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Abstract
We study the following system of equations:

{
�u1 = p1(|x|)f1(u1,u2) in R

N ,

�u2 = p2(|x|)f2(u1,u2) in R
N .

(0.1)

Here f1, f2 are continuous nonlinear functions that satisfy Keller–Osserman-type
conditions, and p1 and p2 are continuous weight functions. We establish the
existence of radial solutions for this system under various boundary conditions.
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1 Introduction
In this paper, we study the existence and asymptotic behavior of positive radial solutions
of the following semilinear elliptic system:

⎧⎨
⎩�u1 = p1(|x|)f1(u1, u2),

�u2 = p2(|x|)f2(u1, u2),
for x ∈R

N (N ≥ 3). (1.1)

Systems of type (1.1) arise from the study of Lotka–Volterra equations of predator–prey
and competitive type under a zero Dirichlet-type condition and variable coefficients (pos-
sibly vanishing on subdomains of RN , for more on this, see [3, 4, 13, 16, 17]). Moreover,
there are several connections between the diffusion–reaction system we consider and the
modeling of some problems in physics; see [12].

We study system (1.1) under three different sets of boundary conditions:
• Finite Case: Both components (u1, u2) are bounded, that is,

lim|x|→∞ u1
(|x|) < ∞ and lim|x|→∞ u2

(|x|) < ∞. (1.2)

• Infinite Case: Both components (u1, u2) are large, that is,

lim|x|→∞ u1
(|x|) = ∞ and lim|x|→∞ u2

(|x|) = ∞. (1.3)
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• Semifinite Case: One of the components is bounded, whereas the other is large, that is,

lim|x|→∞ u1
(|x|) < ∞ and lim|x|→∞ u2

(|x|) = ∞, (1.4)

or

lim|x|→∞ u1
(|x|) = ∞ and lim|x|→∞ u2

(|x|) < ∞. (1.5)

Let us present some existing literature on this topic. The works of García-Melián, Rossi,
and Sabina de Lis [5] and Lair and Mohammed [10] deal with the existence of solutions to
the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u1 = p1(x)uα
1 uβ

2 in BR,

�u2 = p2(x)uγ
1 uν

2 in BR,

u1(x) → ∞ as |x| → R,

u2(x) → ∞ as |x| → R,

(1.6)

where BR is the ball of radius R in R
N (bounded or unbounded) centered at the origin, p1

and p2 are Hölder continuous positive functions, and α, β , γ , ν are nonnegative constants.
If R = ∞, then BR = R

N , and the limit in (1.6) should be taken as |x| → ∞. In the particular
case of R = ∞ and p1(x) = p2(x) = 1, Lair and Mohammed [10] proved that system (1.6)
has a positive entire large radial solution if and only if

0 ≤ max{α,ν} ≤ 1 and βγ ≤ (1 – α)(1 – ν). (1.7)

Let us point out that our system (1.1) is more general than system (1.6) considered in
the aforementioned works. The goal of our paper is to obtain necessary and sufficient
conditions for the existence of positive solutions to system (1.1) under conditions of the
Keller–Osserman type [6, 14]. Another contribution of our work is estimates of the so-
lutions, which generalizes similar results obtained in [7–9, 11, 15]. Let us finish this in-
troduction by mentioning that some of the basic ideas underlying the present paper were
already developed in our earlier works [1, 2].

2 The mathematical results
Let us start with the following formal definition.

Definition 1 A solution (u1, u2) ∈ C2([0,∞)) × C2([0,∞)) of system (1.1) is called an en-
tire bounded solution if condition (1.2) holds; it is called an entire large solution if condition
(1.3) holds; it is called a semifinite entire large solution when (1.4) or (1.5) hold.

For clarity and ease of presentation, we introduce the following notations:

r = |x| and a, b, c1, c2, ε1, ε2 ∈ (0,∞) are suitably chosen,

G1(r) =
∫ r

0
t1–N

∫ t

0
sN–1p1(s) ds dt,
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G2(r) =
∫ r

0
t1–N

∫ t

0
sN–1p2(s) ds dt,

H(r) =
∫ r

a+b

1
(f1 + f2)(t, t)

dt, H(∞) = lim
r→∞ H(r),

G(r) = a + b + G1(r) + G2(r), Gi(∞) = lim
r→∞ Gi(r), i = 1, 2,

ω1(r) = f1

(
1,

b
f2(a, a)

+ c2f2

(
1, 1 +

1
a

H–1(G(r)
))

G2(r)
)

,

ω2(r) = f2

(
a

f1(b, b)
+ c1f1

(
1 +

1
b

H–1(G(r)
)
, 1

)
G1(r), 1

)
,

P1(r) =
∫ r

0
y1–N

∫ y

0
tN–1p1(t)f1

(
a, b + f2(a, b)G2(t)

