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1 Introduction
In this paper, we study the following biharmonic equation:

⎧
⎨

⎩

�2u –
∑k

i=1
μi

|x–ai|4 u = |u|2∗–2u + λ|u|q–2u, x ∈ Ω ,

u = ∂u
∂n = 0, x ∈ ∂Ω ,

(Eλ)

where Ω ⊂R
N (N ≥ 5) is a smooth bounded domain such that the different points ai ∈ Ω ,

i = 1, 2, . . . , k, k ≥ 2, ∂
∂n is the outward normal derivative, 0 ≤ μi < μ̄ := ( N(N–4)

4 )2, λ > 0,
1 ≤ q < 2∗, and 2∗ := 2N

N–4 is the critical Sobolev exponent.
Equation (Eλ) is related to the following Rellich inequality [22]:

∫

Ω

u2

|x – a|4 dx ≤ 1
μ̄

∫

Ω

|�u|2 dx, ∀a ∈ Ω , u ∈ H2
0 (Ω), (1.1)

where H2
0 (Ω) is the completion of C∞

0 (Ω) with respect to (
∫

Ω
|� · |2 dx)1/2. Then the fol-

lowing best constant is well defined:

Aμ(Ω) := inf
H2

0 (Ω)\{0}

∫

Ω
(|�u|2 – μ u2

|x–a|4 ) dx

(
∫

Ω
|u|2∗ dx)

2
2∗

, ∀a ∈ Ω ,μ < μ̄.

Note that it is well known that Aμ(Ω) is independent of Ω and that Aμ(Ω) is not obtained
except in the case with Ω = R

N . Moreover, the minimizers of Aμ(Ω) have been investi-
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gated by some authors (e.g. [3, 10, 11, 19]). Thus, we will simply denote Aμ(Ω) = Aμ(RN ) =
Aμ.

In this paper, for
∑k

i=1 μi ∈ [0, μ̄), we use H2
0 (Ω) to denote the completion of C∞

0 (Ω)
with respect to the norm

‖u‖ :=

(∫

Ω

(

|�u|2 –
k∑

i=1

μiu2

|x – ai|4
)

dx

) 1
2

.

By (1.1), this norm is equivalent to the usual norm (
∫

Ω
|�u|2 dx) 1

2 .
It is easily to see that Eq. (Eλ) is variational and its solutions are critical points of the

functional defined in H2
0 (Ω) by

Jλ(u) :=
1
2
‖u‖2 –

1
2∗

∫

Ω

|u|2∗
–

λ

q

∫

Ω

|u|q, u ∈ H2
0 (Ω).

Then Jλ ∈ C1(H2
0 (Ω),R) and that

〈
J ′
λ(u), v

〉
=

∫

Ω

(

�u�v –
k∑

i=1

μiuv
|x – ai|4

)

–
∫

Ω

|u|2∗–2uv – λ

∫

Ω

|u|q–2uv, ∀v ∈ H2
0 (Ω).

In recent years problems related with the inequality (1.1) and the equations with bihar-
monic operator have been investigated in several works; we quote [1, 3, 6–10, 13, 18, 19].
On the other hand, the biharmonic problems involving a Rellich-type potential and a crit-
ical Sobolev exponent have seldom been studied; we only find some results in [10, 18, 19].
Thus it is necessary for us to investigate the related biharmonic problems deeply. Very
recently, Hsu and Zhang [16] studied the existence and multiplicity of nontrivial solution
for the following equation:

⎧
⎨

⎩

�2u – μ

|x|4 u = |u|2∗(s)–2

|x|s u + λ
|u|q–2

|x|t u, x ∈ Ω ,

u = ∂u
∂n = 0, x ∈ ∂Ω ,

where Ω ⊂ R
N (N ≥ 5) is a smooth bounded domain such that 0 ∈ Ω , 0 ≤ μ < μ̄, 0 ≤ s,

t < 4, 1 ≤ q < 2, λ > 0.
In this paper, we study a biharmonic equation involving multiple Rellich-type potentials

and a critical Sobolev exponent. It should be mentioned that the main technical difficulty
to study equations like Eq. (Eλ) is the lack of knowledge of the explicit form minimizers to
the best Rellich–Sobolev constant Aμi . However, as in [10] and [19], this difficulty can be
overcome since the unique tool which is necessary to perform the needed asymptotic ex-
pansions is the asymptotic behavior at the origin and infinity of Rellich–Sobolev extremals
and their first derivatives, which is established in Theorem 1.1 of [19]. We are only aware
of the work in [18] which studied the existence and nonexistence of ground state solution
to Eq. (Eλ) when Ω = R

N , k ≥ 2 and λ = 0. Furthermore, Eq. (Eλ) have never been studied
when Ω is a smooth bounded domain and k ≥ 2, and our results are new.

For 0 ≤ μi < μ̄ and ai ∈ Ω , i = 1, 2, . . . , k, we can define the constant:

Aμi := inf
u∈H2

0 (Ω)\{0}

∫

Ω
(|�u|2 – μi

u2

|x–ai|4 ) dx

(
∫

Ω
|u|2∗ dx)

2
2∗

.
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The authors in [10, 19] proved that Aμi is attained in R
N by the functions

{
yμi
ε (x – ai) = ε

4–N
2 Uμi

(
ε–1(x – ai)

)
, ε > 0

}
, (1.2)

where Uμi (x) is positive, radially symmetric, radially decreasing, and solves

�2u – μi
u

|x|4 = |u|2∗–1, x ∈R
N \ {0}, u > 0,

which satisfies

∫

RN

(
∣
∣�yμi

ε (x – ai)
∣
∣2 – μi

|yμi
ε (x – ai)|2
|x – ai|4

)

dx =
∫

RN

∣
∣yμi

ε (x – ai)
∣
∣2∗

dx = A
N
4
μi .

