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Abstract
In this paper, the problem of oscillation for a second-order linear impulsive differential
equation with damping is investigated. This equation can be more accurately used to
model the states of many evolutionary processes, which are often subject to
short-term perturbations and experience abrupt changes at certain moments of time.
By employing a generalized Riccati transformation technique, we derive several
oscillation criteria which are either new or improve several recent results in the
literature. In addition, we provide an example to illustrate the effect of impulses on
the oscillation of the equation.
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1 Introduction
The ordinary differential equation provides a powerful tool to model the continuous pro-
cesses and phenomena observed in physics, chemistry, population dynamics, biotechnolo-
gies, industrial robotics, etc. For example, it can be used to describe some physical, par-
ticularly mechanical, phenomena such as the paths of motion of celestial bodies and the
brachistochrone problem [5, 7]. Therefore, the dynamics of solution of the equation is paid
close attention to by many researchers [9, 17, 19–23]. For example, Sugiyama obtained
a singularity formation for the 1D compressible Euler equations with variable damping
coefficient [17]. Yang and Ding investigated the longtime dynamics of Boussinesq type
equations with fractional damping [23]. The phenomenon of oscillations is observed in
physics, economic, etc. Under some conditions, the solutions of the linear differential
equation [19], the delay differential equation [5, 7], the linear differential equation with
damping [9, 20–22] and the half-linear advanced differential equation [4] would exhibit
non-oscillatory or oscillatory properties.

It is well known that motions in the real world are not always continuous processes. In
fact, when considering the movement of a mass point, it is sufficiently conceivable that
the movement speed of the mass point changes discontinuously by some instantaneous
perturbations and experiences abrupt changes at certain moments of time. Those phe-
nomena can be thought of as impulses, therefore, the impulsive differential equation is
richer to use to simulate those discontinuous processes being caused by impulses than
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the ordinary differential equation [8]. The duration of these changes is very short but it is
not negligible for the dynamics of the differential equation, particularly for the oscillatory
properties of differential equation. Let us mention some cases. Bohner et al. [3] and Hei-
darkhani et al. [6] presented new criteria on the existence of three solutions for impulsive
boundary-value problems. Shang et al. [15] and Wang [18] obtained a periodic solution
for impulsive differential equations. Liu got a new method for converting boundary-value
problems of impulsive fractional differential equations to integral equations [10]. Luo and
Shen used the associated Riccati techniques and the equivalence transformation to de-
rive the oscillation and the non-oscillation of the second-order linear differential equation
with impulses; they indicated that oscillation of impulsive differential equations can be
caused by impulsive perturbations, though the corresponding classical equation admitted
a non-oscillatory solution [11]. Sugie and Ishihara dealt with the problem of oscillation
for a second-order linear differential equation in which an impulsive effect was consid-
ered, and they proved that there was a case that the mass point might oscillate due to
the influence of the impulsive effect even if the mass point did not oscillate in the model
removing the impulsive effect [16]. Ozbekler and Zafer obtained the oscillation criteria
of different impulsive differential equations (such as super-half-linear impulsive differen-
tial equations [12], half-linear impulsive differential equations [13], and mixed nonlinear
differential equations [14]). Agarwal, Karakoc and Zafer provided the methods for study-
ing impulsive differential equations and summarized almost all results up to 2010 on the
oscillation of the equations [1, 2].

From the above discussions, it is of great significance to take into account the effect of
impulses in the investigation of differential equations. The question is whether the non-
oscillatory or oscillatory properties of differential equations keep invariant or not consid-
ering the effects of both impulses and damping. For this purpose, we devote our efforts to
investigating Philos-type oscillation criteria for the second-order linear impulsive differ-
ential equation with damping

⎧
⎨

⎩

x′′(t) + p(t)x′(t) + q(t)x(t) = 0, t ≥ t0, t �= tk ;

�x′(tk) + bkx(tk) = 0,
(1)

where p(t), q(t) are left piecewise continuous on [t0,∞); N is a set of positive integers,
the sequence of times {tk}k∈N is strictly increasing and satisfies tk ≥ t0 for some t0 > 0
and limk→∞ tk = ∞; �z(tk) = z(t+

k ) – z(t–
k ); the coefficient {bk} is a sequence of real num-

bers.

