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Abstract
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1 Introduction
In 1695, L’Hôpital asked what was dny

dxn if n = 1
2 in his letter to Leibniz. This year is gener-

ally regarded as the birthday of fractional calculus. Hereafter, Leibniz, J. Bernoulli, Euler,
Lagrange, Laplace, Lacroix, Fourier, Abel, Cantor, De Morgen, Ya Sonin, Riemann, Liou-
ville, Caputo, et al. have made important contributions to the definition of fractional cal-
culus. In 1830s, Riemann and Liouville defined the integral and derivative which is now
called Riemann–Liouville (R-L) fractional calculus by the Cauchy integral formula. Sub-
sequently, many famous and important fractional integrals and derivatives have been pro-
posed, for example, Grünwald–Letnikov fractional derivative, Caputo fractional deriva-
tive, Weyl fractional calculus, Hadamard fractional calculus, and so on. As for the history
of fractional calculus, the readers can refer to the literature [1, 2].

The fractional-order calculus as a good tool is used to establish the mathematical model
describing many actual phenomena and processes. For example, the fractional differential
equations can describe the diffusion processes (see [3, 4]), the mechanical properties of
materials (see [5–8]), the signal processing (see [9]), the image processing (see [10]), the
behavior of viscoelastic and visco-plastic materials under external influences (see [11, 12]),
the pharmacokinetics (see [13–15]), the bioengineering (see [16, 17]), the control theory
(see [18, 19]), and so on. In addition there are some applications of fractional calculus
within various fields of mathematics itself, e.g., in the analytical investigation of various
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types of special functions (see [20]). Therefore, the fractional differential equation has
been widely focused and studied in depth. There have been some monographs and text-
books for the readers to learn use fractional calculus theories and methods (see [2, 21–25]).
In the last few decades, there have been many papers dealing with fractional differential
equation involving Riemann–Liouville and Caputo fractional derivatives (see [26–43]). In
fact, the Hadamard fractional derivative is one of the most famous fractional calculi which
was put forward by Hadamard in 1892. This type of fractional derivative differs from other
types of derivatives. Its main feature is that the integral kernel contains a logarithmic func-
tion of arbitrary exponent in definition. Recently, there have been several papers dealing
with Hadamard fractional differential equation (see [44–67]). However, these papers rarely
considered the Hadamard fractional differential coupled equations. Therefore, it is inter-
esting and challenging to study the Hadamard nonlinear fractional differential coupled
system with impulses. So, in this paper we mainly study the following impulsive fractional
differential coupled system with Hadamard fractional calculus:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLHDα
tk

[u(t) – H Jα
tk

e(t, u(t), v(t))] = g(t, u(t), v(t)), t ∈ J = [a, T], t �= tk ,

RLHDβ
tk [v(t) – HJβ

tk f (t, u(t), v(t))] = h(t, u(t), v(t)), t ∈ J = [a, T], t �= tk ,

RLHDα–1
tk

u(t+
k ) – RLHDα–1

tk
u(t–

k ) = Ik(u(tk)), k = 1, 2, . . . , m,

RLHDβ–1
tk v(t+

k ) – RLHDβ–1
tk v(t–

k ) = Jk(v(tk)), k = 1, 2, . . . , m,

c · RLHDα–1
a u(a) = u(T), d · RLHDβ–1

a v(a) = v(T),

(1.1)

where a > 0, 1 < α,β < 2, c, d ∈ R, Ik , Jk ∈ C(R,R). RLHDα
tk

, RLHDβ
tk denote the left-sided

Riemann–Liouville type Hadamard fractional derivatives of order α and β . H Jα
tk

, HJβ
tk de-

note the left-sided Hadamard fractional integrals of order α and β . e, f , g, h : J × R
2 → R

are some given continuous functions and impulsive points, {tk}m
k=1 satisfies a = t0 < t1 < t2 <

· · · < tm < tm+1 = T . RLHDα–1
tk

u(t+
k ), RLHDα–1

tk
u(t–

k ), RLHDβ–1
tk v(t+

k ), and RLHDβ–1
tk v(t–

k ) represent
the right and left limits and satisfy the left continuity at t = tk , k = 1, 2, . . . , m.

In addition, some other inspiration for studying system (1.1) comes from the literature
[48, 49]. In [48], the authors considered the existence and finite-time stability results of
Hadamard type impulsive fractional differential equations as follows:

⎧
⎪⎪⎨

⎪⎪⎩

HDα
1 u(t) = f (t, u(t), maxξ∈[βt,t] u(ξ )), α ∈ (0, 1), t ∈ [1, e]\Θ ,β ∈ (0, 1),

HJ1–α
1 u(t+

i ) – H J1–α
1 u(t–

i ) = aiu(t–
i ) + bi, ai, bi > 0, i = 1, 2, . . . , m,

HJ1–α
1 u(1) = u0, u0 > 0,

with initial condition u(t) = φ(t), t ∈ [β , 1], where HDα
1 denotes the left-sided Riemann–

Liouville type Hadamard fractional derivative of order α, HJ1–α
1 denotes the left-sided

Hadamard fractional integral of order 1 – α, and Θ = {t1, t2, . . . , tm} satisfying 1 = t0 <
t1 < · · · < tm < tm+1 = e. f : J × R × R → R is a Carathéodory function, and u(t+

i ) =
limε→0+ u(ti + ε), u(t–

i ) = limε→0– u(ti + ε).
In [49], the author discussed the existence and uniqueness results of solutions for the

Hadamard and Riemann–Liouville fractional neutral functional integro-differential equa-
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tions with finite delay described by

⎧
⎨

⎩

HDα[u(t) –
∑m

i=1 Iβi hi(t, ut)] = f (t, ut), t ∈ J = [1, T],

u(t) = ϕ(t), t ∈ [1 – r, 1], r > 0,

where HDα denotes the left-sided Riemann–Liouville type Hadamard fractional derivative
of order α, 0 < α ≤ 1, Iβi is the Riemann–Liouville fractional integral of order βi > 0, i =
1, 2, . . . , m, f , hi : J × C([–r, 0],R) → R are given continuous functions, ϕ ∈ C([1 – r, 1],R)
with ϕ(1) = 0. For any function u defined on [1 – r, T] and any t ∈ J , ut(θ ) = u(t + θ ),
θ ∈ [–r, 0] denotes the element of C([–r, 0],R). The author derived the existence of so-
lutions by the Leray–Schauder alternative and established the uniqueness of solutions by
the Banach contraction principle.

The rest of this paper is organized as follows. In Sect. 2, we recall some useful prelimi-
naries. In Sect. 3, we shall prove the existence and uniqueness of solutions for system (1.1).
In Sect. 4, some examples are also provided to illustrate the effectiveness of our main re-
sults. Finally, the conclusion is given to simply recall our studied contents and obtained
results in Sect. 5.

2 Preliminaries
In this section, we introduce some notations and definitions of Hadamard fractional cal-
culus and present preliminary results needed in our proofs later.

Definition 2.1 ([22]) For a ≥ 0, the left-sided Hadamard fractional integral of order α > 0
for a function u : (a,∞) →R is defined as

HJα
a u(t) =

1
Γ (α)

∫ t

a

(

ln
t
s

)α–1

u(s)
ds
s

,

where Γ (·) is the gamma function.