)
dt dy,

Q1(r) =
∫ r

0
y1–N

∫ y

0
tN–1p2(t)f2

(
a + f1(a, b)G1(t), b

)
dt dy,

P2(r) =
∫ r

0
c1z1+ε1 p1(z)ω1(z) dz,

Q2(r) =
∫ r

0
c2z1+ε2 p2(z)ω2(z) dz,

P3(r) =
∫ r

0

√
2c1φ1(z)ω1(z) dz, φ1(z) = max

{
p1(t)|0 ≤ t ≤ z

}
,

Q3(r) =
∫ r

0

√
2c2φ2(z)ω2(z) dz, φ2(z) = max

{
p2(t)|0 ≤ t ≤ z

}
,

F1(r) =
∫ r

a

1√∫ s
0 f1(t, f2(t, t)) dt

ds, F1(∞) = lim
r→∞ F1(r),

F2(r) =
∫ r

b

1√∫ s
0 f2(f1(t, t), t) dt

ds, F2(∞) = lim
r→∞ F2(r),

Pi(∞) = lim
r→∞ Pi(r), Qi(∞) = lim

r→∞ Qi(r) for i = 1, 2, 3.

Next, we state our working assumptions.

Standing Assumption The weight functions p1, p2 and the nonlinearities f1, f2 satisfy:
(P1) p1, p2 : [0,∞) → [0,∞) are nontrivial radial continuous functions (radial, i.e.,

p1(x) = p1(|x|) and p2(x) = p2(|x|));
(C1) f1, f2 : [0,∞) × [0,∞) → [0,∞) are continuous and nondecreasing in both

arguments, and f1(x, y) > 0, f2(x, y) > 0 for all x, y > 0;
(C2) for fixed parameters a, b ∈ (0,∞), there exist c1, c2 ∈ (0,∞) such that:

• for all t ≥ min{a, b}, w ≥ 1, u ≥ min{b, f2(a, a)}, v ≥ min{1, b
f2(a,a) }, we have

f1(tw, uv) ≤ c1f1(t, u)f1(w, v) and f1(a, b) ≥ 1; (2.1)

• for all t ≥ min{a, b}, w ≥ 1, u ≥ min{a, f1(b, b)}, v ≥ min{1, a
f1(b,b) }, we have

f2(tw, uv) ≤ c2f2(t, u)f2(w, v) and f2(a, b) ≥ 1. (2.2)
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At this point we are ready to state our main results. The first result concerns the exis-
tence of entire solutions of (1.1) in the case F1(∞) = F2(∞) = ∞. Our findings here are
summarized in the next theorem.

Theorem 2 Assume that F1(∞) = F2(∞) = ∞. Then there exists an entire positive radial
solution (u1, u2) ∈ C2([0,∞)) × C2([0,∞)) of (1.1) such that u1(0) = a, u2(0) = b. Moreover,
the following properties hold:

(1) If r2N–2p1(r), r2N–2p2(r) are nondecreasing for large r and there exist ε1, ε2 ∈ (0,∞)
such that p1, p2 satisfy

P2(∞) < ∞ and Q2(∞) < ∞, (2.3)

then the nonnegative radial solution (u1, u2) of (1.1) satisfies condition (1.2).
(2) If p1 and p2 satisfy

P1(∞) = Q1(∞) = ∞, (2.4)

then the nonnegative radial solution (u1, u2) of (1.1) satisfies condition (1.3).
(3) If r2N–2p1(r) is nondecreasing for large r and there exists ε1 ∈ (0,∞) such that p1, p2

satisfy

P2(∞) < ∞ and Q1(∞) = ∞, (2.5)

then the nonnegative radial solution (u1, u2) of (1.1) satisfies condition (1.4).
(4) If r2N–2p2(r) is nondecreasing for large r and there exists ε2 ∈ (0,∞) such that p1, p2

satisfy

P1(∞) = ∞ and Q2(∞) < ∞, (2.6)

then the nonnegative radial solution (u1, u2) of (1.1) satisfies condition (1.5).
(5) If (1.1) has a nonnegative entire large solution (u1, u2) such that u1(0) = a, u2(0) = b

and r2N–2p1(r), r2N–2p2(r) are nondecreasing for large r, then p1 and p2 satisfy

P2(∞) = ∞ and Q2(∞) = ∞, (2.7)

for all ε1, ε2 > 0.

Our next result concerns the existence of entire solutions (1.1) in the case F1(∞) ≤ ∞
and F2(∞) ≤ ∞. Our findings are summarized in the next theorem.

