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Abstract
In this paper we study a new class of functions, which we call (ω, c)-pseudo periodic
functions. This collection includes pseudo periodic, pseudo anti-periodic, pseudo
Bloch-periodic, and unbounded functions. We prove that the set conformed by these
functions is a Banach space with a suitable norm. Furthermore, we show several
properties of this class of functions as the convolution invariance. We present some
examples and a composition result. As an application, we prove the existence and
uniqueness of (ω, c)-pseudo periodic mild solutions to the first order abstract Cauchy
problem on the real line. Also, we establish some sufficient conditions for the
existence of positive (ω, c)-pseudo periodic solutions to the Lasota–Wazewska
equation with unbounded oscillating production of red cells.
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1 Introduction
Let ω > 0 and c ∈C \ {0}. Consider the c-mean of h given by

Mc(h) := lim
T→∞

1
2T

∫ T

–T
c–σ /ωh(σ ) dσ ,

whenever the limit exists. For example, for h1(t) = ct/ω and h2(t) = ct/ωeit , we have that
Mc(h1) = 1 andMc(h2) = 0. Furthermore,Mc is a linear and continuous operator. Indeed,
if c–t/ωhn(t) → c–t/ωh(t) uniformly as n → ∞, thenMc(hn) →Mc(h) as n → ∞. Also, note
that when c = 1 we have the mean of h, M(h) := limT→∞ 1

2T
∫ T

–T h(σ ) dσ . Other properties
of Mc appear in Sect. 2.

Let us define the c-ergodic space

AA0,c(X) =
{

h ∈ C(R, X) : Mc
(‖h‖) = 0

}
.
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Note that when c = 1 we recover the ergodic space of Zhang (see [29, 30])

AA0(X) :=
{

h ∈ C(R, X) : M
(‖h‖) = 0

}
.

We say that f is a (ω, c)-periodic function if there is a pair (ω, c), c ∈ (C \ {0}), w > 0
such that f (t + ω) = cf (t) for all t ∈R (see [22]). It represents periodic functions with c = 1,
anti-periodic functions with c = –1, Bloch waves with c = eik/ω , and unbounded functions
for |c| �= 1. Linear systems with periodic coefficients produce, by Floquet’s theorem, (ω, c)-
periodic solutions. This is the case of the famous Hill’s and Mathieu’s equations (see [17,
31])

d2y
dt2 +

[
a – 2q cos(2t)

]
y = 0.

Mathieu’s equation is a linearized model of an inverted pendulum, where the pivot point
oscillates periodically in the vertical direction (see [19]). According to Floquet’s theorem,
these equations admit a complex valued basis of solutions of the form y(t) = eμtp(t), t ∈R,
where μ is a complex number and p is a complex valued function which is ω-periodic (see
[5, Ch. 8, Sect. 4]). We can observe that the solution is not periodic, but

y(t + ω) = cy(t), c = eμω, t ∈ R. (1.1)

In fluid dynamics, we can find many examples of waves being described by Mathieu’s
equation. The research of Faraday surface waves is very active (see [4, 9, 23]).

Several properties of (ω, c)-periodic functions have been obtained in [3]. Also, this class
of functions appears for example when the method of Bloch wave decomposition is used in
order to obtain the homogenization of self-adjoint elliptic operators in arbitrary domains
with periodically oscillating coefficients (see [6, 20] and the references therein).

Now, we are ready to introduce the space of (ω, c)-pseudo periodic functions. A con-
tinuous function f is said to be a (ω, c)-pseudo periodic function if it can be written as
f = g + h, where g is a (ω, c)-periodic function and h ∈ AA0,c(X). Note that when c = 1 we
obtain the space of pseudo periodic functions defined in [28, Definition 2 p. 873] (see also
[16]), and when c = –1 we obtain the space of pseudo anti-periodic functions defined in
[27]. When c = eik/ω , we will call this set of functions pseudo Bloch-periodic functions.
Also, it should be noted that the space of (ω, c)-periodic functions, asymptotically Bloch
periodic functions (see [12, 13]), and the space of (ω, c)-asymptotically periodic functions
(which basically are sums of (ω, c)-periodic functions with continuous functions h such
that c–t/ωh(t) goes to 0 as t goes to ∞, see [2, Definition 2.5]) are contained in the space
of (ω, c)-pseudo periodic functions. For other works related to pseudo periodicity, see [10,
14, 25, 26].

We give several properties of (ω, c)-pseudo periodic functions including a characteri-
zation in terms of the pseudo periodic functions, uniqueness of the decomposition, and
algebraic properties. Also, we prove a convolution theorem and that the space of (ω, c)-
pseudo periodic functions is a Banach space with the norm ‖ · ‖pωc defined below (see
Theorem 2.18). Furthermore, we prove that the range of these functions is relatively com-
pact with this norm. A composition result is given and a variety of examples are showed.
We point out that the pseudo periodic, pseudo anti-periodic, and pseudo Bloch-periodic
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functions are defined as a subspace of BC(X), while our results include unbounded func-
tions on R in both periodic and ergodic parts, that is, the cases |c| < 1 and |c| > 1.

The previous results allow us to show the existence and uniqueness of (ω, c)-pseudo pe-
riodic mild solutions for the following class of semilinear abstract integral and differential
equations in Banach spaces:

u(t) =
∫ t

–∞
R(t, s)f

(
s, u(s)

)
ds, (1.2)

where f and the family R satisfy certain hypotheses. In particular, we obtain (ω, c)-pseudo
periodic mild solutions for the semilinear first order problem

u′(t) = Au(t) + f
(
t, u(t)

)
, t ∈ R,

where A is a closed linear and densely defined operator on a Banach space X which gen-
erates an exponentially bounded C0-semigroup {T(t)}t≥0. The results can be extended to
delayed systems, see Sect. 4.