Definition 1 A function x is said to be a solution of (1) on [t0,∞) if
(i) x(t) is continuous on [t0,∞),

(ii) x(t) satisfies the first equality of (1) on [t0,∞) \ {tk , k ∈ N},
(iii) x′(t) has two-side limits and left continuous at points tk , x′(tk) satisfies the second

equality of (1).

Definition 2 A nontrivial solution of (1) is said to be non-oscillatory if it is eventually
positive or eventually negative. Otherwise, it is said to be oscillatory. Equation (1) is called
oscillatory if all nontrivial solutions are oscillatory.
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To formulate the earlier excellent work, we use the following notations. Denote by tk be
the moments of impulsive effect for each k ∈ N and let N(t) be the number of the moments
of impulsive effect in the interval [t0, t), then

N(t) =

⎧
⎨

⎩

0, if t0 ≤ t ≤ t1,

k, if tk < t ≤ tk+1.
(2)

The function p(t) of the first equation and the second equation of (1) represent the
damping and impulsive effects, respectively. In the case p(t) = 0, the damping effect dis-
appears and Eq. (1) becomes a second-order linear impulsive differential equation of the
form

⎧
⎨

⎩

x′′(t) + q(t)x(t) = 0, t ≥ t0, t �= tk ;

�x′(tk) + bkx(tk) = 0.
(3)

There are many results that have been published on the oscillation of Eq. (3). Here we
refer to the latest result given by Sugie and Ishihara [16], we rewrite it as follows.

Theorem A Denote D = {(t, s) : t ≥ s ≥ t0} and let H : D → [0,∞) be a continuous function
which satisfies

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0, (A)

and has a continuous, non-positive partial derivative on D with respect to the second vari-
able s. Moreover, let h : D → [0,∞) be a continuous function with

–
∂

∂s
H(t, s) = h(t, s)

√
H(t, s) for all (t, s) ∈ D. (B)

If

lim
t→∞ sup

1
H(t, t0)

{∫ t

t0

(

H(t, s)q(s) –
1
4

h2(t, s)
)

ds +
N(t)∑

k=1

H(t, tk)bk

}

= ∞, (4)

then Eq. (3) is oscillatory.

In the case bk = 0 for all k ∈ N , which implies that the influence of impulses disappears
and Eq. (1) becomes second-order linear differential equation with damping of the form

x′′(t) + p(t)x′(t) + q(t)x(t) = 0, (5)

which is famous differential equation for describing the forced vibration of an object in
physics. We can easily find the results on oscillatory theory for Eq. (5). A representative
oscillatory theory is given by Yan [21], we rewrite it as follows.

Theorem B Assume that, for α > 1, 0 ≤ β < 1,

lim
t→∞ sup

1
tα

∫ t

t0

(t – s)αsβq(s) ds = ∞, (6)
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and

lim
t→∞ sup

1
tα

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds < ∞, (7)

then Eq. (5) is oscillatory.

The aim of this paper is to derive Philos-type oscillatory criteria for a second-order linear
impulsive differential equation with damping and to try to illustrate that the oscillation is
caused by the damping or the impulses. Our plan is as follows. Using the Riccati transfor-
mation and the integral averaging technique, we obtain the oscillation criteria for Eq. (1)
in Sect. 2. The results extend and improve the earlier publications. In Sect. 3, choosing
two special types of the function H , we derive two corollaries by Theorem 1. In the final
section, we illustrate our results with an example, which will show that even if an ordi-
nary differential equation without the impulses has a non-oscillatory solution, on adding
the influence of impulses, the equation would be oscillatory. Moreover, the example also
shows that the oscillation of the equation is caused by the impulses.

2 Main results
Theorem 1 Let H and h be the same functions in Theorem A. Assume that p(t) > 0 and

lim
t→∞ sup

1
H(t, t0)

×
{∫ t

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
N(t)∑

k=1

H(t, tk)bk

}

= ∞, (8)

then Eq. (1) is oscillatory.