Theorem 3 The following statements hold:
(i) If P3(∞) < F1(∞) < ∞ and Q3(∞) < F2(∞) < ∞, then system (1.1) has a positive

bounded radial solution (u1, u2) ∈ C2([0,∞)) × C2([0,∞)) with u1(0) = a and
u2(0) = b such that

⎧⎨
⎩a + P1(r) ≤ u1(r) ≤ F–1

1 (P3(r)),

b + Q1(r) ≤ u2(r) ≤ F–1
2 (Q3(r)).
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(ii) If F1(∞) = ∞, P1(∞) = ∞, and Q3(∞) < F2(∞) < ∞, then system (1.1) has a
positive radial solution

(u1, u2) ∈ C2([0,∞)
) × C2([0,∞)

)
, (2.8)

such that u1(0) = a, u2(0) = b, and (1.5) holds.
(iii) If P3(∞) < F1(∞) < ∞ and F2(∞) = ∞, Q1(∞) = ∞, then system (1.1) has a positive

radial solution

(u1, u2) ∈ C2([0,∞)
) × C2([0,∞)

)
, (2.9)

such that u1(0) = a, u2(0) = b, and (1.4) holds.
(iv) If r2N–2p1(r) is nondecreasing for large r, F1(∞) = ∞, and there exists ε1 ∈ (0,∞)

such that P2(∞) < ∞ and Q3(∞) < F2(∞) < ∞, then system (1.1) has a positive
radial solution

(u1, u2) ∈ C2([0,∞)
) × C2([0,∞)

)
, (2.10)

such that u1(0) = a, u2(0) = b, and (1.2) holds.
(v) If r2N–2p2(r) is nondecreasing for large r, P3(∞) < F1(∞) < ∞, F2(∞) = ∞, and

there exists ε2 ∈ (0,∞) such that Q2(∞) < ∞, then system (1.1) has a positive radial
solution

(u1, u2) ∈ C2([0,∞)
) × C2([0,∞)

)
, (2.11)

such that u1(0) = a, u2(0) = b, and (1.2) holds.

Remark 4 If f1(u1, u2) = uα
1 uβ

2 and f2(u1, u2) = uγ
1 uν

2, where α, β , γ , ν are nonnegative con-
stants such that α +(γ +ν)β ≤ 1 and (α +β)γ +υ ≤ 1, then F1(∞) = F2(∞) = ∞. If G1(∞) =
G2(∞) = ∞, then P1(∞) = Q1(∞) = ∞, but the converse is not true. If G1(∞) < ∞ and
G2(∞) < ∞, then P1(∞) < ∞ and Q1(∞) < ∞, but the converse is not true.

3 Proofs of theorems
The main idea in proving our results is reducing system (1.1) to a system of second-order
ODEs and giving a complete classification of its solutions. Among many possible methods
to establish the existence of radial solutions to system (1.1), we will follow here the one
based on a successive approximation as in [2]. In the radial setting, system (1.1) becomes
a system of differential equations of the form

⎧⎨
⎩(rN–1u′

1(r))′ = rN–1p1(r)f1(u1(r), u2(r)), r ∈ [0,∞),

(rN–1u′
2(r))′ = rN–1p2(r)f2(u1(r), u2(r)), r ∈ [0,∞),

(3.1)

which can be solved subject to the initial boundary conditions u1(0) = a, u2(0) = b, and
u′

1(0) = u′
2(0) = 0. The differential equations and initial conditions in (3.1) are equivalent

to the integral equations
⎧⎨
⎩u1(r) = a +

∫ r
0 t1–N ∫ t

0 sN–1p1(s)f1(u1(s), u2(s)) ds dt,

u2(r) = b +
∫ r

0 t1–N ∫ t
0 sN–1p2(s)f2(u1(s), u2(s)) ds dt.

(3.2)
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To construct a solution to this system, we define the sequences {uk
1(r)}k≥0 and {uk

2(r)}k≥0

on [0,∞) by

⎧⎪⎪⎨
⎪⎪⎩

u0
1 = a and u0

2 = b, r ≥ 0,

uk
1(r) = a +

∫ r
0 t1–N ∫ t

0 sN–1p1(s)f1(uk–1
1 (s), uk–1

2 (s)) ds dt,

uk
2(r) = b +

∫ r
0 t1–N ∫ t

0 sN–1p2(s)f2(uk–1
1 (s), uk–1

2 (s)) ds dt.

