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Abstract
In this paper, we focus on a generalized singular fractional order Kelvin–Voigt model
with a nonlinear operator. By using analytic techniques, the uniqueness of solution
and an iterative scheme converging to the unique solution are established, which are
very helpful to govern the process of the Kelvin–Voigt model. At the same time, the
corresponding eigenvalue problem is studied and the property of solution for the
eigenvalue problem is established. Some examples are given to illuminate the main
results.
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1 Introduction
Many physical phenomena in natural sciences and engineering often exhibit some singu-
lar behavior; for example, in linear elastic fracture mechanics, the stress near the crack
tip possesses a singularity of r–0.5 [1], where r is the distance measured from the crack tip.
Recently, Fisk [2] found that quantum fluctuations at absolute zero may push a system into
a different phase or state, and the singular phenomenon happens near the quantum criti-
cal points in certain materials. In recent years, because of the importance of the singular
behavior in critical point, the study of the singular problems has attracted much attention,
for details, see [3–18] and the references cited therein.

On the other hand, relaxation processes deviating from the classical exponential (De-
bye) behavior are often encountered in the dynamics of complex materials [19]. In many
cases a stretched exponential (Kohlrausch–Williams–Watts) decay is often exhibited by
experimentally observed relaxation functions [19]

Φ(t)e–( t
τ )α , 1 < α < 1, (1.1)

or a scaling decay

Φ(t)
(

t
τ

)–β

, 1 < β < 1. (1.2)
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The above processes (1.1) and (1.2) show that an appropriate tool to describe phenomeno-
logically hybrid dynamical features is fractional calculus, which is incorporated into stan-
dard constitutive equations in a variety of works, mainly in the field of viscoelasticity.
Defining that σ (t) is the stress and ε(t) is the strain, Schiessel et al. [19] considered a sys-
tem whose stress decays after a shear jump in an algebraic manner and obtained a standard
fractional order viscoelasticity Kelvin–Voigt model

σ (t) = Eτα dα

dtα
ε(t) + Eτβ dβ

dtβ
ε(t), (1.3)

where α > β > 0, E is a constant, and dα

dtα is the Riemann–Liouville derivative DtDtDt
α with an

order of α. Thus the fractional order Kelvin–Voigt model (1.3) can be generalized by the
following mathematical model:

dα

dtα
ε(t) = f

(
t,

dβ

dtβ
ε(t)

)
,

with α > β > 0.
In this paper, we focus on the following generalized singular Kelvin–Voigt model:

B
(
DtDtDt

αε(t)
)
DtDtDt

αε(t) = f
(
t, –ε(t), –DtDtDt

γ ε(t)
)
, t ∈ (0, 1), (1.4)

subject to nonlocal boundary condition

DtDtDt
γ ε(0) = 0, DtDtDt

γ ε(1) =
∫ 1

0
DtDtDt

γ ε(s) dχ (s), (1.5)

where DtDtDt
α , DtDtDt

γ are the standard Riemann–Liouville derivatives with the order of 0 < γ <
1 < α ≤ 2, α – γ > 1,

∫ 1
0 DtDtDt

γ ε(s) dχ (s) is denoted by a Riemann–Stieltjes integral, χ is a
function of bounded variation, and dχ can be a signed measure, B ∈ Y is a nonlinear
operator with an individual property

Y =
{
B ∈ C2([0, +∞), [0, +∞)

)
: there exists a constant σ > 0

such that, for any 0 < c < 1,B(cs) ≤ cσ
B(s)

}
.

In particular, in the generalized Kelvin–Voigt model (1.4)–(1.5), we allow that the nonlin-
earity f (t, u, v) has singularity at both u = 0 and (or) v = 0.

In the past decades, a large number of numerical and analytical results have been
obtained for various differential equations with physical background [20–77]. Recently,
some new type functions and inequalities such as noninstantaneous impulsive inequali-
ties [78], Gronwall–Bellman–Bihari inequalities [79], Mittag-Leffler functions [80], gen-
eralized Gauss hypergeometric functions [81], and asymptotical-analytic technique [82]
have been developed to improve and perfect fractional calculus and its application. In
particular, Saoudi and Agarwal et al. [83] employed the method of Nehari manifold com-
bined with the fibering maps to establish the existence of solutions to the boundary value
problem for the nonlinear fractional differential equations with Riemann–Liouville frac-
tional derivative. This work shows that the critical point theory and variational methods
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are also very effective tools in determining the existence of solutions for fractional order
differential equations.

However, up to now, few results have been reported for the generalized Kelvin–Voigt
model (1.4)–(1.5) when f has singularity on the strain. This present paper aims to study the
singular case for the generalized fractional order Kelvin–Voigt model (1.4)–(1.5). Notice
that model (1.4)–(1.5) involves a nonlinear operator, which implies that model (1.4)–(1.5)
includes many interesting and important models as special cases such as Marwell model,
Zener model, Poynting–Thoinson model. If B(x) = Eτα , f = σ (t) – Eτβ dβε(t)

dtβ , then model
(1.4)–(1.5) reduces to the standard fractional order viscoelasticity Kelvin–Voigt model
(1.3). If B(x) = |x|p–2, p ≥ 2, model (1.4)–(1.5) becomes the form

⎧⎨
⎩

ϕp(DtDtDt
αε(t)) = f (t, –ε(t), –DtDtDt

γ ε(t)), t ∈ (0, 1),

DtDtDt
γ ε(0) = 0, DtDtDt

γ ε(1) =
∫ 1

0 DtDtDt
γ ε(s) dχ (s),

which is a p-Poisson equation [10, 84]. Thus model (1.4)–(1.5) is more generalized than
viscoelasticity Kelvin–Voigt model (1.3). To the best of our knowledge, no results have
been reported on the existence and uniqueness of solutions for model (1.4)–(1.5) when f
can be singular at the points of the strain vanishing.