Definition 2.2 ([22]) For a ≥ 0, the left-sided Riemann–Liouville type Hadamard frac-
tional derivative of order α > 0 for a function u : (a,∞) →R is defined by

RLHDα
a u(t) =

1
Γ (n – α)

(

t
d
dt

)n ∫ t

a

(

ln
t
s

)n–α+1

u(s)
ds
s

, n – 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the real number α > 0, and Γ (·) is the gamma func-
tion.

Lemma 2.1 ([22]) For a > 0, assume that u ∈ C(a, T)∩L1(a, T) with a left-sided Riemann–
Liouville type Hadamard fractional derivative of order α > 0. Then

HJα
a RLHDα

a u(t) = u(t) + c1

(

ln
t
a

)α–1

+ c2

(

ln
t
a

)α–2

+ · · · + cn

(

ln
t
a

)α–n

for some ci ∈ R, i = 1, 2, . . . , n – 1, n = [α] + 1.
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Lemma 2.2 ([44]) Let α > 0, β > 0, and 0 < a < ∞. Then the following properties hold:

RLHDα
a

(

ln
t
a

)β–1

(x) =
Γ (β)

Γ (β – α)

(

ln
x
a

)β–α–1

,

HJα
a

(

ln
t
a

)β–1

(x) =
Γ (β)

Γ (β + α)

(

ln
x
a

)β+α–1

,

RLHDα
a HJα

a u(t) = u(t).

Lemma 2.3 ([68]) If E is a real Banach space and F : E → E is a contraction mapping, then
F has a unique fixed point in E.

Lemma 2.4 (Leray–Schauder alternative theorem [61]) Let U be a normed linear space
and F : U → U be a completely continuous operator (i.e., a map that restricted to any
bounded set in U is compact). Let

ε(F) =
{

x ∈ U : x = kF(x), 0 < k < 1
}

,

then either the set ε(F) is unbounded, or F has at least one fixed point.

For the convenient statements, we introduce the notation as follows: t0 = a, tm+1 = T ,
I0(t) = J0(t) ≡ 0. Let C[a, T] be the Banach space of all continuous functions from [a, T] →
R with the norm ‖ω‖ = supt∈[a,T] |ω(t)|. For 1 < γ < 2, we define

PCγ [a, T] =
{
ω : ω(t) ∈ C(tk , tk+1], RLHDγ –1

tk ω
(
t–
k
)
, RLHDγ –1

tk ω
(
t+
k
)

all exist

and satify RLHDγ –1
tk ω

(
t–
k
)

= RLHDγ –1
tk ω(tk), k = 0, 1, 2, . . . , m

}
.

Obviously, PCγ [a, T] is a Banach space equipped with the norm ‖ω‖PCγ = ‖ω(t)‖C . The
space X = PCα[a, T] × PCβ [a, T] equipped with the norm ‖(u, v)‖ = max{‖u‖PCα ,‖v‖PCβ

}
is also a Banach space.

Definition 2.3 A pair of functions (u(t), v(t)) ∈ X = PCα[a, T] × PCβ [a, T] is called to be
a solution of (1.1) if (u(t), v(t)) satisfy all the equations and boundary value conditions of
system (1.1).

Lemma 2.5 Assume that the functions e, g ∈ C[a, T]) and Ik ∈ C(R,R). If δ � cΓ (α) –
(ln T

tm
)α–1 �= 0, then, for given v(t) ∈ PCβ [a, T], a function u(t) ∈ PCα[a, T] is a solution of

the impulsive Hadamard fractional differential equation

⎧
⎪⎪⎨

⎪⎪⎩

RLHDα
tk

[u(t) – H Jα
tk

e(t, u(t), v(t))] = g(t, u(t), v(t)), 1 < α < 2,

RLHDα–1
tk

u(t+
k ) – RLHDα–1

tk
u(t–

k ) = Ik(u(tk)), k = 1, 2, . . . , m,

c · RLHDα–1
a u(a) = u(T),

(2.1)
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if and only if u(t) ∈ C[a, T] ∩ PCα[a, T] is a solution of the integral equation

u(t) =HJα
tk

g
(
t, u(t), v(t)

)
+ HJα

tk
e
(
t, u(t), v(t)

)
+ c∗

(

ln
t
tk

)α–1

+
Λ

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)

+ HJ1
ti–1

g
(
ti, u(ti), v(ti)

)
+ HJ1

ti–1
e
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)α–1

, t ∈ (tk , tk+1], (2.2)

where k = 0, 1, 2, . . . , m, Λ =
{ 0, t ∈ [a, t1],

1, t ∈ (t1, T], and

c∗ =
1
δ

(

HJα
tm g

(
T , u(T), v(T)

)
+ HJα

tm e
(
T , u(T), v(T)

)
+

(ln T
tm

)α–1

Γ (α)

m∑

i=1

[
Ii
(
u(ti)

)

+ HJ1
ti–1

g
(
ti, u(ti), v(ti)

)
+ HJ1

ti–1
e
(
ti, u(ti), v(ti)

)]
)

.

Proof When t ∈ [a, t1] = [t0, t1], applying the Hadamard fractional integral operator on
both sides of the first equation in (2.1), that is,

HJα
t0 RLHDα

t0

[
u(t) – HJα

t0 e
(
t, u(t), v(t)

)]
= HJα

t0 g
(
t, u(t), v(t)

)
,

we have

u(t) = HJα
t0 g

(
t, u(t), v(t)

)
+ HJα

t0 e
(
t, u(t), v(t)

)
+ c1

(

ln
t
t0

)α–1

+ d1

(

ln
t
t0

)α–2

, (2.3)

where c1 and d1 are some constants. In the light of the existence of u(a), we have d1 = 0.
In view of Lemmas 2.1–2.2, we obtain

RLHDα–1
t0 u(t) = RLHDα–1

t0 HJα
t0 g

(
t, u(t), v(t)

)
+ RLHDα–1

t0 HJα
t0 e

(
t, u(t), v(t)

)

+ c1HDα–1
t0

(

ln
t
t0

)α–1

= HJ1
t0 g

(
t, u(t), v(t)

)
+ HJ1

t0 e
(
t, u(t), v(t)

)
+ c1Γ (α). (2.4)

(2.4) gives that

RLHDα–1
t0 u(t0) = c1Γ (α). (2.5)

According to (2.3) and (2.4), we get

RLHDα–1
t0 u

(
t–
1
)

= HJ1
t0 g

(
t1, u(t1), v(t1)

)
+ HJ1

t0 e
(
t1, u(t1), v(t1)

)
+ c1Γ (α) (2.6)

and

u(t) = HJα
t0 g

(
t, u(t), v(t)

)
+ HJα

t0 e
(
t, u(t), v(t)

)
+ c1

(

ln
t
t0

)α–1

, t ∈ [t0, t1]. (2.7)
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When t ∈ (t1, t2], there are similar to have

u(t) = HJα
t1 g

(
t, u(t), v(t)

)
+ HJα

t1 e
(
t, u(t), v(t)

)
+ c2

(

ln
t
t1

)α–1

+ d2

(

ln
t
t1

)α–2

, (2.8)

where c2 and d2 are some constants. In the light of the existence of RLHDα–1
t1 u(t+