Moreover, by setting ρ = |x|,

Uμ(ρ) = O1
(
ρ–a(μ)), as ρ → 0,

Uμ(ρ) = O1
(
ρ–b(μ)), U ′

μ(ρ) = O1
(
ρ–b(μ)–1), as ρ → +∞,

where a(μ) := N–4
2 f (μ), b(μ) := N–4

2 (2 – f (μ)) and f : [0, μ̄] → [0, 1] is defined as

f (μ) := 1 –

√

N2 – 4N + 8 – 4
√

(N – 2)2 + μ

N – 4
, μ ∈ [0, μ̄].

From Lemma 2.1 in [18], it follows that for μ ∈ [0, μ̄)

0 ≤ a(μ) ≤ δ ≤ b(μ) ≤ 2δ, δ :=
N – 4

2
. (1.3)

Furthermore, there exist positive constants C1(μ) and C2(μ) such that

0 < C1(μ) ≤ Uμ(x)
(|x| a(μ)

δ + |x| b(μ)
δ

)δ ≤ C2(μ), ∀x ∈R
N \ {0}.

Without loss of generality, throughout this paper we assume that
(H) 0 ≤ μ1 ≤ μ2 ≤ · · · ≤ μk < μ̄,

∑k
i=1 μi < μ̄, and 2∗ := 2N

N–4 .
In this paper, we define the following constants and notations:

‖u‖2 =
∫

Ω

(

|�u|2 –
k∑

i=1

μiu2

|x – ai|4
)

dx is the norm in H2
0 (Ω);

H–2(Ω) : the dual space of H2
0 (Ω);

〈·, ·〉 : the usual scalar product in H2
0 (Ω);

Br(a) =
{

x : |x – a| < r
}

, Br(a) =
{

x : |x – a| ≤ r
}

, a ∈R
N, r > 0;

μ∗ :=
1

16
(
N2 – 16

)(
N2 – 8N

)
, N ≥ 9;

S = inf
u∈H2

0 (Ω)\{0}

∫

Ω
(|�u|2 –

∑k
i=1 μi

u2

|x–ai|4 ) dx

(
∫

Ω
|u|2∗ dx)

2
2∗

; (1.4)
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Λ0 :=
(

2 – q
2∗ – q

) 2–q
2∗–2

(
2∗ – 2
2∗ – q

)

|Ω|– 2∗–q
2∗ S

(2–q)N
8 + q

2 ; (1.5)

λ1 := inf
u∈H2

0 (Ω)\{0}

∫

Ω
(|�u|2 –

∑k
i=1 μi

u2

|x–ai|4 ) dx
∫

Ω
|u|2 dx

. (1.6)

Since the embedding H2
0 (Ω) ↪→ L2(Ω) is compact, by choosing a minimizing sequence,

we easily infer that λ1 can be obtained in H2
0 (Ω), and λ1 > 0. C, C1, C2, . . . denote various

positive constants. For all ε > 0, τ > 0, O(ετ ) denotes the quantity satisfying |O(ετ )/ετ | ≤ C
and o(ετ ) means |o(ετ )/ετ | → 0 as ε → ε0, on(1) denotes on(1) → 0 as n → ∞ and O1(ετ )
(ε → ε0) means that there exist the constants C1, C2 > 0 such that C1ε

τ ≤ O1(ετ ) ≤ C2ε
τ as

ε → ε0. |Ω| denotes the Lebesgue measure of Ω and omit dx in integrals for convenience.
Let 1 ≤ q < 2∗, by the Hölder inequality and (1.4), for all u ∈ H2

0 (Ω), we obtain

∫

Ω

|u|q ≤
(∫

Ω

1
) 2∗–q

2∗ (∫

Ω

|u|2∗
) q

2∗
≤ |Ω| 2∗–q

2∗ S– q
2 ‖u‖q. (1.7)

We are now ready to state our main results.

Theorem 1.1 Let N ≥ 5, 1 ≤ q < 2 and assume that (H) holds, then we have the following
results.

(i) If λ ∈ (0,Λ0), then Eq. (Eλ) has at least one nontrivial solution.
(ii) If λ ∈ (0, q

2 Λ0), then Eq. (Eλ) has at least two nontrivial solutions.

Theorem 1.2 Let N ≥ 5, 2 ≤ q < 2∗ and assume that (H) and one of the following condi-
tions holds:

(i) λ > 0, q < q < 2∗, where

q = max

{

2,
N

b(μk)
,

4(N – 2 – b(μk))
N – 4

}

.

(ii) N ≥ 8, 0 < λ < λ1, q = 2, 0 ≤ μk ≤ μ∗.
Then Eq. (Eλ) has at least one nontrivial solution.

This paper is organized as follows. In Sect. 2, we give some properties of Nehari mani-
fold. In Sects. 3 and 4, we prove Theorem 1.1. In Sect. 5, we prove Theorem 1.2.

2 Nehari manifold
In this section, we will give some properties of Nehari manifold. As the energy functional
Jλ is not bounded below on H2

0 (Ω), it is useful to consider the functional on the Nehari
manifold

Mλ =
{

u ∈ H2
0 (Ω) \ {0} :

〈
J ′
λ(u), u

〉
= 0

}
.

Thus, u ∈Mλ if and only if

〈
J ′
λ(u), u

〉
= ‖u‖2 –

∫

Ω

|u|2∗
– λ

∫

Ω

|u|q = 0. (2.1)
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Note that Mλ contains every nonzero solution of Eq. (Eλ). Moreover, we have the follow-
ing results.

Lemma 2.1 Let N ≥ 5, 1 ≤ q < 2 and λ ∈ (0,Λ0) where Λ0 is the same as in (1.5). Then Jλ
is coercive and bounded below on Mλ.

Proof If u ∈Mλ, then by (1.4), (2.1), and the Hölder inequality

Jλ(u) =
1
2
‖u‖2 +

1
2∗

(

λ

∫

Ω

|u|q – ‖u‖2
)

–
λ

q

∫

Ω

|u|q

=
2∗ – 2

22∗ ‖u‖2 – λ

(
2∗ – q

2∗q

)∫

Ω

|u|q (2.2)

≥ 2
N

‖u‖2 – λ

(
2∗ – q

2∗q

)

|Ω| 2∗–q
2∗ S– q

2 ‖u‖q. (2.3)

Thus, Jλ is coercive and bounded below on Mλ. �

Define ψλ : H2
0 (Ω) →R, by ψλ(u) = 〈J ′

λ(u), u〉, that is,

ψλ(u) = ‖u‖2 –
∫

Ω

|u|2∗
– λ

∫

Ω

|u|q.