2 Preliminaries and lemmas
Before we give a detailed description of preliminaries and lemmas, we first establish some
properties of an inverse operator for the operator sB(s).

Proposition 2.1 If B ∈ Y , let L(s) = sB(s), then L has a nonnegative increasing inverse
mapping L–1(s), and for any 0 < c < 1,

L
–1(cs) ≥ c

1
1+σ L

–1(s). (2.1)

Proof Firstly, we prove that B is an increasing operator if B ∈ Y . In fact, for any B ∈ Y
and s, t ∈ [0, +∞), without loss of generality, let 0 ≤ s < t. If s = 0, obviously B(s) ≤
B(t) holds. If s �= 0, let c0 = s/t, then 0 < c0 < 1. It follows from the property of B

that

B(s) = B(c0t) ≤ cσ
0B(t) < B(t),

which implies that B is an increasing operator. Thus we have L′(s) = (sB(s))′ > 0 for any
s > 0, i.e, L is a bijection on (0,∞) and has a nonnegative increasing inverse mapping
L–1(s).

On the other hand, for any 0 < c < 1, let b = c 1
1+σ , then 0 < b < 1. Thus we have

L(bx) = bxB(bx) ≤ b1+σ xB(x) = b1+σ
L(x) for x > 0.

Consequently, let s = L(x), then

bL–1(s) = bx ≤ L
–1(b1+σ

L(x)
)

= L
–1(cs),
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that is,

c
1

1+σ L
–1(s) ≤ L

–1(cs).

The proof is completed. �

Remark 2.1 Clearly, if r ≥ 1, we have

L
–1(rs) ≤ r

1
1+σ L

–1(s). (2.2)

Remark 2.2 The operator set Y includes a large class of operators, and the standard type
of operators is B(s) =

∑n
i=1 sαi , αi > 0. In fact, take σ = min{α1, . . . ,αn} > 0, then for any

0 < c < 1, one has

B(cs) ≤ cσ
B(s).

Now based on Proposition 2.1, we transform model (1.4)–(1.5) to a convenient form

⎧⎨
⎩

DtDtDt
αε(t) = L–1(f (t, –ε(t), –DtDtDt

γ ε(t))), t ∈ (0, 1),

DtDtDt
γ ε(0) = 0, DtDtDt

γ ε(1) =
∫ 1

0 DtDtDt
γ ε(s) dχ (s),

(2.3)

and then, with the help of a simple transformation y = –ε, (2.3) can be rewritten as follows:

⎧⎨
⎩

–DtDtDt
αy(t) = L–1(f (t, y(t),DtDtDt

γ y(t))), t ∈ (0, 1),

DtDtDt
γ y(0) = 0, DtDtDt

γ y(1) =
∫ 1

0 DtDtDt
γ y(s) dχ (s).

(2.4)

Next we recall the theory of Riemann–Liouville fractional calculus, which will be used
in the rest of this paper.

Definition 2.1 ([85]) The Riemann–Liouville fractional integral of order α > 0 of a func-
tion x : (0, +∞) →R is given by

Iαx(t) =
1

Γ (α)

∫ t

0
(t – s)α–1x(s) ds

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.2 ([85]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function x : (0, +∞) →R is given by

DDDαx(t) =
1

Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1x(s) ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwisely defined on (0, +∞).
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Proposition 2.2 ([85])
(1) If x, y : (0, +∞) →R with order α > 0, then

DtDtDt
α
(
u(t) + v(t)

)
= DtDtDt

αu(t) + DtDtDt
αv(t).

(2) If u ∈ L1(0, 1), ν > γ > 0, then

IνIγ x(t) = Iν+γ u(t), DtDtDt
γ Iνu(t) = Iν–γ u(t), DtDtDt

γ Iγ u(t) = u(t). (2.5)

(3) If α > 0, γ > 0, then

DtDtDt
αtγ –1 =

Γ (γ )
Γ (γ – α)

tγ –α–1.

(4) Let α > 0, and f (x) is integrable, then

IαDtDtDt
αf (x) = f (x) + c1xα–1 + c2xα–2 + · · · + cnxα–n, (2.6)

where ci ∈R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Lemma 2.1 Let y(t) = Iγ ϕ(t), ϕ(t) ∈ C[0, 1], then model (2.4) is equivalent to the following
integro-differential equation:

⎧⎨
⎩

–DtDtDt
α–γ ϕ(t) = L–1(f (t, Iγ ϕ(t),ϕ(t))),

ϕ(0) = 0, ϕ(1) =
∫ 1

0 ϕ(s) dχ (s).
(2.7)

Proof In fact, let y(t) = Iγ ϕ(t), ϕ(t) ∈ C[0, 1], then from (2.5) one has

DtDtDt
γ y(t) = DtDtDt

γ Iγ ϕ(t) = ϕ(t). (2.8)

On the other hand, notice 1 < α ≤ 2 and 1 < α – γ < 2, so by Definitions 2.1, 2.2 and (2.5),
we also have

DtDtDt
αy(t) =

d2

dt2

(
I2–αy(t)

)
=

d2

dt2

(
I2–αIγ ϕ(t)

)
=

d2

dt3

(
I2–α+γ ϕ(t)

)

= DtDtDt
α–γ ϕ(t). (2.9)

By (2.8), we have DtDtDt
γ y(0) = ϕ(0) = 0, ϕ(1) =

∫ 1
0 ϕ(s) dχ (s). And then it follows from (2.8)

and (2.9) that

–DtDtDt
α–γ ϕ(t) = L

–1(f
(
t, Iγ ϕ(t),ϕ(t)

))
.