1 ), we have
d2 = 0, and

RLHDα–1
t1 u

(
t+
1
)

= c2Γ (α). (2.9)

It follows from (2.6), (2.9), and the second equation of (2.1) that

c2 – c1 =
1

Γ (α)
[
I1

(
u(t1)

)
+ HJ1

t0 g
(
t1, u(t1), v(t1)

)
+ HJ1

t0 e
(
t1, u(t1), v(t1)

)]
(2.10)

and

u(t) = HJα
t1 g

(
t, u(t), v(t)

)
+ HJα

t1 e
(
t, u(t), v(t)

)
+ c2

(

ln
t
t1

)α–1

, t ∈ (t1, t2]. (2.11)

Repeating the above calculation process, for t ∈ (tk , tk+1], k = 1, 2, . . . , m, we obtain

ck+1 – ck =
1

Γ (α)
[
Ik

(
u(tk)

)
+ HJ1

tk–1
g
(
tk , u(tk), v(tk)

)
+ HJ1

tk–1
e
(
tk , u(tk), v(tk)

)]
(2.12)

and

u(t) = HJα
tk

g
(
t, u(t), v(t)

)
+ HJα

tk
e
(
t, u(t), v(t)

)
+ ck+1

(

ln
t
tk

)α–1

, t ∈ (tk , tk+1]. (2.13)

From (2.12) and (2.13), we have

cm+1 – c1 =
1

Γ (α)

m∑

k=1

[
Ik

(
u(tk)

)
+ HJ1

tk–1
g
(
tk , u(tk), v(tk)

)

+ HJ1
tk–1

e
(
tk , u(tk), v(tk)

)]
(2.14)

and

u(T) = u(tm+1) = HJα
tm g

(
T , u(T), v(T)

)
+ HJα

tm e
(
T , u(T), v(T)

)

+ cm+1

(

ln
T
tm

)α–1

. (2.15)

In the light of (2.5), (2.14), (2.15), and the third equation of (2.1), we have

c1 =
1
δ

(

HJα
tm g

(
T , u(T), v(T)

)
+ HJα

tm e
(
T , u(T), v(T)

)
+

(ln T
tm

)α–1

Γ (α)

m∑

i=1

[
Ii
(
u(ti)

)

+ HJ1
ti–1

g
(
ti, u(ti), v(ti)

)
+ HJ1

ti–1
e
(
ti, u(ti), v(ti)

)]
)

. (2.16)
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Thus, for k = 1, 2, . . . , m, we have

u(t) =HJα
tk

g
(
t, u(t), v(t)

)
+ HJα

tk
e
(
t, u(t), v(t)

)
+ c1

(

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)
+ HJ1

ti–1
g
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

e
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)α–1

, t ∈ (tk , tk+1]. (2.17)

Conversely, if u(t) satisfies (2.2), it is easy to verify u(t) satisfying (2.1). The proof is
complete. �

Similarly, we obtain the following lemma.

Lemma 2.6 Assume that the functions f , h ∈ C[a, T] and Jk ∈ C(R,R). If ρ � dΓ (β) –
(ln T

tm
)β–1 �= 0, then, for given u(t) ∈ PCα[a, T], a function v(t) ∈ PCβ [a, T] is a solution of

the impulsive Hadamard fractional differential equation

⎧
⎪⎪⎨

⎪⎪⎩

RLHDβ
tk [v(t) – HJβ

tk f (t, u(t), v(t))] = h(t, u(t), v(t)), 1 < β < 2,

RLHDβ–1
tk v(t+

k ) – RLHDβ–1
tk v(t–

k ) = Jk(v(tk)), k = 1, 2, . . . , m,

d · RLHDβ–1
a v(a) = v(T)

(2.18)

if and only if v(t) ∈ C[a, T] ∩ PCβ [a, T] is a solution of the integral equation

v(t) = HJβ
tk h

(
t, u(t), v(t)

)
+ HJβ

tk f
(
t, u(t), v(t)

)
+ d∗

(

ln
t
tk

)β–1

+
Λ

Γ (β)

k∑

i=1

[
Ji
(
v(ti)

)
+ HJ1

ti–1
h
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

f
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)β–1

, t ∈ (tk , tk+1], (2.19)

where k = 0, 1, 2, . . . , m, Λ =
{ 0, t ∈ [a, t1],

1, t ∈ (t1, T], and

d∗ =
1
ρ

(

H Jβ
tm h

(
T , u(T), v(T)

)
+ HJβ

tm f
(
T , u(T), v(T)

)
+

(ln T
tm

)β–1

Γ (β)

m∑

i=1

[
Ji
(
v(ti)

)

+ H J1
ti–1

h
(
ti, u(ti), v(ti)

)
+ HJ1

ti–1
f
(
ti, u(ti), v(ti)

)]
)

.

3 Main results
In this section, we shall employ Lemmas 2.3 and 2.4 to prove the existence of solutions
to system (1.1). In the light of Lemmas 2.5 and 2.6, we define the operator S : X = PCα ×
PCβ → X by

S(u, v)(t) =
(
S1(u, v)(t), S2(u, v)(t)

)T , ∀(u, v) ∈ X, t ∈ [a, T], (3.1)
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where

S1(u, v)(t) = HJα
tk

g
(
t, u(t), v(t)

)
+ HJα

tk
e
(
t, u(t), v(t)

)

+ c∗
(

ln
t
tk

)α–1

+
Λ

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)
+ HJ1

ti–1
g
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

e
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)α–1

, t ∈ (tk , tk+1], 0 ≤ k ≤ m,

and

S2(x, y)(t) = HJβ
tk h

(
t, u(t), v(t)

)
+ HJβ

tk f
(
t, u(t), v(t)

)

+ d∗
(

ln
t
tk

)β–1

+
Λ

Γ (β)

k∑

i=1

[
Ji
(
v(ti)

)
+ HJ1

ti–1
h
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

f
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)β–1

, t ∈ (tk , tk+1], 0 ≤ k ≤ m.

Solving system (1.1) is equivalent to finding the fixed point of the operator S defined by
(3.1). Now we present and prove our main results.

Theorem 3.1 If the following conditions (H1)–(H3) hold, then the Hadamard impulsive
fractional differential coupled system (1.1) has a pair of unique solutions (u∗(t), v∗(t)) ∈
PCα × PCβ .

(H1) Let e, f , g, h ∈ C[a, T], Ik , Jk ∈ C(R,R), k = 1, 2, . . . , m. For ui, vi ∈ R (i = 1, 2), there
exist some positive constants Mi, Mi, Ni, Ni(i = 1, 2), Pk , and Qk (k = 1, 2, . . . , m) such
that

∣
∣g(t, u1, v1) – e(t, u2, v2)

∣
∣ ≤ M1|u1 – u2| + M2|v1 – v2|,

∣
∣e(t, u1, v1) – g(t, u2, v2)

∣
∣ ≤ N1|u1 – u2| + N2|v1 – v2|,

∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ M1|u1 – u2| + M2|v1 – v2|,

∣
∣h(t, u1, v1) – h(t, u2, v2)

∣
∣ ≤ N1|u1 – u2| + N2|v1 – v2|,

∣
∣Ik(u1) – Ik(v1)

∣
∣ ≤ Pk|u1 – v1|,

∣
∣Jk(u1) – Jk(v1)

∣
∣ ≤ Qk|u1 – v1|, k = 1, 2 . . . , m.