Then we see that ψλ ∈ C1(H2
0 (Ω),R), Mλ = ψ–1

λ (0) \ {0}, and for all u ∈Mλ,

〈
ψ ′

λ(u), u
〉

= 2‖u‖2 – 2∗
∫

Ω

|u|2∗
– λq

∫

Ω

|u|q

= (2 – q)‖u‖2 –
(
2∗ – q

)
∫

Ω

|u|2∗
(2.4)

=
(
2 – 2∗)‖u‖2 – λ

(
q – 2∗)

∫

Ω

|u|q. (2.5)

We split Mλ into three parts:

M+
λ =

{
u ∈Mλ :

〈
ψ ′

λ(u), u
〉

> 0
}

,

M0
λ =

{
u ∈Mλ :

〈
ψ ′

λ(u), u
〉

= 0
}

,

M–
λ =

{
u ∈Mλ :

〈
ψ ′

λ(u), u
〉

< 0
}

.

We now derive some basic properties of M+
λ , M0

λ and M–
λ .

Lemma 2.2 Assume that u0 is a local minimizer for Jλ on Mλ and u0 /∈M0
λ. Then J ′

λ(u0) =
0 in H–2(Ω).

Proof See [5, Theorem 2.3]. �

Moreover, we have the following result.

Lemma 2.3 If λ ∈ (0,Λ0), then M0
λ = ∅.
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Proof Arguing by contradiction, we assume that there exists a λ ∈ (0,Λ0) such that M0
λ �=

∅. Then, for u ∈M0
λ by (1.4) and (2.4), we have

2 – q
2∗ – q

‖u‖2 =
∫

Ω

|u|2∗ ≤ S– 2∗
2 ‖u‖2∗

and so

‖u‖ ≥
(

2 – q
2∗ – q

) 1
2∗–2

S
2∗

2(2∗–2) .

Similarly, using (1.7), (2.5), and the Hölder inequality, we have

‖u‖2 = λ
2∗ – q
2∗ – 2

∫

Ω

|u|q ≤ λ
2∗ – q
2∗ – 2

|Ω| 2∗–q
2∗ S– q

2 ‖u‖q,

which implies

‖u‖ ≤
[

λ
2∗ – q
2∗ – 2

|Ω| 2∗–q
2∗ S– q

2

] 1
2–q

.

Hence, we must have

λ ≥
(

2 – q
2∗ – q

) 2–q
2∗–2

(
2∗ – 2
2∗ – q

)

|Ω|– 2∗–q
2∗ S

(2–q)N
8 + q

2 = Λ0,

which is a contradiction. This completes the proof. �

For each u ∈ H2
0 (Ω) \ {0}, let

τmax =
(

(2 – q)‖u‖2

(2∗ – q)
∫

Ω
|u|2∗

) 1
2∗–2

> 0.

Similar to Lemma 2.7 in [14], we can get the following result.

Lemma 2.4 If λ ∈ (0,Λ0), then, for each u ∈ H2
0 (Ω) \ {0}, the set {τu : τ > 0} intersects Mλ

exactly twice. More specifically, there exist a unique τ– = τ–(u) > 0 such that τ–u ∈ M–
λ

and a unique τ+ = τ+(u) > 0 such that τ+u ∈M+
λ . Moreover, τ+ < τmax < τ– and

Jλ
(
τ+u

)
= inf

0≤τ≤τmax
Jλ(τu), Jλ

(
τ–u

)
= sup

τ≥τmax
Jλ(τu).

Proof The proof is similar to that of [14, Lemma 2.7] and is omitted. �

3 Existence of ground state solutions in the case of 1 ≤ q < 2
First, we remark that it follows from Lemma 2.3 that

Mλ = M+
λ ∪M–

λ
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for all λ ∈ (0,Λ0). Furthermore, by Lemma 2.4 it follows that M+
λ and M–

λ are non-empty
and by Lemma 2.1 we may define

αλ = inf
u∈Mλ

Jλ(u); α+
λ = inf

u∈M+
λ

Jλ(u); α–
λ = inf

u∈M–
λ

Jλ(u).

Lemma 3.1 The following facts hold.
(i) If λ ∈ (0,Λ0), then αλ ≤ α+

λ < 0.
(ii) If λ ∈ (0, q

2 Λ0), then α–
λ > c0 for some c0 > 0.

In particular, for each λ ∈ (0, q
2 Λ0), we have α+

λ = αλ.

Proof (i) Let u ∈M+
λ . By (2.4)

2 – q
2∗ – q

‖u‖2 >
∫

Ω

|u|2∗

and so

Jλ(u) =
(

1
2

–
1
q

)

‖u‖2 +
(

1
q

–
1
2∗

)∫

Ω

|u|2∗

<
[(

1
2

–
1
q

)

+
(

1
q

–
1
2∗

)(
2 – q
2∗ – q

)]

‖u‖2

= –
(2∗ – 2)(2 – q)

22∗q
‖u‖2 < 0.

Therefore, from the definition of αλ and α+
λ , we can deduce that αλ ≤ α+

λ < 0.
(ii) Let u ∈M–

λ . By (2.4)

2 – q
2∗ – q

‖u‖2 <
∫

Ω

|u|2∗
.

Moreover, by (1.4) we have

∫

Ω

|u|2∗ ≤ S– 2∗
2 ‖u‖2∗

.