Thus, model (2.4) is transformed into the integro-differential equation (2.7).
Conversely, if ϕ ∈ C([0, 1], [0, +∞)) is a solution for the integro-differential equation

(2.7). Then letting y(t) = Iγ ϕ(t) and using (2.8)and (2.9), we get

–DtDtDt
αy(t) = –DtDtDt

α–γ ϕ(t) = L
–1(f

(
t, Iγ ϕ(t),ϕ(t)

))
= L

–1(f
(
t, y(t),DtDtDt

γ y(t)
))

, 0 < t < 1,
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and DtDtDt
γ y(0) = ϕ(0) = 0, DtDtDt

γ y(1) =
∫ 1

0 DtDtDt
γ y(s) dχ (s). Consequently, the integro-differential

equation (2.7) is transformed into model (2.4). �

Thus in order to establish the existence and uniqueness of solution of model (1.4)–(1.5),
we only need to focus on the integro-differential equation (2.7). We have the following
lemma.

Lemma 2.2 ([86]) Assume 1 < α – γ < 2, for a given function h ∈ L1(0, 1), the boundary
value problem

⎧⎨
⎩

–DtDtDt
α–γ ϕ(t) = h(t), 0 < t < 1,

ϕ(0) = ϕ(1) = 0,
(2.10)

has the unique solution

ϕ(t) =
∫ 1

0
G(t, s)h(s) ds,

where

G(t, s) =
1

Γ (α – γ )

⎧⎨
⎩

[t(1 – s)]α–γ –1, 0 ≤ t ≤ s ≤ 1,

[t(1 – s)]α–γ –1 – (t – s)α–γ –1, 0 ≤ s ≤ t ≤ 1.

On the other hand, it follows from (2.6) that the unique solution of the following problem

⎧⎨
⎩

–DtDtDt
α–γ ϕ(t) = 0, 0 < t < 1,

ϕ(0) = 0, ϕ(1) = 1,

is tα–γ –1. Let

C =
∫ 1

0
tα–γ –1 dχ (t), G(s) =

∫ 1

0
G(t, s) dχ (t).

According to the strategy of [87], the Green function of the integro-differential equation
(2.7) is

H(t, s) =
tα–γ –1

1 – C G(s) + G(t, s). (2.11)

Lemma 2.3 ([87]) Assume 0 ≤ C < 1 and G(s) ≥ 0 for s ∈ [0, 1], then the functions G(t, s)
and H(t, s) have the following properties:

(1) G(t, s) > 0, H(t, s) > 0 for t, s ∈ (0, 1).
(2) There exist two positive constants a, b such that

atα–γ –1G(s) ≤ H(t, s) ≤ btα–γ –1, t, s ∈ [0, 1].

Our main tool is the fixed point theorem of mixed monotone operator. For convenience
of the reader, here we first recall some definitions, notations, and known results; for details,
see [88].
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Let (E,‖ · ‖) be a real Banach space and P be a cone of E. Define a partial ordering ≤ with
respect to P by x ≤ y if and only if y – x ⊂ P. The cone P is called solid cone if its interior
◦
P is nonempty and P is called normal if there exists a constant M > 0 such that, for all
x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖. The least positive number satisfying the above is
called the normal constant of P.

Given e ∈ P with ‖e‖ ≤ 1, e �= θ . Define a subset of P as follows:

Pe = {ϕ ∈ P : there exist λ > 0 and μ > 0 such that λe ≤ ϕ ≤ μe}.

Obviously Pe ⊂ P, and if e ∈ ◦
P, then Pe =

◦
P.

Definition 2.3 Let P be a normal cone of a Banach space E. A : Pe × Pe → Pe is called
mixed monotone operator if A(u, v) is nondecreasing in u and nonincreasing in v, i.e.,

u1 ≤ u2, u1, u2 ∈ P implies A(u1, v) ≤ A(u2, v)

for any v ∈ Pe, and

v1 ≤ v2, v1, v2 ∈ Pe implies A(u, v1) ≥ A(u, v2)

for any u ∈ Pe. The element w∗ ∈ Pe is called a fixed point of A if A(w∗, w∗) = w∗.

Lemma 2.4 ([89]) Assume that A : Pe × Pe → Pe is a mixed monotone operator. If there
exists a constant 0 ≤ κ < 1 such that

A
(

cx,
1
c

y
)

≥ cκA(x, y), x, y ∈ Pe, 0 < c < 1. (2.12)

Then the operator A has a unique fixed point w∗ ∈ Pe. Moreover, for any initial value
(x0, y0) ∈ Pe × Pe, by constructing successively the sequences xn = A(xn–1, yn–1), yn =
A(yn–1, xn–1), n = 1, 2, . . . , we have ‖xn – w∗‖ → 0, ‖yn – w∗‖ → 0 as n → +∞, and

∥∥xn – w∗∥∥ = o
(
1 – rκn)

,
∥∥yn – w∗∥∥ = o

(
1 – rκn)

,

where 0 < r < 1, r is a constant from (x0, y0).