Furthermore, we prove the existence of positive (ω, c)-pseudo periodic solutions to the
Lasota–Wazewska equation with (ω, c)-pseudo periodic coefficients

y′(t) = –δy(t) + h(t)e–a(t)y(t–τ ), t ≥ 0. (1.3)

Wazewska–Czyzewska and Lasota [24] proposed this model to describe the survival of
red blood cells in the blood of an animal. In this equation, y(t) describes the number of
red cells bloods in the time t, δ > 0 is the probability of death of a red blood cell, a(t) is a
continuous and positive function which is related to the production of red blood cells by
unity of time, τ is the time required to produce a red blood cell, h(t) is a continuous and
positive function which describes the generation of red blood cells per unit time.

This paper is organized as follows. In Sect. 2, we formalize the (ω, c)-pseudo periodic
functions and give some important properties. Also, we show that the space of (ω, c)-
pseudo periodic functions is a Banach space with a suitable norm and the fact that the
range of this class of functions is relatively compact with this norm. Convolution and
composition theorems will be proved. Several interesting examples are given. In Sect. 3,
we prove the existence and uniqueness of (ω, c)-pseudo periodic solutions to the first or-
der abstract Cauchy problem on R. Finally, in Sect. 4, we prove the existence of positive
(ω, c)-pseudo periodic solutions to the Lasota–Wazewska model with (ω, c)-pseudo peri-
odic coefficients. Also, we show that the solution is exponentially stable.

2 (ω, c)-Pseudo periodic functions
Throughout the paper, c ∈C\ {0}, ω > 0, X will denote a complex Banach space with norm
‖ · ‖, Ω ⊂ X, and we will denote the space of continuous functions as

C(R, X) := {f : R → X : f is continuous},

the space of ergodic functions as

AA0(X) :=
{

h ∈ C(R, X) : M
(‖h‖) = 0

}
,
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and

AA0(Ω , X) :=
{

h ∈ C(R× Ω , X) : M
(∥∥h(·, x)

∥∥)
= 0

for all x in any compact subset of Ω
}

.

Definition 2.1 ([3]) A function g ∈ C(R, X) is said to be (ω, c)-periodic if g(t + ω) = cg(t)
for all t ∈R. ω is called the c-period of g . The collection of those functions with the same c-
period ω will be denoted by Pωc(R, X). When c = 1 (ω-periodic case), we write Pω(R, X) in
spite of Pω1(R, X). Using the principal branch of the complex logarithm (i.e., the argument
in (–π ,π ]), we define ct/ω := exp((t/ω) Log(c)). Also, we will use the notation c∧(t) := ct/ω

and |c|∧(t) := |c∧(t)| = |c|t/ω .

The following proposition gives a characterization of the (ω, c)-periodic functions.

Proposition 2.2 ([3]) Let f ∈ C(R, X). Then f is (ω, c)-periodic if and only if

f (t) = c∧(t)u(t), c∧(t) = ct/ω, (2.1)

where u(t) is a ω-periodic complex X-valued function.

In view of (2.1), for any f ∈ Pωc(R, X), we say that c∧(t)u(t) is the c-factorization of f .

Remark 2.3 From Proposition 2.2, we can write all f ∈ Pωc(R, X) as

f (t) = c∧(t)u(t),

where u(t) is ω-periodic on R. We will call u(t) the periodic part of f . With this convention,
an anti-periodic function f can be written as f (t) = (–1)t/ωu(t), where u is ω-periodic.
For example, f (t) = sin t can be considered as an anti-periodic function, with ω = π . As
Log(–1) = iπ , f has the decomposition f (t) = c∧(t)u(t), where

c∧(t) = (–1)t/π = eti = [cos t + i sin t],

and

u(t) = sin t(cos t – i sin t),

which is periodic with period π .
Let c = e2π i/k for some natural number k ≥ 2, and let f be a (ω, c)-periodic function.

Then f is a periodic function with period kω but, in general, it can be written as f (t) =
e2π ti/kωu(t), where u is a complex periodic function with period ω. In particular, if k = 4, a
(ω, eπ i/2)-periodic function f can be at the same time a Bloch wave: f (t + ω) = eπ i/2f (t), an
anti-periodic function with antiperiod 2ω: f (t + 2ω) = –f (t), and a 4ω-periodic function:
f (t + 4ω) = f (t).
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Definition 2.4 A function h ∈ C(R, X) is said to be c-ergodic if c∧(–t)h(t) ∈ AA0(X), that
is,

Mc
(‖h‖) = 0.

The collection of those functions will be denoted by AA0,c(X). Analogously, a function
h ∈ C(R× Ω , X) is said to be c-ergodic if c∧(–t)h(t, x) ∈ AA0(Ω , X), that is,

Mc
(∥∥h(·, x)

∥∥)
= 0

for all x in any compact subset of Ω . The collection of those functions will be denoted by
AA0,c(Ω , X).

Note that C0,c(X) := {g ∈ C(R, X) : lim|t|→∞ g(t) = 0} is contained in AA0,c(X). How-
ever, note that Lp-integrable functions belong to AA0,c(X) but there exist functions Lp-
integrable that do not belong to C0,c(X).

Definition 2.5 A function f ∈ C(R, X) is said to be (ω, c)-pseudo periodic if f = g +h where
g ∈ Pωc(R, X) and h ∈ AA0,c(X). The collection of those functions (with the same c-period
ω for the first component) will be denoted by PPωc(X).

Remark 2.6 The preceding collection includes the pseudo periodic functions PPω1(X) :=
{f ∈ C(R, X) : f = g + h, g ∈ Pω1(R, X), h ∈ AA0(X)}, the pseudo anti-periodic func-
tions PPω(–1)(X) := {f ∈ C(R, X) : f = g + h, g ∈ Pω(–1)(R, X), h ∈ AA0(X)}, and pseudo
(ω, c)-Bloch-periodic functions PPωeikω (X) := {f ∈ C(R, X) : f = g + h, g ∈ Pωeikω (R, X), h ∈
AA0(X)}.

Example 2.7 Let φ(t) = maxk∈Z{e–(t±k2)2}, t ∈ R. It follows from [15, Example 2.5] that
φ ∈ AA0(R,R). Let

f1(t) = sin t + φ(t), t ∈ R.

