positive steady state to (4). For convenience, let Γ = Γ (m, a, b, s, q, δ) be the set of
parameters m, a, b, s, q, and δ.

Theorem 3.2 Assume m > q. Let λ1 be the smallest positive eigenvalue of the operator –�
on Ω with zero-flux boundary condition and d∗

2 be a fixed positive constant satisfying d∗
2 >

s(m–q)
λ1

. Then there exists a positive d∗
1 = d∗

1(Γ , d∗
2) such that model (4) has no nonconstant

positive steady state provided that d1 ≥ d∗
1 , d2 ≥ d∗

2 .

Proof Let (u, v) be a positive solution of (4) and denote

ū =
1

|Ω|
∫

Ω

u dx and v̄ =
1

|Ω|
∫

Ω

v dx.
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Then multiplying the first equation of model (4) by (u – ū), integrating over Ω and from
Theorem 3.1, we have

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx =

∫

Ω

(u – ū)2
(

1 – (u + ū) –
mv̄(a + bv)

(a + u + bv)(a + ū + bv̄)

)

dx

–
∫

Ω

mū(a + u)
(a + u + bv)(a + ū + bv̄)

(u – ū)(v – v̄) dx

≤
∫

Ω

(u – ū)2 + m
∫

Ω

|u – ū||v – v̄|dx,

in a similar manner, multiplying the second equation in model (4) by (v – v̄), we have

d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx =

∫

Ω

s(v – v̄)2
(

–q – δ(v + v̄) +
mū(a + u)

(a + u + bv)(a + ū + bv̄)

)

dx

+
∫

Ω

mv̄(a + bv)
(a + u + bv)(a + ū + bv̄)

(u – ū)(v – v̄) dx

≤ s(m – q)
∫

Ω

(v – v̄)2 dx +
m
b

∫

Ω

|u – ū||v – v̄|dx.

It follows from the above and the ε-Young inequality that

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx + d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx

≤
∫

Ω

(
(u – ū)2 + s(m – q)(v – v̄)2)dx + 2L

∫

Ω

|u – ū||v – v̄|dx

≤
∫

Ω

((

1 +
L
ε

)

(u – ū)2 +
(
s(m – q) + εL

)
(v – v̄)2

)

dx

for L := (b+1)m
2b and an arbitrary positive constant ε. It follows from the well-known Poincaré

inequality that

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx + d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx

≤ 1
λ1

((

1 +
L
ε

)∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx +

(
s(m – q) + εL

)
∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx

)

.

Since d∗
2λ1 > s(m – q), from the assumption, we can choose a sufficiently small ε such that

d∗
2λ1 ≥ s(m – q) + εL.

Finally, by taking d∗
1 := 1

λ1
(1 + L

ε
), one can conclude that u = ū and v = v̄, which asserts our

results. �

3.3 Existence of nonconstant positive steady state
In this subsection, by using the Leray–Schauder degree theory, we discuss the existence
of nonconstant positive steady state to (4) when the diffusion coefficients d1 and d2 vary
while the parameters in Γ keep fixed.
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For simplicity, define F = (f , g)�, where f and g are given in Sect. 2. Then the stationary
problem of (4) can be written as

⎧
⎨

⎩

–�E = D–1F(E), x ∈ Ω ,
∂E
∂ν

= 0, x ∈ ∂Ω ,
(15)

where D = diag(d1, d2). Therefore, E solves (15) if and only if it satisfies

f̂ (d1, d2; E) := E – (I – �)–1{D–1F(E) + E
}

= 0 on X, (16)

where (I – �)–1 represents the inverse of I – � with homogeneous Neumann boundary
condition.

A straightforward computation reveals

DÊf
(
d1, d2; E∗) = I – (I – �)–1(D–1J

(
E∗) + I

)
.

For each Xi, λ is an eigenvalue of DÊf (d1, d2; E∗) on Xi if and only if λ(1 + λi) is an eigen-
value of the following matrix:

Mi := λiI – D–1J
(
E∗) =

(
λi – d–1

1 a11 –d–1
1 a12

–d–1
2 a21 λi – d–1

2 a22

)

.

Clearly,

det Mi = d–1
1 d–1

2
[
d1d2λ

2
i – (d1a22 + d2a11)λi + a11a22 – a12a21

]
,

and tr Mi = 2λi – d–1
1 a11 – d–1

2 a22. Define

ĝ(d1, d2;λ) = d1d2λ
2 – (d1a22 + d2a11)λ + a11a22 – a12a21.