Lemma 2.5 ([88]) Assume that A : Pe × Pe → Pe is a mixed monotone operator and there
exists 0 < κ < 1 such that (2.12) holds. If w∗

λ is a unique solution of the equation

A(x, x) = λx, λ > 0,

in Pe, then ‖w∗
λ – w∗

λ0
‖ → 0, λ → λ0. If 0 < κ < 1

2 , then 0 < λ1 < λ2 implies that w∗
λ1

≥ w∗
λ2

,
w∗

λ1
�= w∗

λ2
, and

lim
λ→0+

∥∥w∗
λ

∥∥ = +∞, lim
λ→+∞

∥∥w∗
λ

∥∥ = 0.
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3 Main results
To ensure the nonnegativity of Green function of model (2.7) and the development of our
work, the following conditions are necessary:

(A0) χ is a function of bounded variation satisfying G(s) ≥ 0 for s ∈ [0, 1] and 0 ≤ C < 1.
(A1) There exist two continuous functions g : [0, 1] × [0, +∞)2 → [0, +∞),

h : [0, 1] × (0, +∞)2 → [0, +∞) with g(t, 1, 1) > 0, h(t, 1, 1) > 0 such that

f (t, x, y) = g(t, x, y) + h(t, x, y),

and for all t ∈ [0, 1], g(t, x, y) is nondecreasing and h(t, x, y) is nonincreasing in
x, y > 0, respectively.

(A2) There exists a constant 0 < κ < 1 + σ such that, for all x, y > 0, t ∈ [0, 1] and for any
c ∈ (0, 1),

g(t, cx, cy) ≥ cκg(t, x, y), h
(
t, c–1x, c–1y

) ≥ cκh(t, x, y).

Remark 3.1 It follows from (A2) that for r ≥ 1 and for all x, y > 0, t ∈ [0, 1]

g(t, rx, ry) ≤ rκg(t, x, y), h
(
t, r–1x, r–1y

) ≤ rκh(t, x, y).

Remark 3.2 Condition (A2) implies that h can be allowed to be singular on x = y = 0,
and the order of singularity can be larger than 1, for example, h(t, x, y) = x–ρ + y–θ , ρ, θ ∈
(1, 1 + σ ).

Now define our work space E = C[0, 1] with the norm ‖ϕ‖ := maxt∈[0,1] |ϕ(t)| and a cone
P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}. Clearly, P is a normal cone of E with normal constant 1.

Denote

m1 = min
t∈[0,1]

g(t, 1, 1), m2 = min
t∈[0,1]

h(t, 1, 1),

M1 = max
t∈[0,1]

g(t, 1, 1), M2 = max
t∈[0,1]

h(t, 1, 1),

and

e(t) = tα–γ –1, t ∈ [0, 1].

Take a subset of P

Pe =
{
ϕ ∈ P :

1
η

e(t) ≤ ϕ(t) ≤ ηe(t), t ∈ [0, 1]
}

, (3.1)

where

η > max

{[
b(1 + σ )

1 + σ – κ(α – 1)
L

–1(ρκM1 + �–κM2
)] 1+σ

1+σ–κ

, 1,ρ–1,

2�,
[

aL–1(ρ–κm2
)∫ 1

0
G(s) ds

]– 1+σ
1+σ–κ

}
,
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and

ρ = max

{
Γ (α – γ )

Γ (α)
, 1

}
, � = min

{
Γ (α – γ )

Γ (α)
, 1

}
.

Then Pe is nonempty since e(t) ∈ Pe.
Now we state our main result as follows.

Theorem 3.1 Assume that (A0)–(A2) hold. Then the singular Kelvin–Voigt model (1.4)–
(1.5) has a unique solution ε∗, and there exist two constants 0 < ν < μ such that

–μtα–1 ≤ ε∗(t) ≤ –νtα–1. (3.2)

Moreover, for any initial u0, v0 ∈ Pe, where Pe is defined by (3.1), construct successively two
sequences

un =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ un–1(s), un–1(s)

)
+ h

(
s, Iγ vn–1(s), vn–1(s)

))
ds,

n = 1, 2, . . . , (3.3)

vn =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ vn–1(s), vn–1(s)

)
+ h

(
s, Iγ un–1(s), un–1(s)

))
ds,

n = 1, 2, . . . , (3.4)

then un(t), vn(t) converge uniformly to –DtDtDt
γ ε∗(t) on [0, 1] as n → ∞, i.e.,

∥∥un + DtDtDt
γ ε∗∥∥ → 0,

∥∥vn + DtDtDt
γ ε∗∥∥ → 0, n → ∞. (3.5)

Furthermore, there exists a constant 0 < r < 1 such that

∥∥un + DtDtDt
γ ε∗∥∥ = o

(
1 – rκn)

,
∥∥vn + DtDtDt

γ ε∗∥∥ = o
(
1 – rκn)

, (3.6)

where r depends on the initial value (u0, v0).