Proof If (1) has a non-oscillatory solution x = x(t), then there exists a T ≥ t0 such that
x(t) �= 0 for t ≥ T . Thus, we can define the Riccati transformation as

w(t) =
x′(t)
x(t)

for t ≥ T .

It follows from (1) that

w′(t) =
x′′(t)x(t) – (x′(t))2

x2(t)

=
x′′(t)
x(t)

–
(

x′(t)
x(t)

)2

=
–p(t)x′(t) – q(t)x(t)

x(t)
–

(
x′(t)
x(t)

)2

= –p(t)w(t) – q(t) – w2(t)
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for t �= tk . Since x(t) is continuous on [T ,∞), it can be seen that

�w(tk) = w
(
t+
k
)

– w
(
t–
k
)

=
x′(t+

k )
x(t+

k )
–

x′(t–
k )

x(t–
k )

=
x′(t+

k ) – x′(t–
k )

x(tk)

=
�x′(tk)

x(tk)
= –bk .

Therefore, the function w(t) satisfies
⎧
⎨

⎩

w′(t) + w2(t) + p(t)w(t) + q(t) = 0, t �= tk ;

�w(tk) + bk = 0,
(9)

We choose a positive integer m so that tm–1 ≤ T < tm. For sufficiently large t, denote
n = j(t). In other words, n is a positive integer which satisfies tn ≤ t < tn+1. I represents a set
of interval [T , t] except the points of tm, tm+1, . . . , tn. It can be seen from the first equation
of (9) that

∫ t

T
H(t, s)q(s) ds =

∫

I
H(t, s)q(s) ds

= –
∫

I
H(t, s)w′(s) ds –

∫

I
H(t, s)w2(s) ds –

∫

I
p(s)w(s) ds. (10)

Since w(t) is a left piecewise continuous function and H is a continuous function, we see
that

H(t, t)w(t) – H(t, T)w(T) = H(t, t)w(t) – H
(
t, t+

n
)
w

(
t+
n
)

+ H
(
t, t+

n
)
w

(
t+
n
)

– H
(
t, t–

n
)
w

(
t–
n
)

+ H
(
t, t–

n
)
w

(
t–
n
)

– H
(
t, t+

n–1
)
w

(
t+
n–1

)

+ H
(
t, t+

n–1
)
w

(
t+
n–1

)
– H

(
t, t–

n–1
)
w

(
t–
n–1

)

+ H
(
t, t–

n–1
)
w

(
t–
n–1

)
– H

(
t, t+

n–2
)
w

(
t+
n–2

)

+ · · · + H
(
t, t+

m
)
w

(
t+
m
)

– H
(
t, t–

m
)
w

(
t–
m
)

+ H
(
t, t–

m
)
w

(
t–
m
)

– H(t, T)w(T)

=
∫

I

∂

∂s
(
H(t, s)w(s)

)
ds

+
N(t)∑

k=m

(
H

(
t, t+

k
)
w

(
t+
k
)

– H
(
t, t–

k
)
w

(
t–
k
))

=
∫

I

∂

∂s
(
H(t, s)w(s)

)
ds

+
N(t)∑

k=m

H(t, tk)
(
w

(
t+
k
)

– w
(
t–
k
))
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=
∫

I

∂

∂s
(
H(t, s)w(s)

)
ds +

N(t)∑

k=m

H(t, tk)�w(tk)

=
∫

I

∂

∂s
(
H(t, s)w(s)

)
ds –

N(t)∑

k=m

H(t, tk)bk . (11)

Owing to the assumption H(t, t) = 0, it follows from (11) that

∫

I

∂

∂s
(
H(t, s)w(s)

)
ds = –H(t, T)w(T) +

N(t)∑

k=m

H(t, tk)bk . (12)

Using (10) and (12), and the relationship of H(t, s) and h(t, s), we have

∫

I
H(t, s)q(s) ds = –

∫

I

(
∂

∂s
(
H(t, s)w(s)

)
ds +

∫

I

∂

∂s
H(t, s)w(s) ds

–
∫

I
H(t, s)w2(s) ds –

∫

I
p(s)w(s) ds

= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk –
∫

I
h(t, s)