This implies

‖u‖ >
(

2 – q
2∗ – q

) 1
2∗–2

S
N
8 for all u ∈M–

λ . (3.1)

By (2.3) and (3.1), we have

Jλ(u) ≥ ‖u‖q
[

2
N

‖u‖2–q – λ

(
2∗ – q

2∗q

)

|Ω| 2∗–q
2∗ S– q

2

]

>
(

2 – q
2∗ – q

) q
2∗–2

S
qN
8

[
2
N

(
2 – q
2∗ – q

) 2–q
2∗–2

S
(2–q)N

8 – λ

(
2∗ – q

2∗q

)

|Ω| 2∗–q
2∗ S– q

2

]

=
(

q
2
Λ0 – λ

)(
2 – q
2∗ – q

) q
2∗–2

(
2∗ – q

2∗q

)

|Ω| 2∗–q
2∗ S

(N–4)q
8 .
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Thus, if λ ∈ (0, q
2 Λ0), then there exists c0 > 0 such that

Jλ(u) > c0 for all u ∈M–
λ .

Consequently, this completes the proof. �

Remark 3.2
(i) If λ ∈ (0,Λ0), then, by (1.7), (2.5), and the Hölder inequality, for each u ∈M+

λ we
have

‖u‖2 < λ
2∗ – q
2∗ – 2

∫

Ω

|u|q

≤ λ
2∗ – q
2∗ – 2

|Ω| 2∗–q
2∗ S– q

2 ‖u‖q

and so

‖u‖ <
[

λ
2∗ – q
2∗ – 2

|Ω| 2∗–q
2∗ S– q

2

] 1
2–q

for all u ∈M+
λ . (3.2)

(ii) If λ ∈ (0, q
2Λ0), then, by Lemma 2.4 and Lemma 3.1(ii), for each u ∈M–

λ we have

Jλ(u) = sup
t≥0

Jλ(tu).

We define the Palais–Smale (indicated simply by the prefix “(PS)-”) sequences, (PS)-
values, and (PS)-conditions in H2

0 (Ω) for Jλ as follows.

Definition 3.3
(i) For c ∈R, a sequence {un} is a (PS)c-sequence in H2

0 (Ω) for Jλ if Jλ(un) = c + on(1)
and J ′

λ(un) = on(1) strongly in H–2(Ω) as n → ∞.
(ii) c ∈R is a (PS)-value in H2

0 (Ω) for Jλ if there exists a (PS)c-sequence in H2
0 (Ω) for Jλ.

(iii) Jλ satisfies the (PS)c-condition in H2
0 (Ω) if any (PS)c-sequence {un} in H2

0 (Ω) for Jλ
contains a convergent subsequence.

Now, we use the Ekeland variational principle [12] to get the following results.

Proposition 3.4
(i) If λ ∈ (0,Λ0), then there exists a (PS)αλ

-sequence {un} ⊂Mλ in H2
0 (Ω) for Jλ.

(ii) If λ ∈ (0, q
2 Λ0), then there exists a (PS)α–

λ
-sequence {un} ⊂M–

λ in H2
0 (Ω) for Jλ.

Proof The proof is similar to that of [14, Proposition 3.3] and is omitted. �

Now, we establish the existence of a local minimum for Jλ on Mλ.

Theorem 3.5 Let N ≥ 5, 1 ≤ q < 2 and assume that the condition (H) holds. If λ ∈ (0,Λ0),
then Jλ has a minimizer uλ in M+

λ and we have the following results.
(i) Jλ(uλ) = αλ = α+

λ .
(ii) uλ is a nontrivial solution of Eq. (Eλ).

(iii) ‖uλ‖ → 0 as λ → 0+.
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Proof By Proposition 3.4(i), there is a minimizing sequence {un} for Jλ on Mλ such that

Jλ(un) = αλ + on(1) and J ′
λ(un) = on(1) in H–2(Ω). (3.3)

Since Jλ is coercive on Mλ (see Lemma 2.1), we see that {un} is bounded in H2
0 (Ω). Thus,

passing a subsequence if necessary, there exists uλ ∈ H2
0 (Ω) such that as n → ∞

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ uλ weakly in H2
0 (Ω),

un → uλ strongly in Lq(Ω) for 1 ≤ q < 2∗,

un → uλ almost everywhere in Ω .

(3.4)

It follows that

λ

∫

Ω

|un|q → λ

∫

Ω

|uλ|q as n → ∞,∀1 ≤ q < 2. (3.5)

By (3.3), (3.4) and (3.5), it is easy to see that uλ is a weak solution of Eq. (Eλ). From
{un} ⊂Mλ, (2.2) and (3.5), we deduce that

Jλ(un) =
2∗ – 2

22∗ ‖un‖2 – λ

(
2∗ – q

2∗q

)∫

Ω

|un|q

≥ –λ

(
2∗ – q

2∗q

)∫

Ω

|un|q

→ –λ

(
2∗ – q

2∗q

)∫

Ω

|uλ|q.

This and Jλ(un) → αλ < 0 (see Lemma 3.1(i)) yield
∫

Ω
|uλ|q > 0, that is, uλ �≡ 0. We use

Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈Mλ. Thus by Lemma 2.2, we may assume that uλ is a nontrivial
nonnegative solution of Eq. (Eλ).

Now we prove that up to a subsequence, un → uλ strongly in H2
0 (Ω) and Jλ(uλ) = αλ.

From the fact un, u ∈Mλ and Fatou’s lemma, we have

αλ ≤ Jλ(uλ) =
2∗ – 2

22∗ ‖uλ‖2 – λ

(
2∗ – q

2∗q

)∫

Ω

|uλ|q

≤ lim inf
n→∞

[
2∗ – 2

22∗ ‖un‖2 – λ

(
2∗ – q

2∗q

)∫

Ω

|un|q
]

= lim inf
n→∞ Jλ(un)

= αλ,

which implies that Jλ(uλ) = αλ and limn→∞ ‖un‖2 = ‖uλ‖2. Standard argument shows that
un → uλ strongly in H2

0 (Ω).
Next, we claim uλ ∈ M+

λ . Indeed, if uλ ∈ M–
λ , by Lemma 2.4, there exist unique τ+

λ and
τ–
λ such that τ+

λ uλ ∈M+
λ , τ–

λ uλ ∈M–
λ and τ+

λ < τ–
λ = 1. Since

d
dτ

Jλ
(
τ+
λ uλ

)
= 0 and

d2

dτ 2 Jλ
(
τ+
λ uλ

)
> 0,
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there exists τ̄ ∈ (τ+
λ , τ–

λ ) such that Jλ(τ+
λ uλ) < Jλ(τ̄uλ). By Lemma 2.4 we get

Jλ
(
τ+
λ uλ

)
< Jλ(τ̄uλ) ≤ Jλ

(
τ–
λ uλ

)
= Jλ(uλ),

which contradicts Jλ(uλ) = αλ. Consequently, uλ ∈M+
λ .