Proof To obtain the uniqueness of positive solution for problem (1.4)–(1.5), we define an
operator A : Pe × Pe → P by

A(u, v)(t) =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ u(s), u(s)

)
+ h

(
s, Iγ v(s), v(s)

))
ds. (3.7)

Firstly we show that A : Pe × Pe → P is well defined. In fact, from the definition of
Riemann–Liouville fractional integral, we have

Iγ e(t) =
1

Γ (γ )

∫ t

0
(t – s)γ –1sα–γ –1 ds =

Γ (α – γ )
Γ (α)

tα–1 ≤ ρtα–1, t ∈ [0, 1]. (3.8)

On the other hand, for any u, v ∈ Pe, we have

1
η

e(t) ≤ u(t) ≤ ηe(t),
1
η

e(t) ≤ v(t) ≤ ηe(t), t ∈ [0, 1]. (3.9)
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Thus it follows from (3.8)–(3.9), (A1)–(A2), and ηρ > 1 that

g
(
t, Iγ u(t), u(t)

) ≤ g
(
t,ηρtα–1,ηtα–γ –1) ≤ g(t,ηρ,ηρ) ≤ ρκηκM1, (3.10)

and

h
(
t, Iγ v(t), v(t)

) ≤ h
(

t,
Γ (α – γ )
ηΓ (α)

tα–1,
1
η

tα–γ –1
)

≤ h
(

t,
�

η
tα–1,

�

η
tα–γ –1

)
≤

(
�

η
tα–1

)–κ

h(t, 1, 1)

≤ �–κηκ t–κ(α–1)M2. (3.11)

And then (3.10)–(3.11) and (2.2) yield

L
–1(s, g

(
Iγ u(s), u(s)

)
+ h

(
s, Iγ v(s), v(s)

))
≤ L

–1(ρκηκM1 + �–κηκ s–κ(α–1)M2
)

≤ s– κ(α–1)
1+σ η

κ
1+σ L

–1(ρκM1 + �–κM2
)
. (3.12)

Notice that 0 < κ < 1 + σ , we have

κ(α – 1)
1 + σ

< 1. (3.13)

Thus, by using Lemma 2.3 and combining (3.12) and (3.13), one gets

A(u, v)(t) ≤ b(1 + σ )
1 + σ – κ(α – 1)

η
κ

1+σ L
–1(ρκM1 + �–κM2

)
tα–γ –1 ≤ ηtα–γ –1

< +∞, t ∈ [0, 1],

which implies that A : Pe × Pe → P is well defined and

A(u, v)(t) ≤ ηtα–γ –1, t ∈ [0, 1]. (3.14)

On the other hand, notice that ηρ > 1, it follows from (3.8) (3.9) and (A1)–(A2) that

h
(
t, Iγ v(t), v(t)

) ≥ h
(

t,
ηΓ (α – γ )

Γ (α)
tα–1,ηtα–γ –1

)

≥ h
(
t,ηρtα–1,ηρtα–γ –1)

≥ h(t,ηρ,ηρ) ≥ η–κρ–κh(t, 1, 1) ≥ η–κρ–κm2,
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which implies

A(u, v)(t) =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ u(s), u(s)

)
+ h

(
s, Iγ v(s), v(s)

))

≥
∫ 1

0
H(t, s)L–1(h

(
s, Iγ v(s), v(s)

))

≥ aL–1(η–κρ–κh(s, 1, 1)
)∫ 1

0
G(s)dstα–γ –1

≥ aη– κ
1+σ L

–1(ρ–κm2
)∫ 1

0
G(s)dstα–γ –1

≥ 1
η

tα–γ –1, t ∈ [0, 1]. (3.15)

Hence, (3.14) and (3.15) guarantee that A : Pe × Pe → Pe.
Next, we prove that A : Pe × Pe → Pe is a mixed monotone operator. In fact, for any

u1, u2 ∈ Pe and u1 ≤ u2, from the monotonicity of Iγ , L–1, and g , we have

A(u1, v)(t) =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ u1(s), u1(s)

)
+ h

(
s, Iγ v(s), v(s)

))
ds

≤
∫ 1

0
H(t, s)L–1(g

(
s, Iγ u2(s), u2(s)

)
+ h

(
s, Iγ v(s), v(s)

))
ds

= A(u2, v)(t), (3.16)

which implies that

A(u1, v)(t) ≤ A(u2, v)(t), v ∈ Pe, (3.17)

that is, A(u, v) is nondecreasing in u for any v ∈ Pe. Similar to (3.16), if v1 ≥ v2, v1, v2 ∈ Pe,
the following formula is also valid:

A(u, v1)(t) ≤ A(u, v2)(t), u ∈ Pe. (3.18)

So it follows from (3.17) and (3.18) that A : Pe × Pe → Pe is a mixed monotone operator.
Finally, we prove that the operator A satisfies condition (2.12). For any u, v ∈ Pe and

0 < c < 1, it follows from (A2) that

A
(

cu,
1
c

v
)

(t) =
∫ 1

0
H(t, s)L–1(g

(
s, cIγ u(s), cu(s)

)
+ h

(
s, c–1Iγ v(s), c–1v(s)

))
ds

≥
∫ 1

0
H(t, s)L–1(cκg

(
s, Iγ u(s), u(s)

)
+ cκh

(
s, Iγ v(s), v(s)

))
ds

≥ c
κ

1+σ

∫ 1

0
H(t, s)L–1(g

(
s, Iγ u(s), u(s)

)
+ h

(
s, Iγ v(s), v(s)

))
ds

= c
κ

1+σ A(u, v)(t), t ∈ [0, 1]. (3.19)

Since 0 < κ < 1 + σ , we have 0 < κ
1+σ

< 1. It follows from (3.19) that (2.12) holds, thus
Lemma 2.4 assures that the operator A has a unique fixed point ϕ∗ ∈ Pe. Moreover, for any
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initial value (u0, v0) ∈ Pe × Pe, construct successively the sequences:

un =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ un–1(s), un–1(s)

)
+ h

(
s, Iγ vn–1(s), vn–1(s)

))
ds, n = 1, 2, . . . ,

vn =
∫ 1

0
H(t, s)L–1(g

(
s, Iγ vn–1(s), vn–1(s)

)
+ h

(
s, Iγ un–1(s), un–1(s)

))
ds, n = 1, 2, . . . .