√
H(t, s)w(s) ds

–
∫

I
H(t, s)w2(s) ds –

∫

I
p(s)w(s) ds

= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

–
∫

I

(
h(t, s)

√
H(t, s)w(s) + p(s)w(s) + H(t, s)w2(s)

)
ds

= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

–
∫

I
p(s)

((
h(t, s)
p(s)

√
H(t, s) + 1

)

w(s) +
H(t, s)

p(s)
w2(s)

)

ds

= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

–
∫

I
p(s)

{(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)√
H(t, s)
√

p(s)
w(s)

+
H(t, s)

p(s)
w2(s)

}

ds

= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

–
∫

I
p(s)

{

–
1
4

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)2

+
(

1
2

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)

+
√

H(t, s)
√

p(s)
w(s)

)2}

ds
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= H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

+
1
4

∫

I
p(s)

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)2

ds

–
∫

I
p(s)

(
1
2

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)

+
√

H(t, s)
√

p(s)
w(s)

)2

ds

≤ H(t, T)w(T) –
N(t)∑

k=m

H(t, tk)bk

+
1
4

∫

I
p(s)

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)2

ds.

It turns out that

∫

I
H(t, s)q(s) ds –

1
4

∫

I
p(s)

(
h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)2

ds

+
N(t)∑

k=m

H(t, tk)bk ≤ H(t, T)w(T).

That is,

∫

I

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
N(t)∑

k=m

H(t, tk)bk ≤ H(t, T)w(T).

Therefore, we obtain

∫ t

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds +
N(t)∑

k=1

H(t, tk)bk

=
∫ T

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds +
m–1∑

k=1

H(t, tk)bk

+
∫ t

T

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds +
N(t)∑

k=m

H(t, tk)bk

≤
∫ T

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
m–1∑

k=1

H(t, tk)bk + H(t, T)w(T).
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Since p(t) > 0 and H(t, s) is decreasing with respect to the second variable s, we see that

∫ t

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
N(t)∑

k=1

H(t, tk)bk

≤
∫ T

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
m–1∑

k=1

H(t, tk)bk + H(t, T)w(T)

=
∫ T

t0

(

H(t, s)q(s) –
1
4

p(s)
(

h(t, s)
√

p(s)
+

√
p(s)√

H(t, s)

)2)

ds

+
m–1∑

k=1

H(t, tk)bk + H(t, T)w(T)

≤
∫ T

t0

H(t, s)q(s) ds +
m–1∑

k=1

H(t, tk)bk + H(t, T)w(T)

≤
∫ T

t0

H(t, s)
∣
∣q(s)

∣
∣ds +

m–1∑

k=1

H(t, tk)|bk| + H(t, T)
∣
∣w(T)

∣
∣

≤ H(t, t0)

(∫ T

t0

∣
∣q(s)

∣
∣ds +

m–1∑

k=1

|bk| +
∣
∣w(T)

∣
∣

)

.

Hence, we conclude that

lim
t→∞ sup

1
H(t, t0)

×
{∫ t

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
N(t)∑

k=1

H(t, tk)bk

}

< ∞,

which contradicts the condition (8). The proof of Theorem 1 is complete. �

Remark 1 When p(t) = 0, Eq. (1) reduces to Eq. (3), Theorem 1 is a natural extension of
Theorem A given by Sugie and Ishihara [16].

It can be seen that we constrain the damped term p(t) > 0 in the above results. If the sign
of p(t) is allowed to change, we derive the following result.

Theorem 2 Assume that, for α > 1, 0 ≤ β < 1,

lim
t→∞ sup

1
tα

{∫ t

t0

(
(t – s)αsβq(s)

)
ds +

N(t)∑

k=1

(t – tk)αbk

}

= ∞ (13)
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and

lim
t→∞ sup

1
tα

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds < ∞, (14)

then Eq. (1) is oscillatory.

Proof If Eq. (1) has a non-oscillatory solution x = x(t), then there exists a T ≥ t0 such that
x(t) �= 0 for t ≥ T . Thus, we can define the Riccati transformation as

w(t) =
x′(t)
x(t)

for t ≥ T .