Then ĝ(d1, d2;λ) = d1d2 det Mi. If

|d1a22 + d2a11| > 2
√

d1d2(a11a22 – a12a21), (17)

then ĝ(d1, d2;λ) = 0 has two real roots:

λ– =
d2a11 + d1a22 –

√
(d2a11 + d1a22)2 – 4d1d2(a11a22 – a12a21)

2d1d2
,

λ+ =
d2a11 + d1a22 +

√
(d2a11 + d1a22)2 – 4d1d2(a11a22 – a12a21)

2d1d2
.

Set

A = A(d1, d2) =
{
λ : λ ≥ 0,λ–(d1, d2) < λ < λ+(d1, d2)

}
,

Sp = {λ0,λ1,λ2, . . .},

and let m(λi) be multiplicity of λi. In order to calculate the index of f̂ (d1, d2; ·) at E∗, we
need the following lemma.
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Lemma 4 ([24]) Suppose ĝ(d1, d2;λi) �= 0 for all λi ∈ Sp. Then

index
(
f̂ (d1, d2; ·), E∗) = (–1)σ ,

where

σ =

⎧
⎨

⎩

∑
λi∈A∩Sp m(λi), if A ∩ Sp �= ∅,

0, if A ∩ Sp = ∅.

In particular, if ĝ(d1, d2;λi) > 0 for all λi ≥ 0, then σ = 0.

By determining the range of λ for which ĝ(d1, d2;λ) < 0, we have the existence of non-
constant steady state to (4).

Theorem 3.3 Let d1, Γ be fixed and (H1), (H21), a11 > 0 hold. If a11
d1

∈ (λk ,λk+1) for some
k ≥ 1, and σk =

∑k
i=1 m(λi) is odd, then there exists a positive constant d∗ such that model

(4) has at least one nonconstant positive steady state for all d2 ≥ d∗.

Proof Notice that if d2 is large enough, then (17) and λ+(d1, d2) > λ–(d1, d2) > 0 hold. Fur-
thermore,

lim
d2→∞

λ+(d1, d2) =
a11

d1
, lim

d2→∞
λ–(d1, d2) = 0.

As a11
d1

∈ (λk ,λk+1), there exists d0 � 1 such that

λ+(d1, d2) ∈ (λk ,λk+1), 0 < λ–(d1, d2) < λ1 for all d2 ≥ d0. (18)

From Theorem 3.2, we know that there exists d̃ > d0 such that (4) with d1 = d̃ and d2 ≥ d̃
has no nonconstant positive steady state. Let d̃ > 0 be large enough such that a11

d1
< λ1.

Then there exists d∗ > d̃ such that

0 < λ–(d1, d2) < λ+(d1, d2) < λ1 for all d2 ≥ d∗. (19)

Now we prove that, for any d2 ≥ d∗, (4) has at least one nonconstant positive steady
state. By way of contradiction, assume that the assertion is not true for some d∗

2 ≥ d∗. By
using the homotopy argument, we can derive a contradiction in the sequel.

Fixing d2 = d∗
2 , for t ∈ [0, 1], we define

D(t) =

(
td1 + (1 – t)d̃ 0

0 td2 + (1 – t)d∗

)

,

and consider the following problem:

⎧
⎨

⎩

–�E = D–1(t)F(E), x ∈ Ω ,
∂E
∂ν

= 0, x ∈ ∂Ω .
(20)
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Notice that E is a nonconstant positive steady state of (4) if and only if it solves (20) with
t = 1. Evidently, E∗ is the unique constant positive steady state of (20). For any t ∈ [0, 1], E
is a nonconstant positive steady state of (20) if and only if it is a solution of the following
problem:

h(E; t) = E – (I – �)–1{D–1(t)F(E) + E
}

= 0 on X. (21)

Form the above discussion, we know that (21) has no nonconstant positive steady state
when t = 0, and there is no such solution for t = 1 at d2 = d∗

2 . Clearly, h(E; 1) = f̂ (d1, d2; E),
h(E; 0) = f̂ (d̃, d∗; E) and

DÊf
(
d1, d2; E∗) = I – (I – �)–1(D–1J

(
E∗) + I

)
,

DÊf
(
d̃, d∗; E∗) = I – (I – �)–1(D̃–1J

(
E∗) + I

)
.

Here, f̂ (·, ·; ·) is as given in (16) and D̃ = diag(d̃, d∗). Form (18) and (19), we have A(d1, d2) ∩
Sp = {λ1,λ2, . . . ,λk} and A(d̃, d∗) ∩ Sp = ∅. Since σk is odd, Lemma 4 yields

h
(
(·; 1), E∗) =

(
f̂ (d1, d2; ·), E∗) = (–1)σk = –1,

h
(
(·; 0), E∗) =

(
f̂
(
d̃, d∗; ·), E∗) = (–1)0 = 1.