Then un(t), vn(t) converge uniformly to ϕ∗(t) on [0, 1] as n → ∞, i.e., ‖un – ϕ∗‖ → 0,
‖vn – ϕ∗‖ → 0 as n → ∞, and there exists a constant 0 < r < 1 which depends on (x0, y0)
such that

∥∥un – ϕ∗∥∥ = o
(
1 – rκn)

,
∥∥vn – ϕ∗∥∥ = o

(
1 – rκn)

.

In the end, by Lemma 2.1, the abstract Kelvin–Voigt model (1.4)–(1.5) has a unique
solution ε∗ = –Iγ ϕ∗(t). Since ϕ∗ ∈ Pe, we have

–μtα–1 = –
ηΓ (α – γ )

Γ (α)
tα–1 ≤ ε∗(t) = –Iγ ϕ∗(t) ≤ –

Γ (α – γ )
ηΓ (α)

tα–1 = –νtα–1

and ‖un – ϕ∗‖ = ‖un + DtDtDt
γ ε∗‖ → 0, ‖vn – ϕ∗‖ = ‖vn + DtDtDt

γ ε∗‖ → 0 as n → ∞. Moreover,
there exists a constant 0 < r < 1 (which depends on the initial value (u0, v0)) such that

∥∥un + DtDtDt
γ ε∗∥∥ = o

(
1 – rκn),

∥∥vn + DtDtDt
γ ε∗∥∥ = o

(
1 – rκn).

Thus (3.2)–(3.6) hold and the proof of Theorem 3.1 is completed. �

Next we consider the following eigenvalue problem of model (1.4)–(1.5):

⎧⎨
⎩
B( 1

λ
DtDtDt

αx(t))DtDtDt
αx(t) = λf (t, –x(t), –DtDtDt

γ x(t)), t ∈ (0, 1),

DtDtDt
γ x(0) = 0, DtDtDt

γ x(1) =
∫ 1

0 DtDtDt
γ x(s) dχ (s).

(3.20)

According to Theorem 3.1 and Lemma 2.1, define an operator Aλ : Pe × Pe → P

Aλ(u, v)(t) = λ

∫ 1

0
H(t, s)L–1(g

(
s, Iγ u(s), u(s)

)
+ h

(
s, Iγ v(s), v(s)

))
ds, (3.21)

we have the following property of solution.

Theorem 3.2 Assume that (A0)–(A2) hold. Then the eigenvalue problem (3.20) has a
unique solution w∗

λ. Moreover, 0 < λ1 < λ2 implies that w∗
λ1

≤ w∗
λ2

, w∗
λ1

�= w∗
λ2

. If κ ∈ (0, 1+σ
2 ),

then

lim
λ→0+

∥∥DtDtDt
γ ε∗

λ

∥∥ = +∞, lim
λ→+∞

∥∥DtDtDt
γ ε∗

λ

∥∥ = 0. (3.22)

Proof It follows from Theorem 3.1 that the operator Aλ (3.21) has a unique fixed point ϕ∗
λ ∈

Pe, which implies that the eigenvalue problem (3.20) has a unique solution w∗
λ = –Iγ ϕ∗

λ .
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By Lemma 2.5, we have 0 < λ1 < λ2 implies that ϕ∗
λ1

≤ ϕ∗
λ2

, ϕ∗
λ1

�= ϕ∗
λ2

, that is, w∗
λ1

≥ w∗
λ2

,
w∗

λ1
�= w∗

λ2
, and if κ ∈ (0, 1+σ

2 ), then

lim
λ→0+

∥∥DtDtDt
γ ε∗

λ

∥∥ = +∞, lim
λ→+∞

∥∥DtDtDt
γ ε∗

λ

∥∥ = 0,

that is (3.22), so this completes the proof of Theorem 3.2. �

4 Numerical examples
Now we give some examples to illustrate our results.

Example 4.1 Let B(x) = x2, consider the following abstract singular Kelvin–Voigt model:
⎧⎨
⎩
B(DtDtDt

3
2 ε(t))DtDtDt

3
2 ε(t) = 2+t2

1+t2 (ε 2
3 (t) + [–DtDtDt

1
4 ε(t)]2 + ε– 4

3 (t) + [–DtDtDt
1
4 ε(t)]– 2

3 ),

DtDtDt
1
4 ε(0) = 0, DtDtDt

1
4 ε(1) =

∫ 1
0 DtDtDt

1
4 ε(s) dχ (s),

(4.1)

where χ is a bounded variation function satisfying

χ (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [0, 1
2 ),

2, t ∈ [ 1
2 , 3

4 ),

1, t ∈ [ 3
4 , 1].