(H2) δ � cΓ (α) – (ln T
tm

)α–1 > 0, ρ � dΓ (β) – (ln T
tm

)β–1 > 0.
(H3)

κ � M1 + M2 + N1 + N2

Γ (α)

(

ln
T
a

)α

×
[

1 +
1
δ

(

ln
T
a

)α–1

+
1

δΓ (α)

(

ln
T
a

)α–1

+
1

Γ (α)

]

+
∑m

i=1 Pi

Γ (α)

(

ln
T
a

)α–1[

1 +
(

ln
T
a

)α–1]

< 1,
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� � M1 + M2 + N1 + N2

Γ (β)

(

ln
T
a

)β

×
[

1 +
1
ρ

(

ln
T
a

)β–1

+
1

ρΓ (β)

(

ln
T
a

)β–1

+
1

Γ (β)

]

+
∑m

i=1 Qi

Γ (β)

(

ln
T
a

)β–1[

1 +
(

ln
T
a

)β–1]

< 1.

Proof Now, we apply the Banach contraction principle to prove that S : X → X defined by
(3.1) has a unique fixed point. We shall show that S is a contraction. In fact, from (3.1) and
conditions (H1)–(H2), for t ∈ J = [a, T], (u1, v1), (u2, v2) ∈ X, we have

∣
∣S1(u1, v1)(t) – S1(u2, v2)(t)

∣
∣

=

∣
∣
∣
∣
∣
HJα

tk

[
g
(
t, u1(t), v1(t)

)
– g

(
t, u2(t), v2(t)

)]
+ HJα

tk

[
e
(
t, u1(t), v1(t)

)
– e

(
t, u2(t), v2(t)

)]

+
1
δ

[

HJα
tm

[
g
(
T , u1(T), v1(T)

)
– g

(
T , u2(T), v2(T)

)]
+ HJα

tm

[
e
(
T , u1(T), v1(T)

)

– e
(
T , u2(T), v2(T)

)]
+

(ln T
tm

)α–1

Γ (α)

m∑

i=1

([
Ii
(
u1(ti)

)
– Ii

(
u2(ti)

)]

+ HJ1
ti–1

[
g
(
ti, u1(ti), v1(ti)

)
– g

(
ti, u2(ti), v2(ti)

)]

+ HJ1
ti–1

[
e
(
ti, u1(ti), v1(ti)

)
– e

(
ti, u2(ti), v2(ti)

)])
](

ln
t
tk

)α–1

+
Λ

Γ (α)

k∑

i=1

([
Ii
(
u1(ti)

)
– Ii

(
u2(ti)

)]
+ HJ1

ti–1

[
g
(
ti, u1(ti), v2(ti)

)
– g

(
ti, u1(ti), v2(ti)

)]

+ HJ1
ti–1

[
e
(
ti, u1(ti), v1(ti)

)
– e

(
ti, u2(ti), v2(ti)

)])
(

ln
t
tk

)α–1
∣
∣
∣
∣
∣

≤ H Jα
tk

∣
∣g

(
t, u1(t), v1(t)

)
– g

(
t, u2(t), v2(t)

)∣
∣ + HJα

tk

∣
∣e

(
t, u1(t), v1(t)

)
– e

(
t, u2(t), v2(t)

)∣
∣

+
1
δ

[

HJα
tm

∣
∣g

(
T , u1(T), v1(T)

)
– g

(
T , u2(T), v2(T)

)∣
∣ + H Jα

tm

∣
∣e

(
T , u1(T), v1(T)

)

– e
(
T , u2(T), v2(T)

)∣
∣ +

(ln T
tm

)α–1

Γ (α)

m∑

i=1

(∣
∣Ii

(
u1(ti)

)

– Ii
(
u2(ti)

)∣
∣ + HJ1

ti–1

∣
∣g

(
ti, u1(ti), v1(ti)

)
– g

(
ti, u2(ti), v2(ti)

)∣
∣

+ HJ1
ti–1

∣
∣e

(
ti, u1(ti), v1(ti)

)
– e

(
ti, u2(ti), v2(ti)

)∣
∣
)
](

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

(∣
∣Ii

(
u1(ti)

)
– Ii

(
u2(ti)

)∣
∣ + HJ1

ti–1

∣
∣g

(
ti, u1(ti), v2(ti)

)
– g

(
ti, u1(ti), v2(ti)

)∣
∣

+ HJ1
ti–1

∣
∣e

(
ti, u1(ti), v1(ti)

)
– e

(
ti, u2(ti), v2(ti)

)∣
∣
)
(

ln
t
tk

)α–1

|

≤ H Jα
tk

[
M1

∣
∣u1(t) – u2(t)

∣
∣ + M2

∣
∣v1(t) – v2(t)

∣
∣
]
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+ HJα
tk

[
N1

∣
∣u1(t) – u2(t)

∣
∣ + N2

∣
∣v1(t) – v2(t)

∣
∣
]

+
1
δ

[

HJα
tm

[
M1

∣
∣u1(T) – u2(T)

∣
∣ + M2

∣
∣v1(T) – v2(T)

∣
∣
]

+ HJα
tm

[
N1

∣
∣u1(T) – u2(T)

∣
∣

+ N2
∣
∣v1(T) – v2(T)

∣
∣
]

+
(ln T

tm
)α–1

Γ (α)

m∑

i=1

(
Pi

∣
∣u1(ti) – u2(ti)

∣
∣

+ HJ1
ti–1

[
M1

∣
∣u1(ti) – u2(ti)

∣
∣ + M2

∣
∣v1(ti) – v2(ti)

∣
∣
]

+ HJ1
ti–1

[
N1

∣
∣u1(ti) – u2(ti)

∣
∣ + N2

∣
∣v1(ti) – v2(ti)

∣
∣
])

](

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

(
Pi

∣
∣u1(ti) – u2(ti)

∣
∣ + HJ1

ti–1

[
M1

∣
∣u1(ti) – u2(ti)

∣
∣ + M2

∣
∣v1(ti) – v2(ti)

∣
∣
]

+ HJ1
ti–1

[N1
∣
∣u1(ti) – u2(ti)

∣
∣ + N2

[∣
∣v1(ti) – v2(ti)

∣
∣
])

(

ln
t
tk

)α–1

≤ H Jα
tk

[
M1‖u1 – u2‖PCα + M2‖v1 – v2‖PCβ

]

+ HJα
tk

[
N1‖u1 – u2‖PCα + N2‖v1 – v2‖PCβ

]

+
1
δ

[

HJα
tm

[
M1‖u1 – u2‖PCα + M2‖v1 – v2‖PCβ

]
+ H Jα

tm

[
N1‖u1 – u2‖PCα

+ N2‖v1 – v2‖PCβ

]
+

(ln T
tm

)α–1

Γ (α)

m∑

i=1

(
Pi‖u1 – u2‖PCα + HJ1

ti–1

[
M1‖u1 – u2‖PCα

+ M2‖v1 – v2‖PCβ

]
+ HJ1

ti–1

[
N1‖u1 – u2‖PCα + N2‖v1 – v2‖PCβ

])
](

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

(
Pi‖u1 – u2‖PCα + H J1

ti–1

[
M1‖u1 – u2‖PCα + M2‖v1 – v2‖PCβ

]