From Theorem 3.2, there exist positive constants C = C(d̃, d1, d∗, d∗
2,Γ ) and C = C(d̃,

d∗,Γ ) such that the positive solutions of (21) satisfy C < u(x), v(x) < C on Ω for all t ∈ [0, 1].
Define Σ = {E ∈ X : C < u(x), v(x) < C, x ∈ Ω}. Then h(E; t) �= 0 for all E ∈ ∂Σ and t ∈

[0, 1]. By virtue of the homotopy invariance of the Leray–Schauder degree, we have

deg
(
h(·; 0),Σ , 0

)
= deg

(
h(·; 1),Σ , 0

)
. (22)

Note that both equations h(E; 0) = 0 and h(E; 1) = 1 have the unique positive solution E∗

in Σ , and we obtain

deg
(
h(·; 0),Σ , 0

)
=

(
h(·; 0), E∗) = 1,

deg
(
h(·; 1),Σ , 0

)
=

(
h(·; 1), E∗) = –1,

which contradicts (22). The proof is complete. �

4 Structure of nonconstant positive steady state
Let Y = C(Ω̄) × C(Ω̄), X = {(u, v)|u, v ∈ C2(Ω̄), ∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω}.

4.1 Local structure and direction of nonconstant positive steady state
In this subsection, we first study the local structure of nonconstant positive steady state for
model (4). In brief, by regarding d2 as the bifurcation parameter, we verify the existence
of positive steady state bifurcating from (d2, E∗). The Crandall–Rabinowitz bifurcation
theorem in [25] will be applied to obtain bifurcations.

Define the map F : (0,∞) × X → Y by

F(d2, E) = (d1�u + f , d2�v + g)�, E = (u, v),
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where f , g are given in Sect. 2. Then the solutions of boundary value problem (4) are exactly
zeros of F . With E∗ = (u∗, v∗), we have

F
(
d2, E∗) = 0, for all d2 > 0.

If there is a number d2 > 0 such that every neighborhood of (d2, E∗) contains zero of F in
(0,∞) × X not lying on the curve (d2, E∗), then we say that (d2, E∗) is a bifurcation point
of the equation F = 0 with respect to this curve.

Theorem 4.1 Let (H1), (H21) and a11 > 0 hold. Suppose that j is a positive integer such
that d1λj < a11 and dk

2 �= dj
2 > 0 for any integer k �= j. Then (dj

2, E∗) is a bifurcation point of
F(d2, E) = 0 with respect to the curve (d2, E∗). There is a one-parameter family of non-trivial
solution Γj(s) = (d2(s), u(s), v(s)) of the problem (4) for |s| sufficiently small, where d2(s), u(s),
v(s) are continuous functions, d2(0) = dj

2 and

u(s) = u∗ + sφj + o(s), v(s) = v∗ + sbjφj + o(s), bj =
(d1λj – a11)

a12
> 0.

The zero set of F consists of two curves (d2, E∗) and Γj(s) in a neighborhood of the bifurcation
point (dj

2, E∗).

Proof It suffices to verify conditions (a)–(c) as follows [25]:
(a) The partial derivatives Fd2 , FE , and Fd2E exist and are continuous.
(b) ker FE(dj

2, E∗) and Y /R(FE(dj
2, E∗)) are one-dimensional.

(c) Let ker FE(dj
2, E∗) = span{Φ}, then Fd2E(dj

2, E∗)Φ /∈ R(FE(dj
2, E∗)).

Note that

L1 = FE
(
dj

2, E∗) =

(
d1� + a11 a12

a21 dj
2� + a22

)

,

where a11, a12, a21 and a22 are given in (8). It is clear that the linear operators FE , Fd2E and
Fd2 are continuous, and condition (a) is verified.

Suppose Φ = (ϕ̄, ψ̄)� ∈ ker L1, and write ϕ̄ =
∑

0≤i≤∞,1≤j≤mi
āijφij, ψ̄ =

∑
0≤i≤∞,1≤j≤mi

b̄ij×
φij. Then

∑

0≤i<∞,1≤j≤mi

B̄i

(
āij

b̄ij

)

φij = 0,

where

B̄i =

(
a11 – d1λi a12

a21 a22 – dj
2λi

)

. (23)

Since

det B̄i = 0 ⇔ dj
2 = di

2
(
E∗) =

d1a22λi – a11a22 + a12a21

λi(d1λi – a11)
,
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taking d2 = dj
2 implies that ker L1 = span{Φ1}, where

Φ1 = (1, bj)�φj, bj =
d1λj – a11

a12
> 0,

φj is the eigenfunction of –�. Consider the adjoint operator

L∗
1 =

(
d1� + a11 a21

a12 dj
2� + a22

)

.