Thus by simple computation, the problem (4.1) reduces to the following singular multi-
point boundary value problem:

⎧⎨
⎩
B(DtDtDt

3
2 ε(t))DtDtDt

3
2 ε(t) = 2+t2

1+t2 (ε 2
3 (t) + [–DtDtDt

1
4 ε(t)]2 + ε– 4

3 (t) + [–DtDtDt
1
4 ε(t)]– 2

3 ),

DtDtDt
1
4 ε(0) = 0, DtDtDt

1
4 ε(1) = 2DtDtDt

1
4 ( 1

2 ) – DtDtDt
1
4 ( 3

4 ).
(4.2)

Corollary 4.1 The abstract singular Kelvin–Voigt model (4.1) has a unique positive solu-
tion ε∗, and there exist two constants 0 < ν < μ such that

–μt
1
2 ≤ ε∗(t) ≤ –νt

1
2 . (4.3)

Moreover, for any initial u0, v0 ∈ Pe, construct successively two sequences:

un =
∫ 1

0

[
4t

1
4 G(s) + G(t, s)

](2 + s2

1 + s2

) 1
3

× ((
I

1
4 un–1(s)

) 2
3 + u2

n–1(s) +
(
I

1
4 vn–1(s)

)– 4
5 + v

2
3
n–1(s)

) 1
3 ds, n = 1, 2, . . . ,

vn =
∫ 1

0

[
4t

1
4 G(s) + G(t, s)

](2 + s2

1 + s2

) 1
3

× ((
I

1
4 vn–1(s)

) 2
3 + v2

n–1(s) +
(
I

1
4 un–1(s)

)– 4
5 + u

2
3
n–1(s)

) 1
3 ds, n = 1, 2, . . . ,

which converge uniformly to –DtDtDt
1
4 ε∗(t) on [0, 1] as n → ∞, and there exists a constant

0 < r < 1 such that

∥∥un + DtDtDt
1
4 ε∗∥∥ = o

(
1 – r2n)

,
∥∥vn + DtDtDt

1
4 ε∗∥∥ = o

(
1 – r2n)

.
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Proof We only need to consider the equivalent equation (4.2). Firstly, comparing with the
general model (1.4)–(1.5), one gets

γ =
1
4

, α =
3
2

, σ = 2, f (t, u, v) =
2 + t2

1 + t2

(
u

2
3 + v2 + u– 4

5 + v– 2
3
)

and

C =
∫ 1

0
tα–1 dχ (t) = 2 ×

(
1
2

) 1
4

–
(

3
4

) 1
4

= 0.7512 < 1, G(s) ≥ 0.

Next let g(t, u, v) = 2+t2

1+t2 (u 2
3 + v2), h(t, u, v) = 2+t2

1+t2 (u– 4
5 + v– 2

3 ), then for any u, v > 0 and
0 < c < 1, we have

g(t, cu, cv) =
2 + t2

1 + t2

(
c

2
3 u

2
3 + c2v2) ≥ c2g(t, u, v),

h
(
t, c–1u, c–1v

)
=

2 + t2

1 + t2

((
c–1u

)– 4
5 +

(
c–1v

)– 2
3
) ≥ c2h(t, u, v).

Take κ = 2, then 0 < κ < 1 + σ , and g : [0, 1] × [0, +∞)2 → [0, +∞), h : [0, 1] × (0, +∞)2 →
[0, +∞) are continuous, and for all t ∈ [0, 1], g(t, u, v) is nondecreasing and h(t, u, v) is non-
increasing in u, v > 0, respectively. Thus all the conditions of Theorem 3.1 hold, according
to Theorem 3.1, the singular Kelvin–Voigt model (4.1) has a unique positive solution ε∗,
and there exist two constants 0 < ν < μ such that (4.3) holds.

Moreover, for any initial u0, v0 ∈ Pe, construct successively two sequences:

un =
∫ 1

0

[
4t

1
4 G(s) + G(t, s)

](2 + s2

1 + s2

) 1
3

× ((
I

1
4 un–1(s)

) 2
3 + u2

n–1(s) +
(
I

1
4 vn–1(s)

)– 4
5 + v

2
3
n–1(s)

) 1
3 ds, n = 1, 2, . . . ,

vn =
∫ 1

0

[
4t

1
4 G(s) + G(t, s)

](2 + s2

1 + s2

) 1
3

× ((
I

1
4 vn–1(s)

) 2
3 + v2

n–1(s) +
(
I

1
4 un–1(s)

)– 4
5 + u

2
3
n–1(s)

) 1
3 ds, n = 1, 2, . . . ,

which converge uniformly to –DtDtDt
1
4 ε∗(t) on [0, 1] as n → ∞, and there exists a constant

0 < r < 1 such that

∥∥un + DtDtDt
1
4 ε∗∥∥ = o

(
1 – r2n)

,
∥∥vn + DtDtDt

1
4 ε∗∥∥ = o

(
1 – r2n)

. �

Example 4.2 LetB(x) = x 1
2 , consider the following eigenvalue problem of singular Kelvin–

Voigt model:

⎧⎨
⎩
B(DtDtDt

5
3 ε(t))DtDtDt

5
3 ε(t) = λ[ 2+sin t

1+et+cos t + 2t2[–DtDtDt
1
3 ε(t)] 2

3 + ε– 1
2 (t)],

DtDtDt
1
3 ε(0) = 0, DtDtDt

1
3 ε(1) =

∫ 1
0 DtDtDt

1
3 ε(s) dχ (s),

(4.4)



He et al. Boundary Value Problems        (2019) 2019:112 Page 15 of 19

where χ is a bounded variation function satisfying

χ (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [0, 1
3 ),

5
2 , t ∈ [ 1

3 , 2
3 ),

2, t ∈ [ 2
3 , 1].