+ HJ1
ti–1

[N1‖u1 – u2‖PCα + N2
[‖v1 – v2‖PCβ

])
(

ln
t
tk

)α–1

≤ (M1 + M2 + N1 + N2)
∥
∥(u1 – u2, v1 – v2)

∥
∥ 1
Γ (α)

∫ t

tk

(

ln
t
s

)α–1 ds
s

+
1
δ

[

(M1 + M2 + N1 + N2)
∥
∥(u1 – u2, v1 – v2)

∥
∥ 1
Γ (α)

∫ T

tm

(

ln
T
s

)α–1 ds
s

+
(ln T

tm
)α–1

Γ (α)

m∑

i=1

(

Pi
∥
∥(u1 – u2, v1 – v2)

∥
∥

+ (M1 + M2 + N1 + N2)
∥
∥(u1 – u2, v1 – v2)

∥
∥

× 1
Γ (α)

∫ ti

ti–1

ds
s

)](

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

(

Pi
∥
∥(u1 – u2, v1 – v2)

∥
∥

+ (M1 + M2 + N1 + N2)
∥
∥(u1 – u2, v1 – v2)

∥
∥ 1
Γ (α)

∫ ti

ti–1

ds
s

)(

ln
t
tk

)α–1
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≤ M1 + M2 + N1 + N2

Γ (α)

(

ln
T
a

)α∥
∥(u1 – u2, v1 – v2)

∥
∥

+
1
δ

[
M1 + M2 + N1 + N2

Γ (α)

(

ln
T
a

)α∥
∥(u1 – u2, v1 – v2)

∥
∥

+
(ln T

a )α–1

Γ (α)

( m∑

i=1

Pi +
M1 + M2 + N1 + N2

Γ (α)
ln

T
a

)
∥
∥(u1 – u2, v1 – v2)

∥
∥

](

ln
T
a

)α–1

+
1

Γ (α)

( k∑

i=1

Pi +
M1 + M2 + N1 + N2

Γ (α)
ln

T
a

)(

ln
T
a

)α–1∥
∥(u1 – u2, v1 – v2)

∥
∥

≤
{

M1 + M2 + N1 + N2

Γ (α)

(

ln
T
a

)α[

1 +
1
δ

(

ln
T
a

)α–1

+
1

δΓ (α)

(

ln
T
a

)α–1

+
1

Γ (α)

]

+
∑m

i=1 Pi

Γ (α)

(

ln
T
a

)α–1[

1 +
(

ln
T
a

)α–1]}
∥
∥(u1 – u2, v1 – v2)

∥
∥

= κ
∥
∥(u1 – u2, v1 – v2)

∥
∥. (3.2)

Similarly, we derive

∣
∣S2(u1, v1)(t) – S2(u2, v2)(t)

∣
∣

≤
{

M1 + M2 + N1 + N2

Γ (β)

(

ln
T
a

)β[

1 +
1
ρ

(

ln
T
a

)β–1

+
1

ρΓ (β)

(

ln
T
a

)β–1

+
1

Γ (β)

]

+
∑m

i=1 Qi

Γ (β)

(

ln
T
a

)β–1[

1 +
(

ln
T
a

)β–1]}
∥
∥(u1 – u2, v1 – v2)

∥
∥

= �
∥
∥(u1 – u2, v1 – v2)

∥
∥. (3.3)

According to (H3), (3.2), and (3.3), we get

∥
∥S(u1, v1) – S(u2, v2)

∥
∥ = max

{∥
∥S1(u1, v1) – S1(u2, v2)

∥
∥

PCα
,
∥
∥S2(u1, v1) – S2(u2, v2)

∥
∥

PCβ

}

≤ max{κ ,�}∥∥(u1, v1)
∥
∥ <

∥
∥(u1, v1)

∥
∥. (3.4)

Therefore, (3.4) means that S : X → X defined by (3.1) is a contraction. According to
Lemma 2.3, S has a unique fixed point (u∗(t), v∗(t)) ∈ X, which is a pair of unique solu-
tions of system (1.1). The proof of Theorem 3.1 is completed. �

Theorem 3.2 Let e, f , g, h ∈ C[a, T]), Ik , Jk ∈ C(R,R), k = 1, 2, . . . , m. Assume that there
exist some positive constants L1, L2, L1, L2, Ok , and Ok (k = 1, 2, . . . , m) such that

(H4) |e(t, u, v)| ≤ L1, |g(t, u, v)| ≤ L2, |f (t, u, v)| ≤ L1, |h(t, u, v)| ≤ L2, |Ik(u)| ≤ Ok and
|Jk(v)| ≤ Ok (k = 1, 2, . . . , m) for all t ∈ (a, T], u, v ∈R.

If (H2) and (H4) hold, then the Hadamard impulsive fractional differential coupled system
(1.1) has at least a pair of solutions (u∗(t), v∗(t)).

Proof Define the operator S : X → X as (3.1). In order to apply the Leray–Schauder alter-
native theorem, we need first to prove that S is completely continuous. Indeed, in view of
the continuities of e, g , f , h, Ik , and Jk , it is easy to know that T is continuous.
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Now we show that the operator S is uniformly bounded. Let r > 0, Br = {(u, v) ∈
X,‖(u, v)‖ ≤ r} be any bounded subset of X. For all (u, v) ∈ Br , t ∈ [a, T], it follows from
(H4) that

∣
∣S1(u, v)(t)

∣
∣

=

∣
∣
∣
∣
∣
HJα

tk
g
(
t, u(t), v(t)

)
+ HJα

tk
e
(
t, u(t), v(t)

)
+

1
δ

(

H Jα
tm g

(
T , u(T), v(T)

)

+ HJα
tm e

(
T , u(T), v(T)

)
+

(ln T
tm

)α–1

Γ (α)

m∑

i=1

[
Ii
(
u(ti)

)
+ HJ1

ti–1
g
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

e
(
ti, u(ti), v(ti)

)]
)(

ln
t
tk

)α–1

+
Λ

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)

+ HJ1
ti–1

g
(
ti, u(ti), v(ti)

)
+ HJ1

ti–1
e
(
ti, u(ti), v(ti)

)]
(

ln
t
tk

)α–1
∣
∣
∣
∣
∣

≤ H Jα
tk

∣
∣g

(
t, u(t), v(t)

)∣
∣ + HJα

tk

∣
∣e

(
t, u(t), v(t)

)∣
∣ +

1
δ

(

HJα
tm

∣
∣g

(
T , u(T), v(T)

)∣
∣

+ HJα
tm

∣
∣e

(
T , u(T), v(T)

)∣
∣ +

(ln T
tm

)α–1

Γ (α)

m∑

i=1

[∣
∣Ii

(
u(ti)

)∣
∣ + HJ1

ti–1

∣
∣g

(
ti, u(ti), v(ti)

)∣
∣

+ HJ1
ti–1

∣
∣e

(
ti, u(ti), v(ti)

)∣
∣
]
)(

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

[∣
∣Ii

(
u(ti)

)∣
∣

+ HJ1
ti–1

∣
∣g

(
ti, u(ti), v(ti)