(3.3)

Obviously, for all r ≥ 0 and k ∈ N, we have uk
1(r) ≥ a and uk

2(r) ≥ b. Our assumptions
yield u0

1(r) ≤ u1
1(r) and u0

2(r) ≤ u1
2(r) for all r ≥ 0. From these inequalities we can easily get

u1
1(r) ≤ u2

1(r) and u1
2(r) ≤ u2

2(r) for all r ≥ 0. Continuing this reasoning, we obtain that the
sequences {uk

1(r)}k≥0 and {uk
2(r)}k≥0 are nondecreasing on [0,∞). Thus there exist

u1(r) = lim
k→∞

uk
1(r) ≤ ∞ and u2(r) = lim

k→∞
uk

2(r) ≤ ∞, r ∈ [0,∞). (3.4)

We will next establish “upper bounds” for this sequences. To do this, we note that
{uk

1(r)}k≥0 and {uk
2(r)}k≥0 satisfy

⎧⎨
⎩[rN–1(uk

1(r))′]′ = rN–1p1(r)f1(uk–1
1 (r), uk–1

2 (r)),

[rN–1(uk
2(r))′]′ = rN–1p2(r)f2(uk–1

1 (r), uk–1
2 (r)).

(3.5)

Using the monotonicity of {uk
1(r)}k≥0 and {uk

2(r)}k≥0, we obtain the inequalities

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[rN–1(uk
1(r))′]′ = rN–1p1(r)f1(uk–1

1 (r), uk–1
2 (r))

≤ rN–1p1(r)f1(uk
1(r), uk

2(r)),

[rN–1(uk
2(r))′]′ = rN–1p2(r)f2(uk–1

1 (r), uk–1
2 (r))

≤ rN–1p2(r)f2(uk
1(r), uk

2(r)).

(3.6)

Taking into account (3.6), we easily to see that

[
rN–1(uk

1(r) + uk
2(r)

)′]′

≤ rN–1(p1(r)f1
(
uk

1(r), uk
2(r)

)
+ p2(r)f2

(
uk

1(r), uk
2(r)

))
≤ rN–1(p1(r) + p2(r)

)(
(f1 + f2)

(
uk

1(r) + uk
2(r), uk

1(r) + uk
2(r)

))
. (3.7)

Integrating this inequality yields

(uk
1(r) + uk

2(r))′

(f1 + f2)(uk
1(r) + uk

2(r), uk
1(r) + uk

2(r))
≤ G′

1(r) + G′
2(r). (3.8)

Integrating (3.8) between 0 and r, we get

∫ uk
1(r)+uk

2(r)

a+b

dt
(f1 + f2)(t, t)

≤ G(r), (3.9)

or, in the H notation,

H
(
uk

1(r) + uk
2(r)

) ≤ G(r). (3.10)
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It follows from this estimate and the fact that H is a bijection (with the inverse denoted
H–1) that

uk
1(r) + uk

2(r) ≤ H–1(G(r)
)
. (3.11)

This occurs on bounded intervals, since

uk
1(r) + uk

2(r) ≥ a + b + f1(a, b)G1(r) + f2(a, b)G2(r)

≥ a + b + G1(r) + G2(r) = G(r) (3.12)

by (3.3) and (C1). Recalling that {uk
1(r)}k≥0 and {uk

2(r)}k≥0 are nondecreasing sequences on
[0,∞), the above estimate yields

uk
1(r) ≤ a +

∫ r

0
t1–N

∫ t

0
sN–1p1(s)f1

(
uk

1(s), uk
2(s)

)
ds dt

≤ a + f1
(
uk

1(r), uk
2(r)

)
G1(r)

≤ a + f1
(
uk

2(r) + H–1(G(r)
)
, uk

2(r)
)
G1(r)

= a + f1

(
uk

2(r)
(

1 +
1

uk
2(r)

H–1(G(r)
))

, uk
2(r)

)
G1(r)

≤ a + f1

(
uk

2(r)
(

1 +
1
b

H–1(G(r)
))

, uk
2(r)

)
G1(r)

≤ a + c1f1
(
uk

2(r), uk
2(r)

)
f1

(
1 +

1
b

H–1(G(r)
)
, 1

)
G1(r)

= f1
(
uk

2(r), uk
2(r)

)( a
f1(uk

2(r), uk
2(r))

+ c1f1

(
1 +

1
b

H–1(G(r)
)
, 1

)
G1(r)

)

≤ f1
(
uk

2(r), uk
2(r)

)( a
f1(b, b)

+ c1f1

(
1 +

1
b

H–1(G(r)
)
, 1

)
G1(r)

)
(3.13)

and

uk
2(r) ≤ b +

∫ r

0
t1–N

∫ t

0
sN–1p2(s)f2

(
uk

1(s), uk
2(s)

)
ds dt

≤ b + f2
(
uk

1(r), uk
2(r)

)
G2(r)

≤ b + f2
(
uk

1(r), uk
1(r) + H–1(G(r)