Thus by simple computation, the problem (4.4) reduces to the following singular multi-
point boundary value problem:

⎧⎨
⎩
B(DtDtDt

5
3 ε(t))DtDtDt

5
3 ε(t) = λ[ 2+sin t

1+et+cos t + 2t2[–DtDtDt
1
3 ε(t)] 2

3 + ε– 1
2 (t)],

DtDtDt
1
3 ε(0) = 0, DtDtDt

1
3 ε(1) = 5

2DtDtDt
1
3 ( 1

3 ) – 1
2DtDtDt

1
3 ( 2

3 ).
(4.5)

Corollary 4.2 The abstract singular Kelvin–Voigt model (4.4) has a unique positive solu-
tion ε∗, and there exist two constants 0 < ν < μ such that

–μt
2
3 ≤ ε∗(t) ≤ –νt

2
3 . (4.6)

Moreover, for any initial u0, v0 ∈ Pe, construct successively two sequences:

un = λ

∫ 1

0

[
t 1

3

0.9815
G(s) + G(t, s)

](
2 + sin s

1 + es + cos s
+ 2s2u

2
3
n–1(s) +

(
I

1
3 vn–1(s)

)– 1
2

) 2
3

ds,

n = 1, 2, . . . ,

vn = λ

∫ 1

0

[
t 1

3

0.9815
G(s) + G(t, s)

](
2 + sin s

1 + es + cos s
+ 2s2v

2
3
n–1(s) +

(
I

1
3 un–1(s)

)– 1
2

) 2
3

ds,

n = 1, 2, . . . ,

which converge uniformly to –DtDtDt
1
4 ε∗(t) on [0, 1] as n → ∞, and there exists a constant

0 < r < 1 such that

∥∥un + DtDtDt
1
4 ε∗∥∥ = o

(
1 – r2n)

,
∥∥vn + DtDtDt

1
4 ε∗∥∥ = o

(
1 – r2n)

.

In addition, we also have

lim
λ→0+

∥∥DtDtDt
γ ε∗

λ

∥∥ = +∞, lim
λ→+∞

∥∥DtDtDt
γ ε∗

λ

∥∥ = 0.

Proof We consider equation (4.5). Let

γ =
1
3

, α =
5
3

, σ =
1
2

, f (t, u, v) =
2 + sin t

1 + et + cos t
+ 2t2u

2
3 + v– 1

2

and

C =
∫ 1

0
tα–1 dχ (t) =

5
2

×
(

1
3

) 2
3

–
1
2

×
(

2
3

) 2
3

= 0.0185 < 1, G(s) ≥ 0.
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Take g(t, u, v) = 2+sin t
2(1+et+cos t) + 2t2u 2

3 , h(t, u, v) = 2+sin t
2(1+et+cos t) + v– 1

2 , then g(t, 1, 1) > 0,
h(t, 1, 1) > 0, and for any u, v > 0 and 0 < c < 1, we have

g(t, cu, cv) =
2 + sin t

2(1 + et + cos t)
+ 2t2(cu)

2
3 ≥ c

2
3

[
2 + sin t

2(1 + et + cos t)
+ 2t2u

2
3

]

= c
2
3 g(t, u, v),

h
(
t, c–1u, c–1v

)
=

2 + sin t
2(1 + et + cos t)

+ (cv)– 1
2 ≥ c

2
3

[
2 + sin t

2(1 + et + cos t)
+ (cv)– 1

2

]

= c
2
3 h(t, u, v).

Take κ = 2
3 , then 0 < κ < 1 + σ = 3

2 , and g : [0, 1] × [0, +∞)2 → [0, +∞), h : [0, 1] ×
(0, +∞)2 → [0, +∞) are continuous, and for all t ∈ [0, 1], g(t, u, v) is nondecreasing and
h(t, u, v) is nonincreasing in u, v > 0, respectively. Thus all the conditions of Theorem 3.1
hold, according to Theorem 3.1, the singular Kelvin–Voigt model (4.4) has a unique posi-
tive solution ε∗, and there exist two constants 0 < ν < μ such that (4.6) holds.

Moreover, for any initial u0, v0 ∈ Pe, construct successively two sequences:

un = λ

∫ 1

0

[
t 1

3

0.9815
G(s) + G(t, s)

](
2 + sin s

1 + es + cos s
+ 2s2u

2
3
n–1(s) +

(
I

1
3 vn–1(s)

)– 1
2

) 2
3

ds,

n = 1, 2, . . . ,

vn = λ

∫ 1

0

[
t 1

3

0.9815
G(s) + G(t, s)

](
2 + sin s

1 + es + cos s
+ 2s2v

2
3
n–1(s) +

(
I

1
3 un–1(s)

)– 1
2

) 2
3

ds,

n = 1, 2, . . . ,

which converge uniformly to –DtDtDt
1
3 ε∗(t) on [0, 1] as n → ∞, and there exists a constant

0 < r < 1 such that

∥∥un + DtDtDt
1
3 ε∗∥∥ = o

(
1 – r2n)

,
∥∥vn + DtDtDt

1
3 ε∗∥∥ = o

(
1 – r2n)

.

In particular, if we take λ = 3, 5, then ε∗
3 (t) ≤ ε∗

5 (t). Since κ = 2
3 ∈ (0, 1+σ

2 ) = (0, 3
4 ), we have

lim
λ→0+

∥∥DtDtDt
γ ε∗

λ

∥∥ = +∞, lim
λ→+∞

∥∥DtDtDt
γ ε∗

λ

∥∥ = 0. �

5 Conclusion
In this work, we introduce a new nonlinear operator to generalize a standard Kelvin–
Voigt model. By using the fixed point theorem of the mixed monotone operator, we not
only establish the uniqueness of solution of this model, but also give an iterative scheme
converging to the unique solution of the model. Especially, a nonlinear function of the
model may have stronger singularity at some points of the strain vanishing, which can
describe the case of instantaneous fracture of relaxation processes.
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