Then f1 is pseudo periodic because g(t) = sin t is periodic with period 2π and pseudo anti-
periodic because g(t) = sin t is anti-periodic (with antiperiod π ). Analogously, the function

f2(t) = eikt + φ(t), t ∈ R

belongs to PPωeikω (R,R). The same is true for any φ ∈ AA0,c(R).

The following proposition gives a characterization of the (ω, c)-pseudo periodic func-
tions.

Proposition 2.8 Let f ∈ C(R, X). Then f is (ω, c)-pseudo periodic if and only if

f (t) = c∧(t)u(t), c∧(t) = ct/ω, u ∈ PPω(X). (2.2)
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Proof It is clear that if f satisfies (2.2) then f is a (ω, c)-pseudo periodic function. In order
to show the inverse statement, let f ∈ PPωc(X). Then there exist g ∈ Pωc(R, X) and h ∈
AA0,c(X) such that f = g + h. If we write u(t) := c∧(–t)f (t) = c–t/ωf (t), then

u(t) = c∧(–t)g(t) + c∧(–t)h(t) =: F1(t) + F2(t).

It follows from [3, Proposition 2.5] that F1 ∈ Pω(R, X) and by definition of AA0,c(X) we
have that F2 ∈ AA0(X). Hence u ∈ PPω(X). �

Remark 2.9 The decomposition in Definition 2.5 is unique, that is, there exist a unique
g ∈ Pωc(R, X) and a unique h ∈ AA0,c(X) such that f = g + h. Indeed, suppose that

f (t) = g1(t) + h1(t) = g2(t) + h2(t), g1, g2 ∈ Pωc(R, X), h1, h2 ∈ AA0,c(X), t ∈R.

Then

u(t) := c∧(–t)f (t) = c∧(–t)g1(t) + c∧(–t)h1(t) = c∧(–t)g2(t) + c∧(–t)h2(t)

belongs to PPω(X) by Proposition 2.2. By the unique representation of the functions in
this space, we have that c∧(–t)g1(t) = c∧(–t)g2(t) and c∧(–t)h1(t) = c∧(–t)h2(t), and conse-
quently g1(t) = g2(t) and h1(t) = h2(t) for all t ∈R.

Remark 2.10 Note that if |c| ≥ 1 then AA0(X) ⊂ AA0,c(X), and consequently Pωc(R, X) +
AA0(X) ⊂ PPωc(X).

As a consequence of Proposition 2.8, we have the following basic properties.

Lemma 2.11 Let α ∈C. Then
(a) (f + g) ∈ PPωc(X) and αh ∈ PPωc(X) whenever f , g, h ∈ PPωc(X).
(b) If τ ∈R, then fτ (t) = f (t + τ ) ∈ PPωc(X) whenever f ∈ PPωc(X).

Proof The proof of (a) is a consequence of the definition. (b) follows from the invariant
property of the space Pωc(R, X) and Lemma 2.16. �

Example 2.12 Let ϕ(t) := t| sin t|tN for N > 6. From [1, Example p. 1143] we have that

lim
T→∞

1
2T

∫ T

–T

∣∣ϕ(s)
∣∣ds = 0

and ϕ(t) → ∞ at the points t = 1
2 + k as |k| → ∞. Let

f (t) = 2t sin t + btϕ(t), t ∈R, |b| ≤ 2.

Then f ∈ PPπ–2π (R). Indeed, note that g(t) := 2t sin t is (π , –2π )-periodic. Let us prove that
h(t) := btϕ(t) belongs to AA0,–2π (R).

lim
T→∞

1
2T

∫ T

–T

∣∣(–2π
)∧(–s)h(s)

∣∣ds = lim
T→∞

1
2T

∫ T

–T

∣∣∣∣
(

b
2

)s

ϕ(s)
∣∣∣∣ds

≤ lim
T→∞

1
2T

∫ T

–T

∣∣ϕ(s)
∣∣ds = 0.
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Hence f is a (ω, c)-pseudo periodic function which is not a (ω, c)-asymptotically periodic
function.

Example 2.13 Let X = C, |b| ≤ 2. Consider

f (t) = 2t sin t + bth(t), t ∈R,

where h satisfies one of the following conditions:
(a) is integrable, or
(b) Lp-integrable for 1 < p < ∞, or
(c) asymptotic at t in –∞ and ∞.

Then f is a (π , –2π )-pseudo periodic function. Since c∧(t) = exp( t
π

Log(–2π )) = 2teit , then
by Proposition 2.2 we have that

g(t) = 2teitu1(t),

where

u1(t) = sin t(cos t – i sin t)

is periodic with period ω = π . Analogously,

bth(t) = 2teitu2(t),

where

u2(t) =
(

b
2

)t

h(t)(cos t – i sin t)

belongs to AA0(X). Hence f has the decomposition

f (t) = 2t sin t + bth(t) = 2t(cos t + i sin t)
[

sin t(cos t – i sin t) +
(

b
2

)t

h(t)(cos t – i sin t)
]

.

Example 2.14 Let u : R → X be a X-valued periodic function with period ω and v : R → X
in AA0(X). Let φ : R → C be a function with the semigroup property, that is, φ(t + s) =
φ(s)φ(t) for all t, s ∈R and such that φ(ω) �= 0. Then

z(t) = φ(t)u(t) + φ(t)v(t), t ∈R,

is a (ω,φ(ω))-asymptotically periodic function if ϕ(t) := [φ(ω)]∧(–t)φ(t) is bounded. As a
particular case, we take φ(t) = eikt and obtain the pseudo periodic Bloch functions.

Remark 2.15 In general, if u is a (ω, c)-pseudo periodic function and φ is a function with
the semigroup property such that φ(ω) �= 0, then z(t) := φ(t)u(t) is a (ω, cφ(ω))-pseudo
periodic if ϕ(t) := [φ(ω)]∧(–t)φ(t) is bounded. Moreover, let (uk)k∈N be a sequence of (ω, c)-
pseudo periodic functions and (φk)k∈N be a sequence of functions with the semigroup
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property and such that φk(ω) = p �= 0 for all k ∈N. Assume that

∞∑
k=1

φk(t)uk(t)

is a uniformly convergent series on R. Then

f (t) =
∞∑

k=1

φk(t)uk(t)

is a (ω, cp)-pseudo periodic function if ϕk(t) := p∧(–t)φk(t) is bounded for k ∈ N.