))
G2(r)

= b + f2

(
uk

1(r), uk
1(r)

(
1 +

1
uk

1(r)
H–1(G(r)

)))
G2(r)

≤ b + f2

(
uk

1(r), uk
1(r)

(
1 +

1
a

H–1(G(r)
)))

G2(r)

≤ b + c2f2
(
uk

1(r), uk
1(r)

)
G2(r)f2

(
1, 1 +

1
a

H–1(G(r)
))

≤ f2
(
uk

1(r), uk
1(r)

)( b
f2(a, a)

+ c2f2

(
1, 1 +

1
a

H–1(G(r)
))

G2(r)
)

. (3.14)
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Substituting (3.13) and (3.14) into (3.6), we obtain

[
rN–1(uk

1(r)
)′]′ ≤ rN–1p1(r)f1

(
uk

1(r), uk
2(r)

)
≤ rN–1p1(r)f1(uk

1(r), f2
(
uk

1(r), uk
1(r)

)( b
f2(a, a)

+ c2f2

(
1,

a + H–1(G(r))
a

)
G2(r)

)

≤ rN–1p1(r)c1f1
(
uk

1(r), f2
(
uk

1(r), uk
1(r)

))
ω1(r) (3.15)

and

[
rN–1(uk

2(r)
)′]′ ≤ rN–1p2(r)f2

(
uk

1(r), uk
2(r)

)
≤ rN–1p2(r)f2

(
f1

(
uk

2(r), uk
2(r)

)( a
f1(b, b)

+ c1f1

(
b + H–1(G(r))

b
, 1

)
G1(r)

)
, uk

2(r)
)

≤ rN–1p2(r)c2f2
(
f1

(
uk

2(r), uk
2(r)

)
, uk

2(r)
)
ω2(r). (3.16)

In summary, we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rN–1(uk
1)′′ ≤ (N – 1)rN–2(uk

1)′ + rN–1(uk
1)′′ = [rN–1(uk

1)′]′

≤ rN–1p1(r)c1f1(uk
1(r), f2(uk

1(r), uk
1(r)))ω1(r),

rN–1(uk
2)′′ ≤ [rN–1(uk

2)′]′

≤ rN–1p2(r)c2f2(f1(uk
2(r), uk

2(r)), uk
2(r))ω2(r).

(3.17)

Multiplying the first inequality in (3.17) by (uk
1(r))′ and the second by (uk

2(r))′, we arrive at

⎧⎨
⎩{[(uk

1(r))′]2}′ ≤ 2p1(r)c1f1(uk
1(r), f2(uk

1(r), uk
1(r)))(uk

1(r))′ω1(r),

{[(uk
2(r))′]2}′ ≤ 2p2(r)c2f2(f1(uk

2(r), uk
2(r)), uk

2(r))(uk
2(r))′ω2(r).

(3.18)

Integrating in (3.18) from 0 to r, we get

⎧⎨
⎩[(uk

1(r))′]2 ≤ ∫ r
0 2p1(z)c1f1(uk

1(z), f2(uk
1(z), uk

1(z)))(uk
1(z))′ω1(z) dz,

[(uk
2(r))′]2 ≤ ∫ r

0 2p2(z)c2f2(f1(uk
2(z), uk

2(z)), uk
2(z))(uk

2(z))′ω2(z) dz.
(3.19)

Now set

φ1(r) = max
{

p1(z)|0 ≤ z ≤ r
}

,

φ2(r) = max
{

p2(z)|0 ≤ z ≤ r
}

.
(3.20)

By the definition of φ1(r) and φ2(r) we get from inequalities (3.19) that

⎧⎨
⎩[(uk

1(r))′]2 ≤ 2c1φ1(r)ω1(r)
∫ r

0 f1(uk
1(z), f2(uk

1(z), uk
1(z)))(uk

1(z))′ dz,

[(uk
2(r))′]2 ≤ 2c2φ2(r)ω2(r)

∫ r
0 f2(f1(uk

2(z), uk
2(z)), uk

2(z))(uk
2(z))′ dz.

(3.21)
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As a consequence of (3.21), we get

⎧⎨
⎩(uk

1(r))′ ≤ √
2φ1(r)ω1(r)(

∫ uk
1(r)

a c1f1(z, f2(z, z)) dz)1/2,

(uk
2(r))′ ≤ √

2φ2(r)ω2(r)(
∫ uk

2(r)
b c2f2(f1(z, z), z) dz)1/2.