Finally, by uλ ∈M+
λ and (3.2), we obtain

‖uλ‖ <
[

λ
2∗ – q
2∗ – 2

|Ω| 2∗–q
2∗ S– q

2

] 1
2–q

for all u ∈M+
λ .

This implies that ‖uλ‖ → 0 as λ → 0+, and completes the proof. �

4 Multiplicity of nontrivial solutions in the case of 1 ≤ q < 2
In this section, we will establish the existence of the second nontrivial solution of Eq. (Eλ)
by proving that Jλ attains a local minimum on M–

λ .

Lemma 4.1 If {un} ⊂ H2
0 (Ω) is a (PS)c-sequence for Jλ, then {un} is bounded in H2

0 (Ω).

Proof The proof is similar to that of [15, Lemma 4.1] and is omitted. �

We recall that

Aμi := inf
u∈H2

0 (Ω)\{0}

∫

Ω
(|�u|2 – μi

u2

|x–ai|4 ) dx

(
∫

Ω
|u|2∗ dx)

2
2∗

.

Lemma 4.2 Let N ≥ 5, 1 ≤ q < 2 and assume that (H) holds. If {un} ⊂ H2
0 (Ω) is a (PS)c-

sequence for Jλ with c ∈ (0, 2
N A

N
4
μk ), then there exists a subsequence of {un} converging weakly

to a nonzero solution of Eq. (Eλ).

Proof Let {un} ⊂ H2
0 (Ω) be a (PS)c-sequence for Jλ with c ∈ (0, 2

N A
N
4
μk ). We know from

Lemma 4.1 that {un} is bounded in H2
0 (Ω). Then there exists a subsequence of {un} (still

denoted by {un}) and u0 ∈ H2
0 (Ω) such that un ⇀ u0 in H2

0 (Ω), un → u0 almost everywhere
in Ω , and un → u0 in Lq(Ω) for any 1 ≤ q < 2∗ as n → ∞. It is easy to see that J ′

λ(u0) = 0
and

λ

∫

Ω

|un|q = λ

∫

Ω

|u0|q + on(1). (4.1)

Next we verify that u0 �≡ 0. Arguing by contradiction, we assume u0 ≡ 0. By the con-
centration compactness principle (see [20, 21]) there exists a subsequence, still denoted
by {un}, an at most countable set J , a set of different points {xj}j∈J ⊂ Ω \ {a1, a2, . . . , ak},
nonnegative real numbers μ̃xj , ν̃xj , j ∈ J and μ̃ai , γ̃ai , ν̃ai (1 ≤ i ≤ k) such that

⎧
⎪⎪⎨

⎪⎪⎩

|�un|2 ⇀ dμ̃ ≥ |�u0|2 +
∑

j∈J μ̃xjδxj +
∑k

i=1 μ̃aiδai ,

μi
u2

n
|x–ai|4 ⇀ dγ̃ai = μi

u2
0

|x–ai|4 + γ̃aiδai ,

|un|2∗
⇀ d̃ν = |u0|2∗ +

∑
j∈J ν̃xjδxj +

∑k
i=1 ν̃aiδai ,

(4.2)
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where δx is the Dirac mass at x. By the Rellich inequalities, we get

μ̃ai – μiγ̃ai ≥ Aμi ν̃ai

2
2∗ , 1 ≤ i ≤ k.

Claim 1. We claim that J is finite and for any j ∈ J , either

ν̃xj = 0 or ν̃xj ≥ A
N
4

0 .

In fact, let ε > 0 be small enough such that ai /∈ B2ε(xj) for all 1 ≤ i ≤ k and B2ε(xi) ∩
B2ε(xj) = ∅ for i �= j, i, j ∈ J . Let φ

j
ε be a smooth cut-off function centered at xj such that

0 ≤ φ
j
ε ≤ 1, φ

j
ε = 1 for |x – xj| ≤ ε, φ

j
ε = 0 for |x – xj| ≥ 2ε, |∇φ

j
ε| ≤ 2

ε
and |�φ

j
ε| ≤ 2

ε2 .
Consider the sequence {φj

εun}; it is obvious that this sequence is bounded in H2
0 (Ω). Then

(4.1) implies

lim
n→∞

〈
J ′
λ(un),φj

εun
〉

= 0.

Moreover, by (4.2) we deduce

∫

Ω

k∑

i=1

φj
ε dγ̃ai +

∫

Ω

φj
ε d̃ν + λ

∫

Ω

|u0|qφj
ε dx = lim

n→∞

∫

Ω

�un�
(
unφ

j
ε

)
dx. (4.3)

Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

limε→0
∫

Ω

∑k
i=1 φ

j
ε dγ̃ = limε→0

∫

Ω

∑k
i=1 μi

u2
0φ

j
ε

|x–ai|4 = 0,

limε→0
∫

Ω
φ

j
ε d̃ν = limε→0(

∫

Ω
|u0|2∗

φ
j
ε + ν̃xj ) = ν̃xj ,

limε→0 λ
∫

Ω
|u0|qφj

ε dx = 0.