Lemma 2.16 AA0,c(X) is translation invariant, and for every h ∈ AA0(X), we have that
Mc(g + h) = Mc(g) for all g ∈ C(R, X).

Proof Let h ∈ AA0,c(X) and τ ∈R be arbitrary. Then

1
2T

∫ T

–T

∥∥c∧(–σ )h(σ – τ )
∥∥dσ

=
1

2T

∫ T+τ

–T–τ

∥∥c∧(–u – τ )h(u)
∥∥du

≤ c∧(–τ )
2T

∫ T+|τ |

–T–|τ |

∥∥c∧(–u)h(u)
∥∥du

=
c∧(–τ )(T + |τ |)

T

[
1

2(T + |τ |)
∫ T+|τ |

–T–|τ |

∥∥c∧(–u)h(u)
∥∥du

]
→ 0

as T → ∞. The last assertion follows from the linearity of M. �

We recall (see [3]) that the norm in the space Pωc(R, X) is given by

‖f ‖ωc := sup
t∈[0,ω]

∥∥|c|∧(–t)f (t)
∥∥.

Proposition 2.17 Let f ∈ Pωc(R, X). Then the range {c∧(–t)f (t) : t ∈ R} is relatively com-
pact in X, that is, given ε > 0, for all t ∈R, there exist x1, . . . , xk in X such that ‖c∧(–t)f (t) –
xi‖ < ε for some i = 1, . . . , k.

The following result guarantees that PPωc(X) is a Banach space with the norm defined
below.

Theorem 2.18 PPωc(X) is a Banach space with the norm

‖f ‖pωc := sup
t∈R

∥∥|c|∧(–t)f (t)
∥∥.

Proof Let (fn) be a Cauchy sequence in PPωc(X). Then, given ε > 0, there exists N ∈N such
that, for all m, n ≥ N , we have

‖fn – fm‖pωc < ε.
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Since fm, fn ∈ PPωc(X), Proposition 2.8 implies that there exist um, un ∈ PPω(X) such that
fm(t) = c∧(t)um(t) and fn(t) = c∧(t)un(t). Now, note that for m, n ≥ N

‖um – un‖pω = sup
t∈R

∥∥um(t) – un(t)
∥∥

= sup
t∈R

∥∥c∧(–t)fm(t) – c∧(–t)fn(t)
∥∥

= sup
t∈R

∥∥|c|∧(–t)
[
fm(t) – fn(t)

]∥∥

= ‖fn – fm‖pωc < ε.

It follows that (un) is a Cauchy sequence in PPω(X). Since PPω(X) is complete, then there
exists u ∈ PPω(X) such that ‖un – u‖pω → 0 as n → ∞. Let us define f (t) := c∧(t)u(t). We
claim that ‖fn – f ‖pωc → 0 as n → ∞. Indeed,

‖fn – f ‖pωc = sup
t∈R

∥∥|c|∧(–t)
[
fn(t) – f (t)

]∥∥

= sup
t∈R

∥∥|c|∧(–t)c∧(t)un(t) – |c|∧(–t)c∧(t)u(t)
∥∥

= sup
t∈R

∥∥um(t) – u(t)
∥∥ → 0 (n → ∞).

Hence PPωc(X) is a Banach space with the norm ‖ · ‖pωc. �

We recall the following convolution result.

Theorem 2.19 ([3, Theorem 2.7]) Let f ∈ Pωc(R, X) with f (t) = c∧(t)p(t), p ∈ Pω(R, X). If
k∼(t) := c∧(–t)k(t) ∈ L1(R), then (k ∗ f )(t) =

∫ ∞
–∞ k(t – s)f (s) ∈ Pωc(R, X).

Lemma 2.20 Assume that k∼(t) := c∧(–t)k(t) ∈ L1(R). Then h ∈ AA0,c(X) implies that k ∗
h ∈ AA0,c(X).

Proof It is clear that the convolution k ∗ h is a continuous function. Then

1
2T

∫ T

–T

∥∥c∧(–t)(k ∗ h)(t)
∥∥dt ≤ 1

2T

∫ T

–T
|c|∧(–t)

∫ ∞

–∞

∣∣k(t – s)
∣∣∥∥h(s)

∥∥ds dt

=
1

2T

∫ T

–T

∫ ∞

–∞

∣∣k∼(t – s)
∣∣∥∥c∧(–s)h(s)

∥∥ds dt

=
1

2T

∫ T

–T

∫ ∞

–∞

∣∣k∼(s)
∣∣∥∥c∧(

–(t – s)
)
h(t – s)

∥∥ds dt

=
∫ ∞

–∞

∣∣k∼(s)
∣∣
(

1
2T

∫ T

–T

∥∥c∧(
–(t – s)

)
h(t – s)

∥∥dt
)

ds

=
∫ ∞

–∞

∣∣k∼(s)
∣∣ΦT (s) ds,

where ΦT (s) := 1
2T

∫ T
–T ‖c∧(–(t – s))h(t – s)‖dt. Since AA0,c(X) is translation invariant by

Lemma 2.16, then ΦT (s) → 0 as T → ∞. Next, since ΦT is bounded (‖ΦT‖ ≤ ‖h‖pωc) and
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k∼ ∈ L1(R), using the dominated convergence theorem, it follows that

lim
T→∞

∫ ∞

–∞

∣∣k∼(s)
∣∣ΦT (s) ds = 0.

Hence k ∗ h ∈ AA0,c(X). �

We are ready to present the convolution theorem for (ω, c)-pseudo periodic functions.

Theorem 2.21 Let f ∈ PPωc(X) with f (t) = c∧(t)p(t), p ∈ PPω(X). If for some k(t) we have
that k∼(t) := c∧(–t)k(t) ∈ L1(R), then

(k ∗ f )(t) =
∫ ∞

–∞
k(t – s)f (s) ds = c∧(t)

(
k∼ ∗ p

)
(t).