In the same way as above we obtain ker L∗
1 = span{Φ∗

1 }, where

Φ∗
1 =

(
1, b∗

j
)�

φj, b∗
j =

d1λj – a11

a21
< 0.

By the Fredholm alternative theorem, we have R(L1) = ker(L∗
1)⊥, thus

codim
(
R(L1)

)
= dim

(
ker

(
L∗

1
))

= 1.

Condition (b) is also verified.
Finally, since

Fd2E
(
dj

2, E∗)Φ1 =

(
0 0
0 �

)

Φ1 =

(
0

–λjbjφj

)

and

〈
Fd2E

(
dj

2, E∗)Φ1,Φ∗
1
〉

Y =
〈
–λjbjφj, b∗

j φj
〉

L2 = –λjbjb∗
j > 0,

we find Fd2E(dj
2, E∗)Φ1 /∈ R(L1), and so condition (c) is satisfied. The proof is completed. �

We investigate the direction of the steady state bifurcation of model (4) in the one-
dimensional interval Ω = (0,π ). It is well known that the operator –� with no-flux bound-
ary conditions has eigenvalues and eigenfunctions as follows:

λ0 = 0, φ0(x) =
√

1
π

; λj = j2, φj(x) =
√

2
π

cos jx

for j = 1, 2, 3, . . . . We translate (u∗, v∗) to the origin by the translation (ū, v̄) = (u – u∗, v – v∗).
For convenience, we will denote ū, v̄ by u, v, respectively. Then we can obtain the following
system:

⎧
⎨

⎩

–d1u′′ = (u + u∗) – (u + u∗)2 – m(u+u∗)(v+v∗)
a+(u+u∗)+b(v+v∗) , x ∈ (0,π ),

–d2v′′ = s(v + v∗)(–q – δ(v + v∗) + m(u+u∗)(v+v∗)
a+(u+u∗)+b(v+v∗) ), x ∈ (0,π ).

(24)

Let

H =
(
u + u∗) –

(
u + u∗)2 –

m(u + u∗)(v + v∗)
a + (u + u∗) + b(v + v∗)

,

G = s
(
v + v∗)

(

–q – δ
(
v + v∗) +

m(u + u∗)(v + v∗)
a + (u + u∗) + b(v + v∗)

)

.
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Then a straightforward calculation yields

Hu(0, 0) = 1 – 2u∗ –
mv∗(bv∗ + a)

(bv∗ + a + u∗)2 , Gu(0, 0) =
smv∗(bv∗ + a)
(bv∗ + a + u∗)2 ,

Hv(0, 0) = –
mv∗(bv∗ + a)

(bv∗ + a + u∗)2 , Gv(0, 0) = sv
(

–δ –
mbu∗

(bv∗ + a + u∗)2

)

,

Huu(0, 0) = –2 +
2mv∗(bv∗ + a)
(bv∗ + a + u∗)3 , Guu(0, 0) = –

2smv∗(bv∗ + a)
(bv∗ + a + u∗)3 ,

Huv(0, 0) = –
m(a2 + (bv∗ + u∗)a + 2bu∗v∗)

(bv∗ + a + u∗)3 ,

Guv(0, 0) =
sm(abv∗ + 2bu∗v∗ + a2 + au∗)

(bv∗ + a + u∗)3 ,

Hvv(0, 0) =
2mbu∗(a + u∗)
(bv∗ + a + u∗)3 , Gvv(0, 0) = –

2s((bv∗ + a + u∗)3δ + mbu∗(a + u∗))
(bv∗ + a + u∗)3 ,

Huuu(0, 0) = –
6mv∗(bv∗ + a)
(bv∗ + a + u∗)4 , Guuu(0, 0) =

6smv∗(bv∗ + a)
(bv∗ + a + u∗)4 ,

Huuv(0, 0) =
2m(–b2v∗2 + 2bu∗v∗ + a2 + au∗)

(bv∗ + a + u∗)4 ,

Guuv(0, 0) = –
2sm(–b2v∗2 + 2bu∗v∗ + a2 + au∗)

(bv∗ + a + u∗)4 ,

Huvv(0, 0) =
2mb(abv∗ + 2bu∗v∗ + a2 – u∗2)

(bv∗ + a + u∗)4 ,

Guvv(0, 0) = –
2smb(abv∗ + 2bu∗v∗ + a2 – u∗2)

(bv∗ + a + u∗)4 ,

Hvvv(0, 0) = –
6mb2u∗(a + u∗)
(bv∗ + a + u∗)4 , Gvvv(0, 0) =

6smb2u∗(a + u∗)
(bv∗ + a + u∗)4 .