(3.22)

From this we easily deduce

⎧⎪⎪⎨
⎪⎪⎩

(uk
1(r))′

(
∫ uk

1(r)
a f1(z,f2(z,z)) dz)1/2

≤ c1/2
1

√
2φ1(r)ω1(r),

(uk
2(r))′

(
∫ uk

2(r)
b f2(f1(z,z),z) dz)1/2

≤ c1/2
2

√
2φ2(r)ω2(r).

(3.23)

Integrating (3.23), we arrive at

⎧⎪⎨
⎪⎩

∫ uk
1(r)

a
1√∫ s

0 f1(t,f2(t,t)) dt
ds ≤ ∫ r

0

√
2c1φ1(z)ω1(z) dz,∫ uk

2(r)
b

1√∫ s
0 f2(f1(t,t),t) dt

ds ≤ ∫ r
0

√
2c2φ2(z)ω2(z) dz.

(3.24)

Now (3.24) can be written as

⎧⎨
⎩F1(uk

1(r)) ≤ P3(r),

F2(uk
2(r)) ≤ Q3(r).

(3.25)

Finally, using the fact that F–1
1 , F–1

2 are strictly increasing on [0, F1(∞)) and [0, F2(∞)), we
get

⎧⎨
⎩uk

1(r) ≤ F–1
1 (P3(r)),

uk
2(r) ≤ F–1

2 (Q3(r)).
(3.26)

These inequalities are independent of k. We claim that the sequences {uk
1(r)}k≥0 and

{uk
2(r)}k≥0 are bounded on [0, c0] for arbitrary c0 > 0. Indeed, since

(
uk

1(r)
)′ ≥ 0 and

(
uk

2(r)
)′ ≥ 0, r ≥ 0, (3.27)

it follows that

uk
1(r) ≤ uk

1(c0) ≤ C1 and uk
2(r) ≤ uk

2(c0) ≤ C2 on [0, c0]. (3.28)

Here C1 = F–1
1 (P3(c0)) and C2 = F–1

2 (Q3(c0)) are positive constants. Thus the sequences
{uk

1(r)}k≥0 and {uk
2(r)}k≥0 are bounded and equicontinuous on [0, c0] for arbitrary c0 > 0.

By the Arzelà–Ascoli theorem there exist subsequences of {uk
1(r)}k≥0 and {uk

2(r)}k≥0 con-
verging uniformly to u1(r) and u2(r) on [0, c0]. Since {uk

1(r)}k≥0 and {uk
2(r)}k≥0 are nonde-

creasing on [0,∞), we see that {uk
1(r)}k≥0 and {uk

2(r)}k≥0 converge uniformly to u1(r) and
u2(r) on [0,∞). By the arbitrariness of c0 we deduce that (u1, u2) is the desired solution
of (3.2). Since (uk

1, uk
2) is spherically symmetric, then (u1, u2), obtained as a limit, is also
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spherically symmetric. Then

u1(r) = lim
k→∞

uk
1(r) and u2(r) = lim

k→∞
uk

2(r), r ≥ 0, (3.29)

are well defined. A straightforward calculation shows that radial solutions of (1.1) are so-
lutions of the ordinary differential equation system (3.1). Then it follows that the radial
solutions of (1.1) with u1(0) = a and u2(0) = b satisfy

u1(r) = a +
∫ r

0

1
tN–1

∫ t

0
sN–1p1(s)f1

(
u1(s), u2(s)

)
ds dt, r ≥ 0, (3.30)

u2(r) = b +
∫ r

0

1
tN–1

∫ t

0
sN–1p2(s)f2

(
u1(s), u2(s)

)
ds dt, r ≥ 0. (3.31)

Setting

L1(r) = r1–N
∫ r

0
sN–1p1(s)f1

(
u1(s), u2(s)

)
ds,

L2(r) = r–N (1 – N)
∫ r

0
sN–1p1(s)f1

(
u1(s), u2(s)

)
ds,

L3(r) = p1(r)f1
(
u1(s), u2(s)

)

and repeating the proof in [1], we can see that

lim
r→0

u′
1(r) = lim

r→0
L1(r) = u′

1(0) = 0,

lim
r→0

u′′
1(r) = lim

r→0

(
L2(r) + L3(r)

)
= u′′

1(0) =
p1(0)f1(u1(0), u2(0))

N
,

from which it follows that u′
1(r) and u′′

1(r) are continuous at r = 0. In the same fashion,
u′

2(r) and u′′
2(r) are continuous at r = 0. Clearly, (u1, u2) ∈ C2[0,∞) × C2[0,∞).