In particular, (k ∗ f )(t) ∈ PPωc(X).

Proof Since p ∈ PPω(X), then there exist p1 ∈ Pω(R, X) and p2 ∈ AA0(X) such that p =
p1 +p2. Then f = f1 + f2 where f1(t) = c∧(t)p1(t) ∈ Pωc(R, X) and f2(t) = c∧(t)p2(t) ∈ AA0,c(X).
We have

(k ∗ f )(t) =
∫ ∞

–∞
k(t – s)f (s) ds

=
∫ ∞

–∞
k(t – s)f1(s) ds +

∫ ∞

–∞
k(t – s)f2(s) ds

= (k ∗ f1)(t) + (k ∗ f2)(t) =: I1(t) + I2(t).

From Theorem 2.19 we have that I1 ∈ Pωc(R, X). Next, by Lemma 2.20 we have that I2 ∈
AA0,c(X). Now, from the definition of f we have that (k ∗ f )(t) = c∧(t)(k∼ ∗ p)(t). Hence
(k ∗ f ) ∈ PPωc(X). �

Example 2.22 Consider the heat equation
⎧⎨
⎩

ut(x, t) = uxx(x, t), t > 0, x ∈R,

u(x, 0) = f (x).

Let u(x, t) be a regular solution with u(x, 0) = f (x). Then it is known that

u(x, t) =
1

2
√

π t

∫ +∞

–∞
e– (x–s)2

4t f (s) ds, t > 0, x ∈R.

Fix t0 > 0 and assume that f (x) is (ω, c)-pseudo periodic. Then, by Theorem 2.21, we have
that u(x, t0) is (ω, c)-pseudo periodic with respect to x.

The next lemma is analogous to [15, Lemma 2.1].

Lemma 2.23 Let h ∈ C(R, X) such that supt∈R ‖c∧(–t)h(t)‖ < ∞. Then h ∈ AA0,c(X) if and
only if

(∀ε > 0) lim
T→∞

1
2T

meas
(
MT ,ε(h)

)
= 0, (2.3)
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where

MT ,ε(h) :=
{

t ∈ [–T , T] :
∥∥c∧(–t)h(t)

∥∥ ≥ ε
}

.

Proof Assume that h ∈ AA0,c(X) and suppose that there exists ε0 > 0 such that 1
2T ×

meas(MT ,ε(h)) does not converge to zero when T → ∞. That is, there exists δ > 0 such
that, for n ∈N,

1
2Tn

meas
(
MTn ,ε0 (h)

) ≥ δ forTn > n.

Then

1
2Tn

∫ Tn

–Tn

∥∥c∧(–t)h(t)
∥∥dt

=
1

2Tn

∫
MTn ,ε0

∥∥c∧(–t)h(t)
∥∥dt +

1
2Tn

∫
[–Tn ,Tn]\MTn ,ε0

∥∥c∧(–t)h(t)
∥∥dt

≥ 1
2Tn

∫
MTn ,ε0

∥∥c∧(–t)h(t)
∥∥dt

≥ 1
2Tn

meas
(
MTn ,ε0 (h)

) · ε0 ≥ δε0,

which is a contradiction.
Now, assume (2.3). We prove that h ∈ AA0,c(X). By (2.3) we have that there exists M > 0

such that ‖c∧(–t)h(t)‖ ≤ M, and for all ε > 0 there exists T0 > 0 such that T > T0 implies
that

1
2T

meas
(
MT ,ε(h)

)
<

ε

M + 1
.

Then

1
2T

∫ T

–T

∥∥c∧(–t)h(t)
∥∥dt =

1
2T

∫
MT ,ε

∥∥c∧(–t)h(t)
∥∥dt +

1
2T

∫
[–T ,T]\MT ,ε

∥∥c∧(–t)h(t)
∥∥dt

≤ 1
2T

M meas
(
MT ,ε(h)

)
+

1
2T

ε
(
2T – meas

(
MT ,ε(h)

))

<
(M – 1)ε

M + 1
+ ε < 2ε.

Hence h ∈ AA0,c(X). �

Next, we have the following composition result. The idea of the proof follows from [15,
Theorem 2.4].

Theorem 2.24 Let f (t, x) = g(t, x) + h(t, x) where g(t + ω, cx) = cg(t, x) and h ∈ AA0,c(X, X).
Assume

(a) supt∈R ‖c∧(–t)f (t, x)‖ < ∞ for all x ∈ X .
(b) ft(z) := c∧(–t)f (t, c∧(t)z) is uniformly continuous for z in any bounded subset K ⊂ X

uniformly in t ∈ R; that is, given ε > 0 and K ⊂ X bounded, there exists δ > 0 such
that x, y ∈ K and ‖x – y‖ < δ imply that ‖ft(x) – ft(y)‖ ≤ ε for all t ∈R.
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(c) ht(x) := c∧(–t)h(t, c∧(t)x) is uniformly continuous for x in any bounded set of X
uniformly in t ∈ R and

lim
T→∞

1
2T

∫ T

–T

∥∥ht(x)
∥∥dt = 0

for x in any bounded subset of X .
If ϕ ∈ PPωc(X), then f (·,ϕ(·)) ∈ PPωc(X).

Proof Let ϕ(t) = α(t) + β(t) with α ∈ Pωc(R, X) and β ∈ AA0,c(X). Then we have

f
(
t,ϕ(t)

)
=

[
f
(
t,ϕ(t)

)
– f

(
t,α(t)

)]
+ g

(
t,α(t)

)
+ h

(
t,α(t)

)
=: F(t) + G(t) + H(t).