Therefore, the function w(t) satisfies (9)

⎧
⎨

⎩

w′(t) + w2(t) + p(t)w(t) + q(t) = 0, t �= tk ;

�w(tk) + bk = 0.
(15)

Multiplying the first equality of (9) with (t – s)αsβ and integrating it from t0 to t, we have

∫ t

t0

(t – s)αsβq(s) ds = –
∫ t

t0

(t – s)αsβw′(s) ds –
∫ t

t0

(t – s)αsβw2(s) ds

–
∫ t

t0

(t – s)αsβp(s)w(s) ds, (16)

note that

–
∫ t

t0

(t – s)αsβw′(s) ds = (t – t0)αtβ
0 w(t0)

–
N(t)∑

k=1

(t – tk)αtβ

k bk – α

∫ t

t0

(t – s)α–1sβw(s) ds

+ β

∫ t

t0

(t – s)αsβ–1w(s) ds, (17)

it follows from (16) and (17) that

∫ t

t0

(t – s)αsβq(s) ds

= (t – t0)αtβ
0 w(t0) –

N(t)∑

k=1

(t – tk)αtβ

k bk

– α

∫ t

t0

(t – s)α–1sβw(s) ds + β

∫ t

t0

(t – s)αsβ–1w(s) ds

–
∫ t

t0

(t – s)αsβw2(s) ds –
∫ t

t0

(t – s)αsβp(s)w(s) ds

= (t – t0)αtβ
0 w(t0) –

N(t)∑

k=1

(t – tk)αtβ

k bk
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–
∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]
(t – s)α–1sβ–1w(s) ds

–
∫ t

t0

(t – s)αsβw2(s) ds

= (t – t0)αtβ
0 w(t0) –

N(t)∑

k=1

(t – tk)αtβ

k bk

+
1
4

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds

–
∫ t

t0

{

(t – s)
α
2 s

β
2 w(s)

+
1
2
[
(t – s) sp(s) + αs – β(t – s)

]
(t – s)

α–2
2 s

β–2
2

}2

ds

≤ (t – t0)αtβ
0 w(t0) –

N(t)∑

k=1

(t – tk)αtβ

k bk

+
1
4

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds. (18)

Hence, we get

∫ t

t0

(t – s)αsβq(s) ds +
N(t)∑

k=1

(t – tk)αtβ

k bk

≤ (t – t0)αtβ
0 w(t0)

+
1
4

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds. (19)

Dividing (19) by tα and using (14), we conclude that

lim sup
t−→∞

1
tα

{∫ t

t0

(t – s)αsβq(s) ds +
N(t)∑

k=1

(t – tk)αtβ

k bk

}

≤ lim sup
t−→∞

(t – t0)αtβ
0 w(t0)

tα

+
1
4

lim sup
t−→∞

1
tα

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds

= tβ
0 w(t0) +

1
4

lim sup
t−→∞

1
tα

∫ t

t0

[
(t – s) sp(s) + αs – β(t – s)

]2(t – s)α–2sβ–2 ds

< ∞, (20)

which contradicts (13). The proof of Theorem 2 is complete. �

Remark 2 If the influence of impulses is removed, Eq. (1) reduces to Eq. (5), then Theo-
rem 2 extends and improves Theorem B given by Yan [21].
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3 Two Corollaries
In Theorem 1, if we choose the function H as

H(t, s) = (t – s)α , α > 1,

then we can obtain the following result.

Corollary 3 Assume that p(t) > 0 and

lim
t→∞ sup

1
tα

{∫ t

t0

(

(t – s)αq(s) –
1
4

(
2p(s)h(t, s)

(t – s) α
2

+
p2(s)

(t – s)α

))

ds

+
N(t)∑

k=1

(t – tk)αbk

}

= ∞, (21)

where α > 1, h(t, s) = α(t – s) α–2
2 , then Eq. (1) is oscillatory.

Proof For any α > 1, choose

H(t, s) = (t – s)α ,

then the function h can be defined by

h(t, s) = α(t – s)
α–2

2 .