)∣
∣ + HJ1

ti–1

∣
∣e

(
ti, u(ti), v(ti)

)∣
∣
]
(

ln
t
tk

)α–1

≤ L1 + L2

Γ (α)

∫ t

tk

(

ln
t
s

)α–1 ds
s

+
1
δ

(
L1 + L2

Γ (α)

∫ T

tm

(

ln
T
s

)α–1 ds
s

+
(ln T

tm
)α–1

Γ (α)

m∑

i=1

[

Oi

+
L1 + L2

Γ (α)

∫ ti

ti–1

ds
s

])(

ln
t
tk

)α–1

+
1

Γ (α)

k∑

i=1

[

Oi +
L1 + L2

Γ (α)

∫ ti

ti–1

ds
s

](

ln
t
tk

)α–1

≤ L1 + L2

Γ (α)

∫ T

a

(

ln
T
a

)α–1 ds
s

+
1
δ

(
L1 + L2

Γ (α)

∫ T

a

(

ln
T
a

)α–1 ds
s

+
(ln T

a )α–1

Γ (α)

[ m∑

i=1

Oi +
L1 + L2

Γ (α)

∫ T

a

ds
s

])(

ln
T
a

)α–1

+
1

Γ (α)

[ m∑

i=1

Oi +
L1 + L2

Γ (α)

∫ T

a

ds
s

](

ln
T
a

)α–1

=
L1 + L2

Γ (α)

(

ln
T
a

)α[

1 +
1
δ

(

ln
T
a

)α–1

+
1

δΓ (α)

(

ln
T
a

)α–1

+
1

Γ (α)

]

+
∑m

i=1 Pi

Γ (α)

(

ln
T
a

)α–1[

1 +
(

ln
T
a

)α–1]

� A. (3.5)
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Similarly, we have

∣
∣S2(u, v)(t)

∣
∣ ≤ L1 + L2

Γ (β)

(

ln
T
a

)β[

1 +
1
ρ

(

ln
T
a

)β–1

+
1

ρΓ (β)

(

ln
T
a

)β–1

+
1

Γ (β)

]

+
∑m

i=1 Oi

Γ (β)

(

ln
T
a

)β–1[

1 +
(

ln
T
a

)β–1]

� B. (3.6)

From (3.5) and (3.6), we know that S is uniformly bounded.
Next, we show that the operator S is equicontinuous. In fact, for any τ1, τ2 ∈ [a, T], τ1 <

τ2, τ2 – τ1 is small enough such that τ1, τ2 ∈ [tk , tk+1], k = 0, 1, 2, . . . , m, we have

∣
∣S1(u, v)(τ2) – S1(u, v)(τ1)

∣
∣

=

∣
∣
∣
∣
∣
HJα

tk
g
(
τ2, u(τ2), v(τ2)

)
– HJα

tk
g
(
τ1, u(τ1), v(τ1)

)

+ HJα
tk

e
(
τ2, u(τ2), v(τ2)

)
– HJα

tk
e
(
τ1, u(τ1), v(τ1)

)

+ c∗
[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

+
Λ

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)
+ HJ1

ti–1
g
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

e
(
ti, u(ti), v(ti)

)]
[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
Γ (α)

∫ τ2

tk

(

ln
τ2

s

)α–1

g
(
s, u(s), v(s)

) ds
s

–
1

Γ (α)

∫ τ1

tk

(

ln
τ1

s

)α–1

g
(
s, u(s), v(s)

) ds
s

+
1

Γ (α)

∫ τ2

tk

(

ln
τ2

s

)α–1

e
(
s, u(s), v(s)

) ds
s

–
1

Γ (α)

∫ τ1

tk

(

ln
τ1

s

)α–1

e
(
s, u(s), v(s)

) ds
s

+ c∗
[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

+
Λ

Γ (α)

k∑

i=1

[
Ii
(
u(ti)

)
+ HJ1

ti–1
g
(
ti, u(ti), v(ti)

)

+ HJ1
ti–1

e
(
ti, u(ti), v(ti)

)]
[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]
∣
∣
∣
∣
∣

≤ 1
Γ (α)

{∫ τ1

tk

[(

ln
τ2

s

)α–1

–
(

ln
τ1

s

)α–1]∣
∣g

(
s, u(s), v(s)

)∣
∣ ds

s
+

∫ τ2

τ1

(

ln
τ2

s

)α–1

× ∣
∣g

(
s, u(s), v(s)

)∣
∣ ds

s
+

∫ τ1

tk

[(

ln
τ2

s

)α–1

–
(

ln
τ1

s

)α–1]∣
∣e

(
s, u(s), v(s)

)∣
∣ ds

s

+
∫ τ2

τ1

(

ln
τ2

s

)α–1∣
∣e

(
s, u(s), v(s)

)∣
∣ ds

s

}

+
∣
∣c∗∣∣

[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

+
1

Γ (α)

m∑

i=1

[∣
∣Ii

(
u(ti)

)∣
∣ + HJ1

ti–1

∣
∣g

(
ti, u(ti), v(ti)

)∣
∣ + HJ1

ti–1

∣
∣e

(
ti, u(ti), v(ti)

)∣
∣
]

×
[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

≤ 1
Γ (α)

{

L1

∫ τ1

tk

[(

ln
τ2

s

)α–1

–
(

ln
τ1

s

)α–1] ds
s

+ L1

∫ τ2

τ1

(

ln
τ2

s

)α–1 ds
s
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+ L2

∫ τ1

tk

[(

ln
τ2

s

)α–1

–
(

ln
τ1

s

)α–1] ds
s

+ L2

∫ τ2

τ1

(

ln
τ2

s

)α–1 ds
s

}

+
∣
∣c∗∣∣

[(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

+
1

Γ (α)

[ m∑

i=1

Oi +
L1

Γ (α)

∫ tm

a

ds
s

+
L2

Γ (α)

∫ tm

a

ds
s

][(

ln
τ2

tk

)α–1

–
(

ln
τ1

tk

)α–1]

→ 0, as τ1 → τ2. (3.7)

We similarly get

∣
∣S2(u, v)(τ2) – S2(u, v)(τ1)

∣
∣ → 0, as τ1 → τ2. (3.8)

(3.7) and (3.8) mean that S is equicontinuous. By the Ascoli–Arzelá theorem, we know
that S is completely continuous.

Finally, we prove that the set ε(S) = {(u, v) ∈ X|(u, v) = λS(u, v), 0 < λ < 1} is bounded. Let
(u, v) ∈ ε(S), then (u, v) = λS(u, v), for any t ∈ [a, T], we have

u(t) = λS1(u, v)(t), v(t) = λS2(u, v)(t).