By [3, Theorem 2.11] we have that G(t) = g(t,α(t)) belongs to Pωc(R, X). On the other
hand, note that φ(t) := c∧(–t)ϕ(t) and φ1(t) := c∧(–t)α(t) are bounded by definition
and Proposition 2.17 respectively. From here we can choose K ⊂ X bounded such that
φ([–T , T]),φ1([–T , T]) ⊂ K . Under assumption (b), c∧(–t)f (t, c∧(t)·) is uniformly contin-
uous on the bounded set K uniform for t ∈ [–T , T], so given ε > 0, there exists δ := δε,K

such that ‖φ(t) – φ1(t)‖ = ‖c∧(–t)ϕ(t) – c∧(–t)α(t)‖ = ‖c∧(–t)β(t)‖ ≤ δ implies that

‖c∧(–t)f
(
t,ϕ(t)

)
– c∧(–t)f

(
t,α(t)

)
]‖ =

∥∥c∧(–t)F(t)
∥∥ ≤ ε

for all t ∈ [–T , T]. Then we have that

lim
T→∞

1
2T

meas
(
MT ,ε(F)

) ≤ lim
T→∞

1
2T

meas
(
MT ,δ(β)

)
.

Since β ∈ AA0,c(X), Lemma 2.3 yields for the above δ that

lim
T→∞

1
2T

meas
(
MT ,δ(β)

)
= 0.

From here we can conclude that F ∈ AA0,c(X).
Finally, we prove that H ∈ AA0,c(X). Let φ(t) := c∧(–t)α(t) and I = φ([–T , T]). Then φ

is uniformly continuous in [–T , T], and therefore I is compact in X. Let ε > 0. Then, for
every δ = δ(ε) > 0, there exist finite open balls Ok (k = 1, 2, . . . , m) with centers in xk ∈ I
respectively such that I ⊂ ⋃m

k=1 Ok . Then, by the uniform continuity of c∧(–t)h(t, c∧(t)·),
we have that

∥∥c∧(–t)h
(
t,α(t)

)
– c∧(–t)h

(
t, c∧(t)xk

)∥∥ <
ε

2
, t ∈ [–T , T]. (2.4)

The set Bk := {t ∈ [–T , T] : φ(t) ∈ Ok} is open in [–T , T] and [–T , T] =
⋃m

k=1 Bk . Let

E1 = B1, Ek := Bk \
k–1⋃
j=1

Bj (k = 2, . . . , m).
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Then Ei ∩ Ej = ∅ when i �= j, 1 ≤ i, j ≤ m. Note that

{
t ∈ [–T , T] :

∥∥c∧(–t)h
(
t,α(t)

)∥∥ ≥ ε
}

⊂
m⋃

k=1

{
t ∈ [–T , T] :

∥∥c∧(–t)h
(
t,α(t)

)
– c∧(–t)h

(
t, c∧(t)xk

)∥∥

+
∥∥c∧(–t)h

(
t, c∧(t)xk

)∥∥ ≥ ε
}

⊂
m⋃

k=1

({
t ∈ [–T , T] :

∥∥c∧(–t)
[
h
(
t,α(t)

)
– h

(
t, c∧(t)xk

)]∥∥ ≥ ε

2

}

∪
{

t ∈ [–T , T] :
∥∥c∧(–t)h

(
t, c∧(t)xk

)∥∥ ≥ ε

2

})
.

It follows from (2.4) that {t ∈ [–T , T] : ‖c∧(–t)[h(t,α(t)) – h(t, c∧(t)xk)]‖ ≥ ε
2 } are empty

for k = 1, . . . , m. Therefore

1
2T

meas
(
MT ,ε

(
h
(
t,α(t)

))) ≤
m∑

k=1

1
2T

meas
(
MT , ε2

(
h
(
t, c∧(t)xk

)))
.

Since h(t, c∧(t)xk) ∈ AA0,c(X, X) by (c), we have that

lim
T→∞

1
2T

meas
(
MT ,ε/2

(
h
(
t, c∧(t)xk

)))
= 0 for all k = 1, . . . , m;

and therefore

lim
T→∞

1
2T

meas
(
MT ,ε

(
h
(
t,α(t)

)))
= 0,

that is, H ∈ AA0,c(X). To summarize, we have proved that f (·,ϕ(·)) ∈ PPωc(X). �

Next, we present another composition theorem.

Theorem 2.25 Let f (t, x) = g(t, x) + h(t, x), where g(t + ω, cx) = cg(t, x) and h ∈ AA0,c(X, X).
Assume the following:

(a) ht(x) := c∧(–t)h(t, c∧(t)x) is uniformly continuous for x in any bounded set of X
uniformly in t ∈ R and

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)x

)∥∥dt = 0

for x in any bounded subset of X .
(b) There exists a nonnegative bounded function Lf (t) such that

∥∥f (t, x) – f (t, y)
∥∥ ≤ Lf (t)‖x – y‖, t ∈R, x, y ∈ X. (2.5)

If ϕ ∈ PPωc(X), then f (·,ϕ(·)) ∈ PPωc(X).
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Proof Let ϕ(t) = α(t) + β(t) with α ∈ Pωc(R, X) and β ∈ AA0,c(X). Then we have

f
(
t,ϕ(t)

)
=

[
f
(
t,ϕ(t)

)
– f

(
t,α(t)

)]
+ g

(
t,α(t)

)
+ h

(
t,α(t)

)
=: F(t) + G(t) + H(t).

Note that

1
2T

∫ T

–T

∥∥c∧(–t)F(t)
∥∥dt =

1
2T

∫ T

–T
|c|∧(–t)

∥∥f
(
t,ϕ(t)

)
– f

(
t,α(t)

)∥∥dt

≤ 1
2T

∫ T

–T
|c|∧(–t)Lf (t)

∥∥ϕ(t) – α(t)
∥∥dt

= Lf
1

2T

∫ T

–T

∥∥c∧(–t)β(t)
∥∥ → 0, T → ∞,

where we have used that Lf (t) ≤ Lf and the fact that β ∈ AA0,c(X). It follows that F ∈
AA0,c(X). On the other hand, by [3, Theorem 2.11] we have that G(t) = g(t,α(t)) belongs
to Pωc(R, X). Finally, we prove that H ∈ AA0,c(X). From Proposition 2.17 we have that K :=
{c∧(–t)α(t) : t ∈ R} is relatively compact in X. Let ε > 0. Then, for every δ > 0, there exist
x1, . . . , xk ∈ I such that