Denote E = (u, v), then we rewrite the map F : R+ × X → Y by

F(d2, E) =

(
d1u′′ + H(u, v)
d2v′′ + G(u, v)

)

.

By Theorem 4.1, we see that dimker FE(dj
2, (0, 0)) = codim R(FE(dj

2, (0, 0))) = 1 and ker FE(dj
2,

(0, 0)) = span{Φ1}. Hence, we can decompose X and Y as

X = ker FE
(
dj

2, (0, 0)
) ⊕ Z and Y = R

(
FE

(
dj

2, (0, 0)
)) ⊕ Z′,

where Z is the complement of ker FE(dj
2, (0, 0)) in X and Z′ is the complement of

R(FE(dj
2, (0, 0))) in Y . Due to codim R(FE(dj

2, (0, 0))) = 1, there exists T ∈ Y ∗ such that

R
(
FE

(
dj

2, (0, 0)
))

=
{

(ξ , ζ ) ∈ Y :
〈
T , (ξ , ζ )

〉
= 0

}
,

where Y ∗ := span{Φ∗
1 }. Moreover, Φ∗

1 satisfies FE(dj
2, (0, 0))Φ∗

1 = 0 by Theorem 4.1. Hence,
we can define

〈
T , (ξ , ζ )

〉
=

〈
Φ∗

1 , (ξ , ζ )
〉

=
∫

Ω

ξφj dx +
∫

Ω

b∗
j ζφj dx.
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By Fd2E(dj
2, (0, 0))Φ1 /∈ R(FE(dj

2, (0, 0))) derived in Theorem 4.1, we find that

〈
Fd2E

(
dj

2, (0, 0)
)
Φ1,Φ∗

1
〉 �= 0.

From [26], we can know that

d′
2(0) = –

〈FEE(dj
2, (0, 0))Φ2

1 ,Φ∗
1 〉

2〈Fd2E(dj
2, (0, 0))Φ1,Φ∗

1 〉 .

By some calculations, we have

〈
FEE

(
dj

2, (0, 0)
)
Φ2

1 ,Φ∗
1
〉

=
(
gj + hjb∗

j
)
∫ π

0
φ3

j dx = 0

and

〈
Fd2E

(
dj

2, (0, 0)
)
Φ1,Φ∗

1
〉

=
∫ π

0
b∗

j φj(bjφj)′′ dx = –j2bjb∗
j ,

where

gj = Huu(0, 0) + 2Huv(0, 0)bj + Hvv(0, 0)b2
j ,

hj = Guu(0, 0) + 2Guv(0, 0)bj + Gvv(0, 0)b2
j .

Hence, d′
2(0) = 0.

Note that 〈FEE(dj
2, (0, 0))Φ2

1 ,Φ∗
1 〉 = 0 implies

FEE
(
dj

2, (0, 0)
)
Φ2

1 ∈ R
(
FE

(
dj

2, (0, 0)
))

.

From [26], we see that the bifurcation is supercritical (resp. subcritical) if

d′′(0) = –
〈FEEE(dj

2, (0, 0))Φ3
1 ,Φ∗

1 〉 + 3〈FEE(dj
2, (0, 0))Φ1θ ,Φ∗

1 〉
3〈Fd2E(dj

2, (0, 0))Φ1,Φ∗
1 〉 > 0 (resp. < 0),

where θ is the solution of the following problem:

FEE
(
dj

2, (0, 0)
)
Φ2

1 + FE
(
dj

2, (0, 0)
)
θ = 0.

Let θ = (θ1, θ2). Then θ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

d1θ
′′
1 + Hu(0, 0)θ1 + Hv(0, 0)θ2 = –gjφ

2
j ,

dj
2θ

′′
2 + Gu(0, 0)θ1 + Gv(0, 0)θ2 = –hjφ

2
j ,

θ ′
i (0, t) = θ ′

i (π , t) = 0, i = 1, 2.

(25)

By direct calculation, we obtain

〈
FEEE

(
dj

2, (0, 0)
)
Φ3

1 ,Φ∗
1
〉

=
(
mj + njb∗

j
)
∫ π

0
φ4

j dx =
3

2π

(
mj + njb∗

j
)
,
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where

mj = Huuu(0, 0) + 3bjHuuv(0, 0) + 3b2
j Huvv(0, 0) + b3

j Hvvv(0, 0),

nj = Guuu(0, 0) + 3bjGuuv(0, 0) + 3b2
j Guvv(0, 0) + b3

j Gvvv(0, 0),

and bj, b∗
j are given in Sect. 4.1. Hence,

〈
FEEE

(
dj

2, (0, 0)
)
Φ3

1 ,Φ∗
1
〉

=
3

2π

(
3bj

[
b∗

j Guuv(0, 0) + Huuv(0, 0)
]