(4.4)

On the other hand, by (4.2) and the weak convergence we can obtain

lim
n→∞

∫

Ω

�un�
(
unφ

j
ε

)
dx =

∫

Ω

φj
ε dμ̃ + lim

n→∞

∫

Ω

�un
(
2∇un∇φj

ε + un�φj
ε

)
dx. (4.5)

Now, by (4.2) it is easy to see that

lim
ε→0

∫

Ω

φj
ε dμ̃ ≥ μ̃xj . (4.6)

By the Hölder inequality, we get

0 ≤ lim
n→∞

∣
∣
∣
∣

∫

Ω

�un
(∇un∇φj

ε

)
dx

∣
∣
∣
∣

≤ lim
n→∞

[(∫

Ω

|�un|2 dx
) 1

2
(∫

Ω

|∇un|2
∣
∣∇φj

ε

∣
∣2 dx

) 1
2
]

≤ C
(∫

B2ε (xj)
|∇u0|2

∣
∣∇φj

ε

∣
∣2 dx

) 1
2
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≤ C
(∫

B2ε (xj)

∣
∣∇φj

ε

∣
∣N dx

) 1
N
(∫

B2ε (xj)
|∇u0| 2N

N–2 dx
) N–2

2N

≤ C
(∫

B2ε (xj)
|∇u0| 2N

N–2 dx
) N–2

2N → 0 as ε → 0 (4.7)

and

0 ≤ lim
n→∞

∣
∣
∣
∣

∫

Ω

�unun�φj
ε dx

∣
∣
∣
∣

≤ lim
n→∞

[(∫

Ω

|�un|2 dx
) 1

2
(∫

Ω

∣
∣�φj

ε

∣
∣2|un|2 dx

) 1
2
]

≤ C
(∫

B2ε (xj)

∣
∣�φj

ε

∣
∣2|u0|2 dx

) 1
2

≤ C
(∫

B2ε (xj)

∣
∣�φj

ε

∣
∣

N
2 dx

) 2
N
(∫

B2ε (xj)
|u0| 2N

N–4 dx
) N–4

2N

≤ C
(∫

B2ε (xj)
|u0|2∗

dx
) 1

2∗
→ 0 as ε → 0. (4.8)

Thus, from (4.3)–(4.8) it follows that

μ̃xj ≤ ν̃xj .

By the Sobolev inequality, S0ν̃xj

2
2∗ ≤ μ̃xj , hence we deduce that

ν̃xj = 0 or ν̃xj ≥ A
N
4

0 ,

which implies that J is finite. Claim 1 is proved.
Claim 2. We claim that

for each i = 1, 2, . . . , k either ν̃ai = 0 or ν̃ai ≥ A
N
4
μi .

In order to prove claim 2, for each i = 1, 2, . . . , k, we consider the possibility of concentra-
tion at points ai (1 ≤ i ≤ k). For ε > 0 be small enough such that xj /∈ Bε(ai) for all j ∈ J and
Bε(ai) ∩ Bε(aj) = ∅ for i �= j and 1 ≤ i, j ≤ k. Let ϕi

ε be a smooth cut-off function centered
at ai such that 0 ≤ ϕi

ε ≤ 1, ϕi
ε = 1 for |x – ai| ≤ ε, ϕi

ε = 0 for |x – ai| ≥ 2ε, |∇ϕi
ε| ≤ 2

ε
and

|�ϕi
ε| ≤ 2

ε2 . Then, by (4.2) and similar arguments to the proof of claim 1, we obtain

lim
ε→0

lim
n→∞

∫

Ω

�un�
(
unϕ

j
ε

)
= lim

ε→0

∫

Ω

ϕi
ε dμ̃ ≥ lim

ε→0

(∫

Ω

|�u0|2ϕi
ε + μ̃ai

)

= μ̃ai ,

lim
ε→0

lim
n→∞

∫

Ω

μi
u2

n
|x – ai|4 ϕi

ε = lim
ε→0

∫

Ω

ϕi
ε dγ̃ = lim

ε→0

(∫

Ω

μi
u2

0
|x – ai|4 ϕi

ε + γ̃ai

)

= γ̃ai ,

lim
ε→0

lim
n→∞

∫

Ω

|un|2∗
ϕi

ε = lim
ε→0

∫

Ω

ϕi
ε d̃ν = lim

ε→0

(∫

Ω

|u0|2∗
ϕi

ε + ν̃ai

)

= ν̃ai ,

lim
ε→0

lim
n→∞

∫

Ω

μj
u2

n
|x – aj|4 ϕi

ε = 0 for j �= i.
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Thus we have

0 = lim
ε→0

lim
n→∞

〈
J ′
λ(un), unϕ

i
ε

〉 ≥ μ̃ai – μiγ̃ai – ν̃ai .

From (4.5) and (4.6) we derive that Aμi ν̃ai

2
2∗ ≤ ν̃ai for all 1 ≤ i ≤ k, and then

either ν̃ai = 0 or ν̃ai ≥ A
N
4
μi .

Claim 2 is thereby proved.
From the above arguments and (4.1), we conclude that

c = lim
n→∞

(

Jλ(un) –
1
2
〈
J ′
λ(un), un

〉
)

=
2
N

lim
n→∞

∫

Ω

|un|2∗ +
(

1
2

–
1
q

)

λ

∫

Ω

|u0|q

=
2
N

(∫

Ω

|u0|2∗
+

∑

j∈J
ν̃xj +

k∑

i=1

ν̃ai

)

+
(

1
2

–
1
q

)

λ

∫

Ω

|u0|q

=
2
N

(
∑

j∈J
ν̃xj +

k∑

i=1

ν̃ai

)

.

If ν̃ai = ν̃xj = 0 for all i ∈ {1, 2, . . . , k} and j ∈ J , then c = 0 which contradicts the assumption
that c > 0. On the other hand, if there exists an i ∈ {1, 2, . . . , k} such that ν̃ai �= 0 or there
exists a j ∈ J with ν̃xj �= 0, then we infer that

c ≥ 2
N

min
{

A
N
4

0 , A
N
4
μ1 , A

N
4
μ2 , . . . , A

N
4
μk

}
=

2
N

A
N
4
μk ,

which also contradicts the assumption that c < 2
N A

N
4
μk . Therefore u0 is a nonzero solution

of Eq. (Eλ). �

Take δ0 > 0 small enough such that B2δ0 (ak) ⊂ Ω . Choose the radial cut-off function
η(x) = η(|x|) ∈ C∞

0 (B2δ0 (0)) such that 0 ≤ η(x) ≤ 1 in B2δ0 (0) and η(x) = 1 in Bδ0 (0). Set
uε(x) = η(x – ak)yμk

ε (x – ak), where yμk
ε (x) is the same function as in (1.2). The following

asymptotic properties hold.