It can be seen that the functions H and h satisfy the conditions (A) and (B) in Theorem 1.
Moreover,

1
H(t, t0)

∫ t

t0

h2(t, s) ds =
α2

(t – t0)α

∫ t

t0

(t – s)α–2 ds

=
α2

(α – 1)(t – t0)
−→ 0 (as t −→ ∞)

and

tα

H(t, t0)
=

tα

(t – t0)α
=

(
1

1 – t0
t

)α

−→ 1 (as t −→ ∞).

Therefore, we conclude that

lim
t→∞ sup

1
H(t, t0)

×
{∫ t

t0

(

H(t, s)q(s) –
1
4

(

h2(t, s) +
2p(s)h(t, s)√

H(t, s)
+

p2(s)
H(t, s)

))

ds

+
N(t)∑

k=1

H(t, tk)bk

}
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= lim
t→∞ sup

1
tα

{∫ t

t0

(

(t – s)αq(s) –
1
4

(
2p(s)h(t, s)

(t – s) α
2

+
p2(s)

(t – s)α

))

ds

+
N(t)∑

k=1

(t – tk)αbk

}

= ∞. (22)

By Theorem 1, Eq. (1) is oscillatory.
For any positive integer n ≥ 2, if we choose the function H as

H(t, s) =
(

ln
t
s

)n

,

respectively, the function h can be defined as

h(t, s) =
n
s

(

ln
t
s

) n–2
2

.

Similarly to the proof of Corollary 3, we can obtain the following result. �

Corollary 4 Assume that p(t) > 0 and

lim
t→∞ sup

1
(ln t)n

×
{∫ t

t0

((

ln
t
s

)n

q(s) –
1
4

[

2p(s)h(t, s)
(

ln
t
s

)– n
2

+ p2(s)
(

ln
t
s

)–n])

ds

+
N(t)∑

k=1

(

ln
t
tk

)n

bk

}

= ∞, (23)

where positive integer n ≥ 2, h(t, s) = n
s (ln t

s ) n–2
2 , then Eq. (1) is oscillatory.

Remark 3 When p(t) = 0, Eq. (1) reduces to Eq. (3), our Corollary 3 and Corollary 4 are also
generalizations of the corresponding corollaries given by Sugie and Ishihara [16]. When
not considering the effect of impulses, our Corollary 3 and Corollary 4 are still new for
Eq. (5).

4 Examples
Consider the equation

⎧
⎨

⎩

x′′(t) + A
t x′(t) + B

t2 x(t) = 0, t ≥ 1
2 , t �= k;

�x′(k) + 1
k x(k) = 0,

(24)

where t0 = 1
2 , tk = k, bk = 1

k , p(t) = A
t , q(t) = B

t2 with A > 0, B ≥ 0 and (A – 1)2 = 4B. Letting
n = 2, we calculate that

1
(ln t)2

∫ t

t0

(

ln
t
s

)2

q(s) ds =
B

(ln t)2

∫ t

1
2

(ln t – ln s)2

s2 ds

= B
{

2 –
4(1 + ln( 1

2 ))
ln t

–
2

t(ln t)2 +
4(1 + ln( 1

2 )) + 2(ln( 1
2 ))2

(ln t)2

}

,
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thus, we have

lim
t→∞ sup

1
(ln t)2

∫ t

t0

(

ln
t
s

)2

q(s) ds ≤ 2B.

Also, since

–1
4(ln t)2

∫ t

t0

p(s)h(t, s)
(

ln
t
s

)–1

ds =
–A

(ln t)2

∫ t

1
2

1
s2 ln t

s
ds

letting τ = t
s , we have

–A
(ln t)2

∫ t

1
2

1
s2 ln t

s
ds =

–A
(ln t)2

∫ 2t

1

1
t ln τ

dτ

≤ –A
t(ln t)2

∫ 2t

1

1
ln 2t

dτ

=
–A(2t – 1)
t(ln t)2 ln 2t

then

lim
t→∞ sup

–1
4(ln t)2

∫ t

t0

p(s)h(t, s)
(

ln
t
s

)–1

ds = 0.

Similarly, we also can get

lim
t→∞ sup

–1
4(ln t)2

∫ t

t0

p2(s)
(

ln
t
s

)–2

ds = 0.