+ 3b2
j
[
Huvv(0, 0) + b∗

j Guvv(0, 0)
]

+ b3
j
[
Hvvv(0, 0) + b∗

j Gvvv(0, 0)
]

+ b∗
j Guuu(0, 0) + Huuu(0, 0)

)

and

〈
FEE(dj

2, (0, 0)Φ1θ ,Φ∗
1
〉

= C1

∫ π

0
θ1φ

2
j dx + C2

∫ π

0
θ2φ

2
j dx,

where

C1 = Huu(0, 0) + bjHuv(0, 0) + b∗
j Guu(0, 0) + bjb∗

j Guv(0, 0),

C2 = Huv(0, 0) + bjHvv(0, 0) + b∗
j Guv(0, 0) + bjb∗

j Gvv(0, 0).

We now compute

∫ π

0
θ1φ

2
j dx and

∫ π

0
θ2φ

2
j dx.

Multiplying (25) by φ2
j and integrating by parts, we derive

⎧
⎨

⎩

d1
∫ π

0 φ2
j θ

′′
1 dx + Hu(0, 0)

∫ π

0 φ2
j θ1 dx + Hv(0, 0)

∫ π

0 φ2
j θ2 dx = –gj

∫ π

0 φ4
j dx,

dj
2
∫ π

0 φ2
j θ

′′
2 dx + Gu(0, 0)

∫ π

0 φ2
j θ1 dx + Gv(0, 0)

∫ π

0 φ2
j θ2 dx = –hj

∫ π

0 φ4
j dx,

(26)

where
∫ π

0
φ2

j θ
′′
i dx =

4
π

j2
∫ π

0
θi

(
1 – 2 cos2 jx

)
dx, i = 1, 2.

Integrating (25) by parts yields

γ1 :=
∫ π

0
θ1 dx =

(hjHv(0, 0) – gjGv(0, 0))
(Hu(0, 0)Gv(0, 0) – Hv(0, 0)Gu(0, 0))

,

γ2 :=
∫ π

0
θ2 dx =

(gjGu(0, 0) – hjHu(0, 0))
(Hu(0, 0)Gv(0, 0) – Hv(0, 0)Gu(0, 0))

.

It follows from (26) that
⎧
⎨

⎩

(Hu(0, 0) – 4d1j2)
∫ π

0 φ2
j θ1 dx + Hv(0, 0)

∫ π

0 φ2
j θ2 dx = – 3gj

2π
– 4

π
d1γ1j2,

(Gv(0, 0) – 4dj
2j2)

∫ π

0 φ2
j θ2 dx + Gu(0, 0)

∫ π

0 φ2
j θ1 dx = – 3hj

2π
– 4

π
dj

2γ2j2.
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Thus,

L1 :=
∫ π

0
θ1φ

2
j dx =

A1

B
, L2 :=

∫ π

0
θ2φ

2
j dx =

A2

B
,

where

A1 :=
(

–
3

2π
gj –

4
π

d1γ1j2
)

(
Gv(0, 0) – 4dj

2j2) + Hv(0, 0)
(

3
2π

hj +
4
π

dj
2γ2j2

)

,

A2 :=
(

–
3

2π
hj –

4
π

dj
2γ2j2

)
(
Hu(0, 0) – 4d1j2) + Gu(0, 0)

(
3

2π
gj +

4
π

d1γ1j2
)

,

B :=
(
Hu(0, 0) – 4d1j2)(Gv(0, 0) – 4dj

2j2) – Hv(0, 0)Gu(0, 0).

Consequently, we have

d′′
2 (0) =

C
2π j2bjb∗

j
, (27)

where

C := 3bj
[
b∗

j Guuv(0, 0) + Huuv(0, 0)
]

+ 3b2
j
[
Huvv(0, 0) + b∗

j Guvv(0, 0)
]

+ b3
j
[
Hvvv(0, 0) + b∗

j Gvvv(0, 0)
]

+ b∗
j Guuu(0, 0) + Huuu(0, 0) + 2π (C1L1 + C2L2).

From the analysis above, we obtain the following results.

Theorem 4.2 Under the same hypothesis as Theorem 4.1, there exists a smooth bifurca-
tion branch from (dj

2, (0, 0)). Furthermore, the bifurcation is supercritical (resp. subcritical)
provided that d′′

2 (0) > 0 (< 0), where d′′
2 (0) is given by (27).