Lemma 4.3 Assume that N ≥ 5, μk ∈ [0, μ̄), δ = N–4
2 and 1 ≤ q < 2∗. Then, as ε → 0, we

have the following estimates:

∫

Ω

(

|�uε|2 – μk
|uε|2

|x – ak|4
)

= A
N
4
μk + O

(
ε2(b(μk )–δ)), (4.9)

∫

Ω

|uε|2∗
= A

N
4
μk + O

(
ε2∗(b(μk )–δ)), (4.10)
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and

∫

Ω

|uε|q =

⎧
⎪⎪⎨

⎪⎪⎩

O1(εN–qδ), if N
b(μk ) < q < 2∗,

O1(εN–qδ)| ln ε|, if q = N
b(μk ) ,

O1(εq(b(μk )–δ)), if 1 ≤ q < N
b(μk ) .

(4.11)

Moreover, for all N ≥ 8, as ε → 0, we have

∫

Ω

|uε|2 =

⎧
⎨

⎩

O1(ε4), if 0 ≤ μk < μ∗,

O1(ε4| ln ε|), if μk = μ∗,
(4.12)

where μ∗ := 1
16 (N2 – 16)(N2 – 8N).

Proof See Kang-Xu [19, Lemma 3.2]. �

Lemma 4.4 Let N ≥ 5, 1 ≤ q < 2 and assume that (H) holds. Then, for any λ > 0, there
exists a vλ ∈ H2

0 (Ω) such that

sup
t≥0

Jλ(tvλ) <
2
N

A
N
4
μk . (4.13)

In particular, α–
λ < 2

N A
N
4
μk for all λ ∈ (0,Λ0).

Proof For t ≥ 0, we consider the functions

g(t) := Jλ(tuε)

=
t2

2
‖uε‖2 –

t2∗

2∗

∫

Ω

|uε|2∗
– λ

tq

q

∫

Ω

|uε|q

≤ t2

2

∫

Ω

(

|�uε|2 – μk
u2

ε

|x – ak|4
)

–
t2∗

2∗

∫

Ω

|uε|2∗
– λ

tq

q

∫

Ω

|uε|q

and

ḡ(t) :=
t2

2

∫

Ω

(

|�uε|2 – μk
u2

ε

|x – ak|4
)

–
t2∗

2∗

∫

Ω

|uε|2∗

=
t2

2
‖uε‖2

μk
–

t2∗

2∗

∫

Ω

|uε|2∗
,

where ‖uε‖2
μk

:=
∫

Ω
(|�uε|2 – μk

u2
ε

|x–ak |4 ).
Using the definitions of g and uε , we get

g(t) = Jλ(tuε) ≤ t2

2
‖uε‖2

μk
, for all t ≥ 0 and λ > 0.

Combining this with (4.9), let ε ∈ (0, 1), then there exists t0 ∈ (0, 1) not depending on ε

such that

sup
0≤t≤t0

g(t) <
2
N

A
N
4
μk , for all λ > 0 and ε ∈ (0, 1). (4.14)
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On the other hand, by the fact that

max
t≥0

(
t2

2
B1 –

t2∗

2∗ B2

)

=
2
N

B
N
4

1 B
4–N

4
2 , B1 > 0, B2 > 0,

and by (4.9) and (4.10), we can get

max
t≥0

ḡ(t) =
2
N

‖uε‖
N
4
μk

(∫

Ω

|uε|2∗
) 4–N

4

=
2
N

(
A

N
4
μk + O

(
ε2(b(μk )–δ))) N

4
(
A

N
4
μk + O

(
ε2∗(b(μk )–δ))) 4–N

4

=
2
N

A
N
4
μk + O

(
ε2(b(μk )–δ)). (4.15)

Hence, for all λ > 0, 1 ≤ q < 2, by (4.15) we have

sup
t≥t0

g(t) ≤ sup
t≥t0

(

ḡ(t) – λ
tq

q

∫

Ω

|uε|q
)

≤ 2
N

A
N
4
μk + O

(
ε2(b(μk )–δ)) – λ

tq
0
q

∫

Ω

|uε|q. (4.16)

Now, we need to distinguish two cases.
Case (i): 1 ≤ q < N

b(μ) and q < 2. By (1.3) and (4.11) we have as ε → 0

∫

Ω

|uε|q = O1
(
εq(b(μ)–δ)) > O

(
ε2(b(μ)–δ)).

Combining this with (4.14) and (4.16), for any λ > 0, we can choose ελ small
enough such that

sup
t≥0

Jλ(tuελ
) <

2
N

A
N
4
μk .

Case (ii): N
b(μ) ≤ q < 2. By (4.11) we have

∫

Ω

|uε|q =

⎧
⎨

⎩

O1(εN–qδ), if q > N
b(μ) ,

O1(εN–qδ| ln ε|), if q = N
b(μ) .

Moreover, it follows from b(μ) > δ and q ≥ N
b(μ) that

2
(
b(μ) – δ

)
> q

(
b(μ) – δ

) ≥ N – qδ.

Combining this with (4.14) and (4.16), for any λ > 0, we can choose ελ small
enough such that

sup
t≥0

Jλ(tuελ
) <

2
N

A
N
4
μk .



Zhang and Hsu Boundary Value Problems        (2019) 2019:103 Page 16 of 19

From cases (i) and (ii), (4.13) holds by taking vλ = uελ
.

From Lemma 2.4, the definition of α–
λ and (4.13), for any λ ∈ (0,Λ0), we see that there

exists t–
λ > 0 such that t–

λ vλ ∈M–
λ and

α–
λ ≤ Jλ

(
t–
λ vλ

) ≤ sup
t≥0

Jλ(tvλ) <
2
N

A
N
4
μk .