For t ∈ (tk , tk+1], k = 0, 1, 2, . . . , m, it follows from (3.5) and (3.6) that

∣
∣u(t)

∣
∣ =

∣
∣λS1(u, v)(t)

∣
∣ = λ

∣
∣S1(u, v)(t)

∣
∣ ≤ λA (3.9)

and

∣
∣v(t)

∣
∣ =

∣
∣λS2(u, v)(t)

∣
∣ = λ

∣
∣S2(u, v)(t)

∣
∣ ≤ λB. (3.10)

(3.9) and (3.10) implicate that ε(S) is bounded for any t ∈ [a, T]. In view of Lemma 2.4, the
operator S defined by (3.1) has at least one fixed point. Hence, the Hadamard impulsive
fractional differential coupled system (1.1) has at least a pair of solutions (u∗(t), v∗(t)). The
proof is completed. �

4 Illustrative examples
Consider the nonlinear Hadamard fractional integro-differential coupled system with im-
pulses as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLHD
3
2
tk [u(t) – H J

3
2

tk e(t, u(t), v(t))] = g(t, u(t), v(t)), t ∈ J = [1, e], t �= t1 = 4
3 ,

RLHD
5
4
tk [v(t) – HJ

5
4

tk f (t, u(t), v(t))] = h(t, u(t), v(t)), t ∈ J = [1, e], t �= t1 = 4
3 ,

RLHD
1
2
t1 u(t+

1 ) – RLHD
1
2
t1 u(t–

1 ) = I1(u(t1)),

RLHD
1
4
t1 v(t+

1 ) – RLHD
1
4
t1 v(t–

1 ) = J1(v(t1)),

3HD
1
2
1 u(1) = u(e), 4HD

1
4
1 v(1) = v(e).

(4.1)

Case 1 Take g(t, u, v) = (u2+v3) cos 2t
180 , e(t, u, v) = (u+v) sin t

50 , f (t, u, v) = e–t ( 3√u+ 5√v)
150 , h(t, u, v) =

sin u cos v arcsin t
20π

, I1(u) = u2

10 , J1(v) = u4

20 . Obviously, e, g, f , h ∈ C[1, e], I1, J1 ∈ C(R,R). By the sim-
ple calculation, we have

∣
∣g(t, u1, v1) – g(t, u2, v2)

∣
∣ ≤ 1

90
|u1 – u2| +

1
60

|v1 – v2|,
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∣
∣e(t, u1, v1) – e(t, u2, v2)

∣
∣ ≤ 1

50
|u1 – u2| +

1
50

|v1 – v2|,
∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ 1

50
|u1 – u2| +

1
30

|v1 – v2|,
∣
∣h(t, u1, v1) – h(t, u2, v2)

∣
∣ ≤ 1

10
|u1 – u2| +

1
10

|v1 – v2|,
∣
∣I1(u1) – e(u2)

∣
∣ ≤ 1

5
|u1 – u2|,

∣
∣J1(v1) – J1(v2)

∣
∣ ≤ 1

5
|v1 – v2|,

that is, M1 = 1
90 , M2 = 1

60 , N1 = N2 = 1
50 , M1 = 1

50 , M2 = 1
30 , N1 = N1 = 1

10 , P1 = Q1 = 1
5 . Thus,

we obtain

δ = cΓ (α) –
(

ln
T
t1

)α–1

≈ 1.8147 > 0, ρ = dΓ (β) –
(

ln
T
t1

)β–1

≈ 2.7069 > 0,

κ =
M1 + M2 + N1 + N2

Γ (α)

(

ln
T
a

)α[

1 +
1
δ

(

ln
T
a

)α–1

+
1

δΓ (α)

(

ln
T
a

)α–1

+
1

Γ (α)

]

+
∑m

i=1 Pi

Γ (α)

(

ln
T
a

)α–1[

1 +
(

ln
T
a

)α–1]

≈ 0.7038 < 1,

� =
M1 + M2 + N1 + N2

Γ (β)

(

ln
T
a

)β[

1 +
1
ρ

(

ln
T
a

)β–1

+
1

ρΓ (β)

(

ln
T
a

)β–1

+
1

Γ (β)

]

+
∑m

i=1 Qi

Γ (β)

(

ln
T
a

)β–1[

1 +
(

ln
T
a

)β–1]

≈ 0.7379 < 1.

Therefore, conditions (H1)–(H3) of Theorem 3.1 hold. Then (4.1) has a pair of unique
solutions (u∗(t), v∗(t)) ∈ PC 3

2
[1, e] × PC 5

4
[1, e].

Case 2 Take e(t, u, v) = g(t, u, v) = f (t, u, v) = h(t, u, v) = sin 2√3t + e–(u+v)2 + arctan(tuv),
I1(u) = arccos u2, J1(v) = 1

1+v2 . Obviously, e, g, f , h ∈ C[1, e], I1, J1 ∈ C(R,R). |e(t, u, v)| =
|g(t, u, v)| = |f (t, u, v)| = |h(t, u, v)| = | sin

√
3t + e–(u+v)2 + arctan(tuv)| ≤ π

2 + 1 + π
2 = π + 1,

|I1(u)| = | arccos u2| ≤ π , |J1(v)| = | 1
1+v2 | ≤ 1. Thus, conditions (H1) and (H4) hold. Accord-

ing to Theorem 3.2, we know that (4.1) has at least a pair of solutions (u∗(t), v∗(t)).

5 Conclusions
In describing some phenomena and processes of many fields such as physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, capacitor the-
ory, electrical circuits, biology, control theory, fitting of experimental data, and so on, the
fractional differential equation is better and more accurate than the integer-order differ-
ential equations. Therefore, the study of fractional differential equations has attracted the
eyes of many scholars. Good papers involving the dynamics of the fractional differential
equation are emerging in large numbers. However, it was noticed that most of these works
are based on Riemann–Liouville and Caputo fractional derivatives. In fact, another kind of
fractional derivatives was introduced by Hadamard in 1892. It differs from the aforemen-
tioned derivatives in the sense that the kernel of the integral in the definition contains a
logarithmic function of arbitrary exponent. Relatively speaking, this fractional differential
equation with Hadamard derivatives is still studied less than that of Riemann–Liouville
and Caputo. So it is worth studying the Hadamard fractional differential equations. In this
paper, we consider the boundary value problem for a class of fractional integro-differential
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coupled systems with Hadamard fractional calculus and impulses. By means of the Banach
contraction principle and Leray–Schauder alternative theorem, some new sufficient cri-
teria are established to guarantee the existence and uniqueness of solutions.
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compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac. J. Pharmacokinet.
Pharmacodyn. 37, 119–134 (2010)

15. Verotta, D.: Fractional compartmental models and multi-term Mittag-Leffler response functions. J. Pharmacokinet.
Pharmacodyn. 37, 209–215 (2010)

16. Freed, A., Diethelm, K.: Fractional calculus in biomechanics: a 3D viscoelastic model using regularized
fractional-derivative kernels with application to the human calcaneal fat pad. Biomech. Model. Mechanobiol. 5,
203–215 (2006)

17. Magin, R.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)
18. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.: Fractional Order Systems: Modeling and Control Applications. World

Scientific, River Edge (2010)
19. Podlubny, I.: Fractional-order systems and fractional-order controllers. Technical report UEF-03-94, Institute for

Experimental Physics, Slovak Acad. Sci. (1994)
20. Kiryakova, V.: The special functions of fractional calculus as generalized fractional calculus operators of some basic

functions. Comput. Math. Appl. 59, 1128–1141 (2010)
21. Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1999)



Zhao et al. Boundary Value Problems        (2019) 2019:105 Page 17 of 18

22. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential. Equations: North-Holland
Mathematics Studies., vol. 204. Elsevier, Amsterdam (2006)

23. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,
Yverdon (1993)

24. Tarasov, V.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.
Springer, Berlin (2010)

25. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
26. Goodrich, C.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23,

1050–1055 (2010)
27. Lakshmikantham, V., Leela, S.: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 71,

2886–2889 (2009)
28. Zhang, X., Liu, L., Wu, Y.: Multiple positive solutions of a singular fractional differential equation with negatively

perturbed term. Math. Comput. Model. 55(3), 1263–1274 (2012)
29. Tariboon, J., Ntouyas, S., Sudsutad, W.: Fractional integral problems for fractional differential equations via Caputo

derivative. Adv. Differ. Equ. 2014, 181 (2014)
30. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value

conditions. J. Math. Anal. Appl. 389, 403–411 (2012)
31. Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order Caputo fractional differential equation.