4.2 Global structure of nonconstant positive steady state
Theorem 4.1 provides no information of the bifurcating curve Γj far from the equilibrium
point. A further study is therefore necessary in order to understand its global bifurca-
tion. In the one-dimensional interval Ω = (0,π ), by using the global bifurcation theory
of Rabinowitz and the Leray–Schauder degree for compact operates, we prove that Γj is
unbounded.

Theorem 4.3 Under the same hypothesis as Theorem 4.1, the projection of the bifurcation
curve Γj on the d2-axis contains (dj

2,∞).
If d2 > d̄2 and d2 �= dk

2 for any integer k > 0, then the problem (4) possesses at least one
nonconstant positive steady state.

Proof Let ũ = u – u∗, ṽ = v – v∗. Then (4) is transformed into

⎧
⎨

⎩

–d1ũ′′ = a11ũ + a12ṽ + h1(ũ, ṽ),

–d2ṽ′′ = a21ũ + a22ṽ + h2(ṽ, ṽ),
(28)
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where h1(ũ, ṽ), h2(ũ, ṽ) are higher-order terms of ũ and ṽ. The equilibrium point (u∗, v∗) of
(4) shifts to (0, 0) of this new system. Let

G1 =
(

–d1
∂2

∂x2 + a11

)–1

, G2 =
(

–d2
∂2

∂x2 – a22

)–1

.

Then (28) is transformed into

ũ = G1(2a11ũ) + G1(a12ṽ) + G1
(
h1(ũ, ṽ)

)
, ṽ = G2(a21ṽ) + G2

(
h2(ũ, ṽ)

)
.

Put Ẽ = (ũ, ṽ), K(d2)Ẽ = (2a11G1(ũ) + a12G1(ṽ), a21G2(ũ)) and

H(Ẽ) = (G1
(
h1(ũ, ṽ)

)
, G2

(
h2(ũ, ṽ)

)
.

Recall that

U =
{

(u, v) : u, v ∈ C2([0,π ]
)
, u′ = v′ = 0 at x = 0,π

}
.

Then the boundary value problem (4) can be interpreted as the equation

Ẽ = K(d2)Ẽ + H(Ẽ) in E. (29)

Note that K(d2) is a compact linear operator on U for any given d2 > 0 and H(Ẽ) = o(|Ẽ|) for
Ẽ near zero uniformly on closed d2 sub-intervals of (0,∞), and H(Ẽ) is a compact operator
on U as well.

In order to apply Rabinowitz’s global bifurcation theorem, we first verify that 1 is an
eigenvalue of K(dj

2) of algebraic multiplicity one. From the argument in the proof of The-
orem 4.1 it is seen that ker(K(dj

2) – I) = ker L1 = span{Φ1}, so 1 is indeed an eigenvalue
of K = K(dj

2), and dim ker(K – I) = 1. As the algebraic multiplicity of the eigenvalue 1
is the dimension of the generalized null space

⋃∞
i=1 ker(K – I)i, we need to verify that

ker(K – I) = ker(K – I)2, or ker(K – I) ∩ R(K – I) = 0.
We now compute ker(K∗ – I) following the calculation in [27], where K∗ is the adjoint

of K . Let (ϕ̂, ψ̂) ∈ ker(K∗ – I). Then

2a11G1(ϕ̂) + a21G2(ψ̂) = ϕ̂, a12G1(ϕ̂) = ψ̂ .

By the definition of G1 and G2 we obtain

–dj
2a12ϕ̂

′′ = fϕ̂ ϕ̂ + fψ̂ ψ̂ , –d1ψ̂
′′ = a12ϕ̂ – a11ψ̂ ,

where

fϕ̂ =
2dj

2a11a12

d1
+ a12a22, fψ̂ = a12a21 – 2

(

a11a22 +
dj

2a2
11

d1

)

.

Write ϕ̂ =
∑

0≤i≤∞,1≤j≤mi
âijφij, ψ̂ =

∑
0≤i≤∞,1≤j≤mi

b̂ijφij. Then

∑

0≤i≤∞,1≤j≤mi

B̂i

(
âij

b̂ij

)

φij = 0,
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where

B̂i =

(
–dj

2a12λi + fϕ̂ fψ̂
a12 –d1λi – a11

)

.