{
c∧(–t)α(t) : t ∈R

} ⊂
k⋃

j=1

B(xj, δ). (2.6)

Consequently, given t ∈R we can choose j ∈ {1, . . . , k} such that

∥∥c∧(–t)α(t) – xj
∥∥ < δ. (2.7)

Since ht(·) = c∧(–t)h(t, c∧(t)·) is uniformly continuous on K uniformly for t ∈R, then tak-
ing δ = δ( ε

2 ) we obtain that

∥∥c∧(–t)
[
h
(
t, c∧(t)c∧(–t)α(t)

)
– h

(·, c∧(t)xj
)]∥∥ <

ε

2
, (2.8)

uniformly t ∈R. From here, we can conclude that

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)
[
h
(
t,α(t)

)
– h

(
t, c∧(t)xj

)]∥∥dt <
ε

2
.

On the other hand, since

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)·)∥∥dt = 0

on the bounded subsets of X, then

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)xj

)∥∥dt = 0.

Thus there exists N ∈N such that for all t ≥ N we have that

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)xj

)∥∥dt <
ε

2
. (2.9)
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Next, for all t ≥ N and some j = 1, 2, . . . , k, we have

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t,α(t)

)∥∥dt ≤ 1
2T

∫ T

–T

∥∥c∧(–t)
[
h
(
t,α(t)

)
– h

(
t, c∧(t)xj

)]∥∥

+
1

2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)xj

)∥∥dt

< ε.

Hence

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)H(t)
∥∥dt = 0.

Consequently, f (·,ϕ(·)) ∈ PPωc(X). �

3 Applications to abstract integral and differential equations in Banach spaces
Consider the integral equation (see [21])

u(t) =
∫ t

–∞
R(t, s)f

(
s, u(s)

)
ds, (3.1)

where f and R satisfy the following hypotheses.
(H1) f (t, x) = g(t, x) + h(t, x), where g(t + ω, cx) = cg(t, x) and h ∈ AA0,c(X, X) and satisfies

∥∥f (t, x) – f (t, y)
∥∥ ≤ Lf ‖x – y‖, t ∈R, x, y ∈ X,

where Lf > 0.
(H2) ht(x) := c∧(–t)h(t, c∧(t)x) is uniformly continuous for x in any bounded set of X

uniformly in t ∈R and

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)h
(
t, c∧(t)x

)∥∥dt = 0

for x in any bounded subset of X .
(H3) The kernel R satisfies the inequality

∥∥R(t, s)
∥∥ ≤ Mk(t – s), t ≥ s, M > 0,

where k∼(t) = c∧(–t)k(t) ∈ L1([0,∞)).
(H4) R(t, s) is bi-periodic in the sense of

R(t + ω, s + ω) = R(t, s), t ≥ s. (3.2)

Note that, for an arbitrary periodic function a, the kernel defined by the following relation

R(t, s) := exp

(∫ t

s
a(r) dr

)

satisfies hypothesis (H4).
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Theorem 3.1 Assume that (H1)–(H4) hold. Then, if Lf M‖k∼‖1 < 1, the integral equation
(3.1) has a unique (ω, c)-pseudo periodic solution.

Proof We define G : PPωc(X) → PPωc(X) by

(Gu)(t) =
∫ t

–∞
R(t, s)f

(
s, u(s)

)
ds

for u ∈ PPωc(X) and t ∈R.
First, we prove that operator G is well defined. Indeed, let ϕ(·) = f (·, u(·)). By Theo-

rem 2.25, we have that ϕ ∈ PPωc(X). Then

‖Gu‖pωc ≤ sup
t∈R

∫ t

–∞

∥∥c∧(–t)R(t, s)ϕ(s)
∥∥ds

≤ M sup
t∈R

∫ t

–∞

∣∣c∧(
–(t – s)

)
k(t – s)

∣∣∥∥c∧(–s)ϕ(s)
∥∥ds

≤ M sup
t∈R

∫ t

–∞

∣∣k̃(t – s)
∣∣∥∥c∧(–s)ϕ(s)

∥∥ds

≤ M‖ϕ‖pωc sup
t∈R

∫ t

–∞

∣∣k̃(t – s)
∣∣ds < ‖ϕ‖pωc‖k̃‖1 < ∞.

Now, since ϕ ∈ PPωc(X), there exist functions ϕ1 ∈ Pωc(R, X) and ϕ2 ∈ AA0,c(X) such that
ϕ = ϕ1 + ϕ2. Then we can split G = G1 + G2 where

(G1u)(t) :=
∫ t

–∞
R(t, s)ϕ1(s) ds, (G2u)(t) :=

∫ t

–∞
R(t, s)ϕ2(s) ds.

First, we prove that G1 ∈ Pωc(R, X). By (H4) we have that

(G1u)(t + ω) :=
∫ t+ω

–∞
R(t + ω, s)ϕ1(s) ds

=
∫ t

–∞
R(t + ω, s + ω)ϕ1(s + ω) ds

= c
∫ t

–∞
R(t, s)ϕ1(s) ds = c(G1u)(t).

It follows that G1 ∈ Pωc(R, X).
Next, we prove that G2 ∈ AA0,c(X), that is,

lim
T→∞

1
2T

∫ T

–T

∥∥c∧(–t)(G2u)(t)
∥∥dt = 0.

By (H3) we have that

∥∥c∧(–t)(G2u)(t)
∥∥ ≤

∫ t

–∞
|c|∧(

–(t – s)
)∥∥R(t, s)

∥∥∥∥c∧(–s)ϕ2(s)
∥∥ds

≤ M
∫ t

–∞
|c|∧(

–(t – s)
)
k(t – s)

∥∥c∧(–s)ϕ2(s)
∥∥ds
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= M
∫ t

–∞
k∼(t – s)

∥∥c∧(–s)ϕ2(s)
∥∥ds.