Next, we evaluate the effect of the impulse. Based on the definition of N(t), for positive
integer k with m < t < m + 1, we have

N(t) =

⎧
⎨

⎩

0 for t0 ≤ t ≤ t1,

m for tm < t ≤ tm+1.
(25)

Furthermore,

1
(ln t)2

N(t)∑

k=1

(

ln
t
tk

)2

bk =
1

(ln t)2

m∑

k=1

(ln t – ln k)2 1
k

=
m∑

k=1

(

1 –
2 ln k
ln t

+
(ln k)2

(ln t)2

)
1
k

>
m∑

k=1

(

1 –
2 ln k
ln m

+
(ln k)2

(ln(m + 1))2

)
1
k

=
m∑

k=1

1
k

–
2

ln m

m∑

k=1

ln k
k

+
1

(ln(m + 1))2

m∑

k=1

(ln k)2

k
.
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It follows from k < s < k + 1 that

m∑

k=1

1
k

= 1 +
1
2

+
1
3

+
1
4

+ · · · +
1
m

=
∫ 2

1
1 ds +

∫ 3

2

1
2

ds +
∫ 4

3

1
3

ds + · · · +
∫ m+1

m

1
m

ds

>
∫ 2

1

1
s

ds +
∫ 3

2

1
s

ds +
∫ 4

3

1
s

ds + · · · +
∫ m+1

m

1
s

ds

=
∫ m+1

1

1
s

ds = ln(m + 1),

m∑

k=1

ln k
k

=
ln 2
2

+
ln 3
3

+
ln 4
4

+ · · · +
ln m
m

=
ln 2
2

+
ln 3
3

+
∫ 4

3

ln 4
4

ds + · · · +
∫ m

m–1

ln m
m

ds

<
ln 2
2

+
ln 3
3

+
∫ 4

3

ln s
s

ds + · · · +
∫ m

m–1

ln s
s

ds

=
ln 2
2

+
ln 3
3

+
∫ m

3

ln s
s

ds

=
ln 2
2

+
ln 3
3

+
(ln m)2

2
–

(ln 3)2

2
,

and

m∑

k=1

(ln k)2

k
>

(ln 2)2

2
+

(ln 3)2

3
+ · · · +

(ln 7)2

7
+

(ln(m + 1))3

3
–

(ln 8)3

3
,

then

1
(ln t)2

N(t)∑

k=1

(

ln
t
tk

)2

bk > ln(m + 1) –
2

ln m

(
ln 2
2

+
ln 3
3

+
(ln m)2

2
–

(ln 3)2

2

)

+
1

(ln(m + 1))2

(
(ln 2)2

2
+

(ln 3)2

3
+ · · ·

+
(ln 7)2

7
+

(ln(m + 1))3

3
–

(ln 8)3

3

)

=
4
3

ln(m + 1) – ln m –
2

ln m

(
ln 2
2

+
ln 3
3

–
(ln 3)2

2

)

+
1

(ln(m + 1))2

(
(ln 2)2

2
+

(ln 3)2

3
+ · · ·

+
(ln 7)2

7
–

(ln 8)3

3

)

= ln

{(

1 +
1
m

) 4
3

m
1
3

}

–
2

ln m

(
ln 2
2

+
ln 3
3

–
(ln 3)2

2

)

+
1

(ln(m + 1))2

(
(ln 2)2

2
+

(ln 3)2

3
+ · · · +

(ln 7)2

7
–

(ln 8)3

3

)

,
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letting m −→ ∞, we have

lim
t→∞ sup

1
(ln t)2

N(t)∑

k=1

(

ln
t
tk

)2

bk = ∞.

Therefore, the condition (23) holds in the case of n = 2. By Corollary 4, Eq. (1) is oscillatory.
On the other hand, if the effect of impulse is removed and A > 0, B ≥ 0 and (A – 1)2 = 4B,
then Eq. (24) is

x′′(t) +
A
t

x′(t) +
B
t2 x(t) = 0,

and it has a non-oscillatory solution

x(t) = t
1–A

2 .

Remark 4 It can be seen from the example that the oscillation of Eq. (24) is entirely caused
by the impulses.
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