The proof is thus completed. �

Now, we establish the existence of a local minimum of Jλ on M–
λ .

Theorem 4.5 Assume that N ≥ 5 and the condition (H) holds. If λ ∈ (0, q
2 Λ0), then Jλ has

a minimizer Uλ in M–
λ and such that:

(i) Jλ(Uλ) = α–
λ .

(ii) Uλ is a nontrivial solution of Eq. (Eλ).

Proof If λ ∈ (0, q
2 Λ0), then, by Lemma 3.1(ii), Proposition 3.4(ii) and Lemma 4.4, there ex-

ists a (PS)α–
λ

-sequence {un} ⊂M–
λ in H2

0 (Ω) for Jλ with α–
λ ∈ (0, 2

N A
N
4
μk ). Since Jλ is coercive

on Mλ (see Lemma 4.1), we see that {un} is bounded in H2
0 (Ω). From Lemma 4.2, there

exist a subsequence still denoted by {un} and a nonzero solution Uλ ∈ H2
0 (Ω) of Eq. (Eλ)

such that un ⇀ Uλ weakly in H2
0 (Ω).

Now, we first prove that Uλ ∈ M–
λ . Arguing by contradiction, we assume Uλ ∈ M+

λ .
Then, by Lemma 2.4, there exists a unique t–

λ such that t–
λ Uλ ∈M–

λ . It follows that

α–
λ ≤ Jλ

(
t–
λ Uλ

)
< lim

n→∞ Jλ
(
t–
λ un

) ≤ lim
n→∞ Jλ(un) = α–

λ .

This is a contradiction. Consequently, Uλ ∈M–
λ .

Next, by the same argument as that in Theorem 3.5, we get un → Uλ strongly in H2
0 (Ω)

and Jλ(Uλ) = α–
λ > 0 for all λ ∈ (0, q

2Λ0). Since Jλ(Uλ) = Jλ(|Uλ|) and |Uλ| ∈M–
λ , by Lemma

2.2 we may assume that Uλ is a nontrivial nonnegative solution of Eq. (Eλ). The proof of
this theorem is then completed. �

Proof of Theorem 1.1 The part (i) of Theorem 1.1 immediately follows from Theorem 3.5.
When 0 < λ < q

2 Λ0 < Λ0, by Theorems 3.5, and 4.5, we see that Eq. (Eλ) has at least two
nontrivial solutions uλ and Uλ such that uλ ∈ M+

λ and Uλ ∈ M–
λ . Since M+

λ ∩ M–
λ = ∅,

this implies that uλ and Uλ are distinct. This completes the proof of Theorem 1.1. �

5 Existence of solutions in the case of 2 ≤ q < 2∗

In order to prove Theorem 1.2, we first establish several lemmas.

Lemma 5.1 Let N ≥ 5 and assume that (H) holds and one of the following conditions hold:
(i) λ > 0, 2 < q < 2∗.

(ii) 0 < λ < λ1, q = 2.
Then the functional Jλ satisfies the (PS) condition for all c < c∗ := 2

N A
N
4
μk .

Proof The argument is standard and is omitted (e.g. [17]) �
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Lemma 5.2 Let N ≥ 5 and assume that (H) holds and one of the following conditions
holds:

(i) λ > 0, q < q < 2∗, where

q = max

{

2,
N

b(μk)
,

4(N – 2 – b(μk))
N – 4

}

.

(ii) N ≥ 8, 0 < λ < λ1, q = 2, 0 ≤ μk ≤ μ∗.
Then as ε → 0+ we have

sup
t≥0

Jλ(tuε) < c∗ =
2
N

A
N
4
μk , (5.1)

where λ1 is the same as in (1.6) and uε is the same function as in Lemma 4.3.

Proof For t ≥ 0, we define the functions g(t) := Jλ(tuε) and

ḡ(t) :=
t2

2

∫

Ω

(

|�uε|2 – μk
u2

ε

|x – ak|4
)

–
t2∗

2∗

∫

Ω

|uε|2∗
.

(i) Since λ > 0, 2 < q < 2∗, a direct calculation shows that supt≥0 g(t) can be obtained at
finite tε > 0 such that

0 = g ′(tε) = tε
(

‖uε‖2 – t2∗–2
ε

∫

Ω

|uε|2∗
– λtq–2

ε

∫

Ω

|uε|q
)

.

Furthermore, tε ∈ [C1, C2], where C1 and C2 are positive constants independent of ε.
From the definitions of g , ḡ and (4.15), it follows that

g(tε) ≤ ḡ(tε) –
λ

q
tq
ε

∫

Ω

|uε|q ≤ c∗ + O
(
ε2(b(μk )–δ)) – C

∫

Ω

|uε|q. (5.2)

If q < q < 2∗, by (4.11) we have

∫

Ω

|uε|q = O1
(
εN–qδ

)
. (5.3)

Since 2(b(μk) – δ)) > N – qδ, from (5.2) and (5.3) it follows that

sup
t≥0

Jλ(tuε) = g(tε) < c∗.

(ii) Suppose that N ≥ 8, 0 < λ < λ1, q = 2, 0 ≤ μk ≤ μ∗. A direct calculation shows that

0 ≤ μk ≤ μ∗ ⇐⇒ b(μk) – δ > 2, μk = μ∗ ⇐⇒ b(μk) – δ = 2.

Using a similar argument to (i), we can deduce that supt≥0 g(t) < c∗ is attained at finite
tε > 0. Moreover,

g(tε) ≤ ḡ(tε) – λ
t2
ε

2

∫

Ω

|uε|2 ≤ c∗ + O
(
ε2(b(μk )–δ)) – C

∫

Ω

|uε|2. (5.4)
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Then by (4.12) and (5.4) it follows that (5.1) holds as ε → 0+. The proof is thus com-
pleted. �

Proof of Theorem 1.2 According to Lemmas 5.1 and 5.2 and applying the mountain-pass
theorem [2, 4], Theorem 1.2 can be concluded to. �
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