Proof of Theorem 2 completed Choose R > 0 such that r2N–2p1(r) and r2N–2p2(r) are non-
decreasing for r ≥ R. Using the same arguments as in (3.15) and (3.16), we can see that

⎧⎨
⎩[rN–1(u1(r))′]′ ≤ rN–1p1(r)c1f1(u1(r), f2(u1(r), u1(r)))ω1(r),

[rN–1(u2(r))′]′ ≤ rN–1p2(r)c2f2(f1(u2(r), u2(r)), u2(r))ω2(r).
(3.32)

Multiplying the first equation in (3.32) by rN–1(u1)′ and the second by rN–1(u2)′ and inte-
grating from R to r yield, for r ≥ R,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[rN–1(u1(r))′]2 ≤ [RN–1(u1(R))′]2

+ 2
∫ r

R z2N–2p1(z)c1ω1(z) d
dz

∫ u1(z)
a f1(s, f2(s, s)) ds dz,

[rN–1(u2(r))′]2 ≤ [RN–1(u2(R))′]2

+ 2
∫ r

R z2N–2p2(z)c2ω2(z) d
dz

∫ u2(z)
b f2(f1(s, s), s) ds dz,

(3.33)
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from the monotonicity of z2N–2p1(z) and z2N–2p2(z) for r ≥ z ≥ R we get that

⎧⎨
⎩[rN–1(u1(r))′]2 ≤ C1 + 2c1r2N–2p1(r)ω1(r)F1(u1(r)),

[rN–1(u2(r))′]2 ≤ C2 + 2c2r2N–2p2(r)ω2(r)F2(u2(r)),
(3.34)

where

C1 =
[
RN–1(u1(R)

)′]2, C2 =
[
RN–1(u2(R)

)′]2,

F1
(
u1(r)

)
=

∫ u1(r)

0
f1

(
s, f2(s, s)

)
ds,

F2
(
u2(r)

)
=

∫ u2(r)

0
f2

(
f1(s, s), s

)
ds.

(3.35)

This implies that

⎧⎪⎨
⎪⎩

(u1(r))′√
F1(u1(r))

≤
√

C1r1–N√
F1(u1(r))

+
√

2c1p1(r)ω1(r),
(u2(r))′√
F2(u2(r))

≤
√

C2r1–N√
F2(u2(r))

+
√

2c2p2(r)ω2(r).
(3.36)

In particular, integrating (3.36) from R to r, we arrive at the following inequality:

∫ u1(r)

u1(R)

[∫ t

0
f1

(
z, f2(z, z)

)
dz

]–1/2

dt

= F1
(
u1(r)

)
– F1

(
u1(R)

)
≤

∫ r

R

√
C1t1–N

(
∫ u1(t)

0 f1(s, f2(s, s)) ds)–1/2
dt +

∫ r

R

√
2c1p1(z)ω1(z) dz

=
∫ r

R

√
C1t1–N

(
∫ u1(t)

0 f1(s, f2(s, s)) dz)–1/2
dt +

∫ r

R
z

–1–ε1
2 z

1+ε1
2

(
2c1p1(z)ω1(z)

) 1
2 dz

≤
√

C1
∫ r

R t1–N dt

(
∫ u1(R)

0 f1(z, f2(z, z)) dz)1/2

+
(∫ r

R
z–1–ε1 dz

) 1
2
(∫ r

R
z1+ε1 2c1p1(z)ω1(z) dz

) 1
2

≤
√

C1
∫ r

R t1–N dt

(
∫ u1(R)

0 f1(z, f2(z, z)) dz)1/2
+

(
2P2(r)
ε1Rε1

) 1
2

. (3.37)

We next turn to estimating the second solution. A similar calculation yields

F2
(
u2(r)

)
– F2

(
u2(R)

) ≤
√

C2
∫ r

R t1–N dt

(
∫ u2(R)

0 f2(f1(z, z), z) dz)1/2
+

(
2Q2(r)
ε2Rε2

) 1
2

. (3.38)
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Inequalities (3.37) and (3.38) are needed in proving the “boundedness” of the functions u1

and u2. Indeed, they can be written as

⎧⎪⎨
⎪⎩

u1(r) ≤ F–1
1 (F1(u1(R)) +

√
C1

∫ r
R t1–N dt

(
∫ u1(R)

0 f1(z,f2(z,z)) dz)1/2
+ ( 2P2(r)

ε1Rε1 ) 1
2 ),

u2(r) ≤ F–1
2 (F2(u2(R)) +

√
C2

∫ r
R t1–N dt

(
∫ u2(R)

0 f2(f1(z,z),z) dz)1/2
+ ( 2Q2(r)

ε2Rε2 ) 1
2 ).