Since ϕ2 ∈ AA0,c(X), the conclusion follows from convolution Theorem 2.21.
Therefore G(PPωc(X)) ⊂ PPωc(X). Now, if u, v ∈ PPωc(X), we have

∥∥G(u) – G(v)
∥∥

pωc = sup
t∈R

∥∥∥∥|c|∧(–t)
∫ t

–∞
R(t, s)

[
f
(
s, u(s)

)
– f

(
s, v(s)

)]
ds

∥∥∥∥

≤ sup
t∈R

∫ t

–∞

∥∥c∧(
–(t – s)

)
R(t, s)

∥∥ · Lf · ∥∥c∧(–s)
[
u(s) – v(s)

]∥∥ds

≤ MLf ‖u – v‖pωc

∫ ∞

0
k∼(s) ds

≤ MLf ‖u – v‖ωc
∥∥k∼∥∥

1.

It follows from the Banach fixed point theorem that there exists a unique u ∈ PPωc(X) such
that Gu = u, that is, u(t) =

∫ t
–∞ R(t, s)f (s, u(s)) ds. �

The previous results can be applied to obtain (ω, c)-pseudo periodic solutions to the
semilinear evolution equation

u′(t) = Au(t) + f
(
t, u(t)

)
, t ∈ R. (3.3)

We assume the following condition.
(H5) The operator A generates an exponentially stable C0- semigroup (T(t))t≥0, that is,

there exist constants M > 0 and α > 0 such that ‖T(t)‖ ≤ Me–αt for each t ≥ 0 and
c > e–α .

Thus, we have the following theorem.

Theorem 3.2 Assume that (H1) and (H5) hold. Then (3.3) has a unique (ω, c)-pseudo pe-
riodic solution whenever MLf < |k∼|–1, where k∼(t) = c∧(–t)e–αt .

4 Lasota–Wazewska model with unbounded oscillating and ergodic
production of red cells

The theory presented above can be extended to the semilinear abstract problem with delay

⎧⎨
⎩

y′(t) = Ay(t) + f (t, y(t – τ )), t ≥ 0,

y(t) = ϕ(t), t ∈ [–τ , 0],

where τ > 0 and for which a mild solution is a solution of the integral equation

y(t) = T(t)y(0) +
∫ t

0
T(t – s)f

(
s, y(s – τ )

)
ds, t ≥ 0.

Here, we need to know a history ϕ. Note that y(t – τ ) = ϕ(t – τ ) for t ∈ [0, τ ], and if y is
(ω, c)-pseudo periodic, then y(t –τ ) also is. As an example, we study the important Lasota–
Wazewska model with (ω, c)-pseudo periodic variable coefficients.
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The Lasota–Wazewska model is an autonomous differential equation of the form

y′(t) = –δy(t) + he–γ y(t–τ ), t ≥ 0. (4.1)

Wazewska–Czyzewska and Lasota [24] proposed this model to describe the survival of
red blood cells in the blood of an animal. In this equation, y(t) describes the number of
red cells bloods in the time t, δ > 0 is the probability of death of a red blood cell, h and γ

are positive constants related to the production of red blood cells by unity of time, and τ

is the time required to produce a red blood cell.
In this section, we study the following model:

y′(t) = –δy(t) + h(t)e–a(t)y(t–τ ), t ≥ 0, (4.2)

where τ > 0, h(t) and a(t) are continuous and positive functions. Equation (4.2) models
several situations in the real life, see, for example, [7, 8, 11, 18] and the references therein.
We are looking for positive (ω, c)-pseudo periodic solutions for certain ω > 0, c > 0. Let
f (t, y) = h(t)e–a(t)y and assume:

(a) τ ≤ ω;
(b) h is (ω, c)-pseudo periodic;
(c) a is (ω, 1

c )-pseudo periodic;
(d) c > e–δω ;
(e) ‖ah‖∞ < δ.

Remember that y(·) ∈ PPωc(X) implies that y(· – τ ) ∈ PPωc(X).
By (d) and (e) we have that f (t, y) = h(t)e–a(t)y satisfies the hypotheses of Theorem 3.2

since

|f (t, y1) – f (t, y2) ≤ ∣∣a(t)h(t)
∣∣|y1 – y2| (4.3)

for y1, y2 > 0, and its (ω, c)-pseudo periodic part g satisfies

g(t + ω, cy) = cg(t, y). (4.4)

By the variation of constant formula

y(t) = e–δty(0) +
∫ t

0
e–δ(t–s)f

(
s, y(s – τ )

)
ds, (4.5)

and hence y(0) > 0 implies that y(t) > 0. Note that condition (d) is necessary for positive
c-periodic solutions y. In fact, (4.5) and h(t) > 0 imply y(t) > e–δty(0), which evaluated at
t = ω implies (d) since [c – e–δω]y(0) > 0.

Moreover, taking y(0) =
∫ 0

–∞ eδsf (s, y(s – τ )) ds, which is well defined, we have that y sat-
isfies

y(t) =
∫ t

–∞
e–δ(t–s)f

(
s, y(s – τ )

)
ds. (4.6)

Then by Theorem 3.2 we have that (4.6) has a unique solution y∗ which belongs to PPωc(X).
Hence y∗ is also a solution of type PPωc(X) of equation (4.2). Moreover, y∗ is exponentially
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stable. Indeed, for any solution y of (4.2), z = y – y∗ satisfies

z′ = –δz + f (t, y) – f
(
t, y∗)

= –δz + f
(
t, y∗ + z

)
– f

(
t, y∗).

Note that

∣∣f (t, y∗ + z
)

– f
(
t, y∗)∣∣ ≤ ∣∣a(t)h(t)

∣∣|z|.

Then, taking ‖ah‖∞ < δ, z verifies that

∣∣z(t)
∣∣ ≤ e–α(t–t0) sup

t0–τ≤s≤t0

∣∣z(s)
∣∣

for t ≥ t0 ≥ 0 and 0 < α < δ – ‖ah‖∞.
We have proved the following theorem.

Theorem 4.1 Assume that conditions (a) to (e) hold. Then the Lasota–Wazewska model
has a unique (ω, c)-pseudo periodic solution which is exponentially stable.
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