Qual. Theory Dyn. Syst. 14(1), 157–171 (2015)
32. Zhu, C., Zhang, X., Wu, Z.: Solvability for a coupled system of fractional differential equations with integral boundary

conditions. Taiwan. J. Math. 17(6), 2039–2054 (2013)
33. Zhao, K.: Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with

impulses and distributed delays. Dyn. Syst. 30(2), 208–223 (2015)
34. Yang, W.: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary

conditions. Comput. Math. Appl. 63(1), 288–297 (2012)
35. Zhao, K.: Impulsive boundary value problems for two classes of fractional differential equation with two different

Caputo fractional derivatives. Mediterr. J. Math. 13, 1033–1050 (2016)
36. Henderson, J., Luca, R.: Positive solutions for a system of fractional differential equations with coupled integral

boundary conditions. Appl. Math. Comput. 249, 182–197 (2014)
37. Liu, B., Li, J., Liu, L., Wang, Y.: Existence and uniqueness of nontrivial solutions to a system of fractional differential

equations with Riemann–Stieltjes integral conditions. Adv. Differ. Equ. 2018, 306 (2018)
38. Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations

involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 249 (2018)
39. Lu, Z., Zhu, Y.: Comparison principles for fractional differential equations with the Caputo derivatives. Adv. Differ. Equ.

2018, 237 (2018)
40. Xu, M., Han, Z.: Positive solutions for integral boundary value problem of two-term fractional differential equations.

Bound. Value Probl. 2018, 100 (2018)
41. Zhang, W., Liu, W.: Existence of solutions for fractional differential equations with infinite point boundary conditions

at resonance. Bound. Value Probl. 2018, 36 (2018)
42. Gaafar, F.: The existence of solutions for a nonlinear first-order differential equation involving the Riemann–Liouville

fractional-order and nonlocal condition. Mediterr. J. Math. 15, 191 (2018)
43. Zhai, C., Li, P.: Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders.

Mediterr. J. Math. 15, 164 (2018)
44. Yukunthorn, W., Suantai, S., Ntouyas, S., Tariboon, J.: Boundary value problems for impulsive multi-order Hadamard

fractional differential equations. Bound. Value Probl. 2015, 148 (2015)
45. Benchohra, M., Bouriah, S., Graef, J.: Boundary value problems for nonlinear implicit Caputo–Hadamard-type

fractional differential equations with impulses. Mediterr. J. Math. 14, 206 (2017)
46. Ntouyas, S., Tariboon, J., Sudsutad, W.: Boundary value problems for Riemann–Liouville fractional differential

inclusions with nonlocal Hadamard fractional integral conditions. Mediterr. J. Math. 13, 939–954 (2016)
47. Ahmad, B., Nitouyas, S.: Boundary value problems of Hadamard-type fractional differential equations and inclusions

with nonlocal conditions. Vietnam J. Math. 45, 409–423 (2017)
48. Zhang, Y., Wang, J.: Existence and finite-time stability results for impulsive fractional differential equations with

maxima. J. Appl. Math. Comput. 51, 67–79 (2016)
49. Mohamed, I.: On the Hadamard and Riemann–Liouville fractional neutral functional integrodifferential equations

with finite delay. J. Pseudo-Differ. Oper. Appl. (2018). https://doi.org/10.1007/s11868-018-0244-1
50. Wang, H., Liu, Y., Zhu, H.: Existence and stability for Hadamard p-type fractional functional differential equations.

J. Appl. Math. Comput. 55, 549–562 (2017)
51. Kiataramkul, C., Ntouyas, S., Tariboon, J., Kijjathanakon, A.: Generalized Sturm–Liouville and Langevin equations via

Hadamard fractional derivatives with anti-periodic boundary conditions. Bound. Value Probl. 2016, 217 (2016)
52. Ahmad, B., Ntouyas, S., Alsaedi, A.: New results for boundary value problems of Hadamard-type fractional differential

inclusions and integral boundary conditions. Bound. Value Probl. 2013, 275 (2013)
53. Alsaedi, A., Ntouyas, S., Ahmad, B., Hobiny, A.: Nonlinear Hadamard fractional differential equations with Hadamard

type nonlocal non-conserved conditions. Adv. Differ. Equ. 2015, 285 (2015)
54. Tariboon, J., Ntouyas, S., Sudsutad, W.: Nonlocal Hadamard fractional integral conditions for nonlinear

Riemann–Liouville fractional differential equations. Bound. Value Probl. 2014, 253 (2014)
55. Ahmad, B., Ntouyas, S.: On Hadamard fractional integro-differential boundary value problems. J. Appl. Comput. 47,

119–131 (2015)
56. Wang, J., Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard

derivatives. Appl. Math. Lett. 39, 85–90 (2015)
57. Huang, H., Liu, W.: Positive solutions for a class of nonlinear Hadamard fractional differential equations with a

parameter. Adv. Differ. Equ. 2018, 96 (2018)
58. Thiramanus, P., Ntouyas, S., Tariboon, J.: Positive solutions for Hadamard fractional differential equations on infinite

domain. Adv. Differ. Equ. 2016, 83 (2016)

https://doi.org/10.1007/s11868-018-0244-1


Zhao et al. Boundary Value Problems        (2019) 2019:105 Page 18 of 18

59. Yang, W.: Positive solutions for singular Hadamard fractional differential system with four-point coupled boundary
conditions. J. Appl. Math. Comput. 49, 357–381 (2015)

60. Sudsutad, W., Ntouyas, S., Tariboon, J.: Systems of fractional Langevin equations of Riemann–Liouville and Hadamard
types. Adv. Differ. Equ. 2015, 235 (2015)

61. Zhang, X., Shu, T., Cao, H., Ding, W.: The general solution for impulsive differential equations with Hadamard fractional
derivative of order q ∈ (1, 2). Adv. Differ. Equ. 2016, 14 (2016)

62. Zhang, X.: The general solution of differential equations with Caputo–Hadamard fractional derivatives and impulsive
effect. Adv. Differ. Equ. 2015, 215 (2015)

63. Zhang, W., Liu, W.: Existence of solutions for several higher-order Hadamard-type fractional differential equations
with integral boundary conditions on infinite interval. Bound. Value Probl. 2018, 134 (2018)

64. Butzer, P., Kilbas, A., Trujillo, J.: Compositions of Hadamard-type fractional integration operators and the semigroup
property. J. Math. Anal. Appl. 269, 387–400 (2002)

65. Butzer, P., Kilbas, A., Trujillo, J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math.
Anal. Appl. 269, 1–27 (2002)
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