By a straightforward calculation one can check that det B̂i = a12 det B̄i, where B̄i is given
in (23) by replacing d2 with dj

2. Thus det B̄i = 0 only for i = j, and ker(K∗ – I) = span{Φ̂},
where Φ̂ = ( d1λi+a11

a12
, 1)�φj. Since (Φ1, Φ̂)Y = 2d1λj

a12
�= 0, Φ1 /∈ (ker(K∗ – I))⊥ = R((K – I)), so

ker(K – I) ∩ R(K – I) = 0 and the eigenvalue 1 has algebraic multiplicity one.
If 0 < d2 �= dj

2 is in a small neighborhood of dj
2, then the linear operator I –K(d2) : U → U

is a bijection and 0 is an isolated solution of (29) for this fixed d2. The index of this isolated
zero of I – K(d2) – H is given by

index
(
I – K(d2) – H , (d2, 0)

)
= deg

(
I – K(d2), B, 0

)
= (–1)p,

where B is a sufficiently small ball with center at 0, and p is the sum of the algebraic mul-
tiplicities of the eigenvalues of K(d2) which are larger than 1. For our bifurcation analysis,
it is also necessary to verify that this index changes as d2 crosses dj

2, that is, for ε > 0 suf-
ficiently small,

index
(
I – K

(
dj

2 – ε
)

– H ,
(
dj

2 – ε, 0
)) �= index

(
I – K

(
dj

2 + ε
)

– H ,
(
dj

2 + ε, 0
))

. (30)

Indeed, if μ is an eigenvalue of K(d2) with an eigenfunction (ϕ̃, ψ̃), then

2a11G1(ϕ̃) + a12G1(ψ̃) = μϕ̃, a21G2(ϕ̃) = μψ̃ .

By the definition of G1, G2 and

ϕ̃ =
∑

0≤i≤∞,1≤j≤mi

ãijφij, ψ̃ =
∑

0≤i≤∞,1≤j≤mi

b̃ijφij,

we have

∑

0≤i≤∞,1≤j≤mi

B̃i

(
ãij

b̃ij

)

φij = 0,

where

B̃i =

(
(2 – μ)a11 – d1λiμ a12

a21 (a22 – d2λi)μ

)

.

Thus the set of eigenvalues of K(d2) consists of all μ that solve the characteristic equation

μ2 –
2a11

d1λi + a11
μ –

a12a21

(d2λi – a22)(d1λi + a11)
= 0. (31)

In particular, for d2 = dj
2, if μ = 1 is a root of (31), then a simple calculation leads to dj

2 = di
2,

and j = i by the assumption. For i = j in (31), we let μ1(dj
2), μ2(dj

2) denote the two roots.



Xu and Fu Boundary Value Problems        (2019) 2019:102 Page 22 of 23

First we find that

μ1
(
dj

2
)

= 1 and μ2
(
dj

2
)

=
a11 – d1λj

a11 + d1λj
< 1.

Now for d2 close to dj
2, the root of (31) is given by

μ1(d2) =
a11 +

√
a2

11 + a12a21(d1λi+a11)
d2λi–a22

(d1λi + a11)
, μ2(d2) < 1.

And μ2(d2) is an increasing function of d2, there is a small ε > 0 such that

μ1
(
dj

2 + ε
)

> 1, μ1
(
dj

2 – ε
)

< 1.

Consequently, K(dj
2 +ε) has exactly one more eigenvalues that are larger than 1 than K(dj

2 –
ε) does, and by a similar argument to above we can show this eigenvalue has algebraic
multiplicity one. This verifies (30).

With the help of (30), we can use the argument in [25] to conclude that Γj either meets
infinity in R × U or meets (dk

2, 0) for some k �= j, dk
2 > 0. We now show that the first alter-

native must occur, following the idea of [28] and [29]. Indeed, if Γj is bounded, then it is
compact, and Γj meets some other bifurcation points. Let k be such that Γj meets (dk

2, 0),
but not (di

2, 0) for any i > k. Consider the problem (4) on the interval (0,π ) subject to the
boundary condition

u′ = v′ at x = 0,π . (32)

We first note that if Ē solves (4) and (32), then one can construct a solution E of (4) by a
reflective and periodic extension: Let xn = nπ , n = 0, 1, . . . , k, and define

E(x) =

⎧
⎨

⎩

Ē(x – x2n) if x2n ≤ x ≤ x2n+1,

Ē(x2n+2 – x) if x2n+1 ≤ x ≤ x2n+2.

It is easy see that (dk
2, 0) is also a bifurcation point of the problem (4) and (32). Let Λk de-

note the bifurcation branch of this new problem that meets infinity or meets (dk
2, 0), then

use the same argument above it is clear that it either meets infinity or meets (dk′
2 , 0) for

some k′ > k. If the second case occurs, then by the above extension one sees that Γj meets
(dk′

2 , 0), which violates the definition of k, hence Λk meets infinity, and then by the exten-
sion again Γj meets infinity too. It then follows that the projection of Γj on the d2 interval
must be unbounded, since the solutions u, v are bounded by constants independent of
d2. It also follows from the a priori estimates that any solutions on the curve Γj must be
positive. And the proof is complete. �
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