(3.39)

Having discussed the “bounded” case, we now turn to the claims of the theorem.
Claim 1: When P2(∞) < ∞ and Q2(∞) < ∞, from (3.39) we find that

⎧⎨
⎩limr→∞ u1(r) < ∞

limr→∞ u2(r) < ∞
for all r ≥ 0, (3.40)

and so (u1, u2) is bounded. We next consider:
Claim 2: Let (u1, u2) be a solution of (3.2). The case P1(∞) = Q1(∞) = ∞ is proved as

follows:

u1(r) = a +
∫ r

0
t1–N

∫ t

0
sN–1p1(s)f1

(
u1(s), u2(s)

)
ds dt

= a +
∫ r

0
y1–N

∫ y

0
tN–1p1(t)f1

(
a, b

+
∫ t

0
z1–N

∫ z

0
sN–1p2(s)f2

(
u1(s), u2(s)

)
ds

)
dz) dt dy

≥ a +
∫ r

0
y1–N

∫ y

0
tN–1p1(t)f1

(
a, b + f2(a, b)G2(t)

)
dt dy

≥
∫ r

0
y1–N

∫ y

0
tN–1p1(t)f1

(
a, b + f2(a, b)G2(t)

)
dt dy = P1(r). (3.41)

As in the preceding lines, we can prove

u2(r) ≥ Q1(r). (3.42)

Passing to the limit in (3.41) and in the last inequality, we get

lim
r→∞ u1(r) = lim

r→∞ u2(r) = ∞, (3.43)

which yields the claim.
Claim 3: In a similar way as in Claim 1 and Claim 2, we have the estimates

lim
r→∞ u1(r)

≤ F–1
1

(
F1

(
u1(R)

)
+

√
C1

∫ ∞
R t1–N dt

(
∫ u1(R)

0 f1(z, f2(z, z)) dz)1/2
+

√
2P2(∞)
ε1Rε1

)

≤ F–1
1

(
F1

(
u1(R)

)
+

RN–2√C1

(N – 2)(
∫ u1(R)

0 f1(z, f2(z, z)) dz)1/2
+

√
2P2(∞)
ε2Rε2

)
< ∞. (3.44)
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Arguing as in (3.42) we have

lim
r→∞ u2(r) = ∞. (3.45)

Finally, since we know that

P2(∞) < ∞ and Q1(∞) = ∞, (3.46)

the claim yields

lim
r→∞ u1(r) < ∞ and lim

r→∞ u2(r) = ∞. (3.47)

Claim 4: By a straightforward modification of the proof presented in the Claim 3 the
results hold since any statement about P2(∞) can be translated into a statement about
Q2(∞).

Claim 5: If (u1, u2) is a nonnegative non-trivial entire large solution of (1.1), then (u1, u2)
satisfy

u1(r) ≤ F–1
1

(
F1

(
u1(R)

)
+

√
C1

∫ r
R t1–N dt

(
∫ u1(R)

0 f1(z, f2(z, z)) dz)1/2
+

√
2P2(r)
ε1Rε1

)
, (3.48)

u2(r) ≤ F–1
2

(
F2

(
u2(R)

)
+

√
C2

∫ r
R t1–N dt

(
∫ u2(R)

0 f2(f1(z, z), z) dz)1/2
+

√
2Q2(r)
ε2Rε2

)
, (3.49)

where

C1 =
[
RN–1(u1(R)

)′]2 and C2 =
[
RN–1(u2(R)

)′]2. (3.50)

Next, assuming to the contrary that

P2(∞) < ∞ and Q2(∞) < ∞, (3.51)

then (2.7) follows by taking r → ∞ in (3.48) and (3.49). This concludes the last claim and
concludes the proof of the theorem. �

Proof of Theorem 3 completed It follows from (3.25) and the conditions of the theorem
that

F1
(
uk

1(r)
) ≤ P3(∞) < F1(∞) < ∞, (3.52)

F2
(
uk

2(r)
) ≤ Q3(∞) < F2(∞) < ∞. (3.53)

On the other hand, since F–1
1 , respectively F–1

2 , is strictly increasing on [0, F1(∞)) respec-
tively [0, F2(∞)), we find that

uk
1(r) ≤ F–1

1
(
P3(∞)

)
< ∞ and uk

2(r) ≤ F–1
2

(
Q3(∞)

)
< ∞, (3.54)
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and then the nondecreasing sequences {uk
1(r)}k≥0 and {uk

2(r)}k≥0 are bounded above for all
r ≥ 0 and k. Combining these two facts, we conclude that (uk

1(r), uk
2(r)) → (u1(r), u2(r)) as

k → ∞ and the limit functions u1 and u2 are positive entire bounded radial solutions of
system (1.1). The remainder of the proof is similar to that of Theorem 2. �

4 Conclusion
In this paper we investigate the existence of solutions on R

N for a system of partial differ-
ential equations under new Keller–Osserman-type conditions.
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