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Abstract
In this paper, we are concerned with the existence of global weak solutions to the
compressible Navier–Stokes–Poisson equations with the non-flat doping profile when
the viscosity coefficients are density-dependent, the data are large and spherically
symmetric, and we focus on the case where those coefficients vanish in vacuum. We
construct a suitable approximate system and consider it in annular regions between
two balls. The global solutions are obtained as limits of such approximate solutions.
Our proofs are mainly based on the energy and entropy estimates.
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1 Introduction
The dynamics of charged particles of one carrier type (e.g., electrons) can be described by
the compressible Navier–Stokes–Poisson equations:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U) + ∇P(ρ) – div(h(ρ)D(U)) – ∇(g(ρ) div U) = ρ∇Φ ,

�Φ = ρ – b,

(1.1)

where (x, t) ∈ Ω × (0,∞), ρ = ρ(x, t) and u = u(x, t) represent the density and velocity
functions of the electrons, respectively, at position x ∈ Ω ⊂ RN (N = 2, 3) and time t ≥ 0;
P(ρ) = ργ (γ > 1) denotes the pressure, D(U) = 1

2 (∇U +∇U�) is the stress tensor, h(ρ) and
g(ρ) are the Lamé viscosity coefficients satisfying

h(ρ) > 0, h(ρ) + Ng(ρ) > 0. (1.2)

The function b = b(x) is the doping profile for the ions. We assume that b is a smooth
function satisfying

b(x) > 0, lim|x|→+∞ b(x) = b̄ > 0. (1.3)
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The self-consistent electric potential Φ = Φ(x, t) is coupled with the density and the dop-
ing profile through the Poisson equation.

Such a problem without the Poisson term was studied by many authors; it can be written
as

⎧
⎨

⎩

ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U) + ∇P(ρ) – div(h(ρ)D(U)) – ∇(g(ρ) div U) = 0.
(1.4)

When the viscosity coefficients h(ρ) and g(ρ) are both constant in (1.4), the one-
dimensional problem has been studied extensively, see [14, 19, 29, 30] and the references
therein. For the multi-dimensional case, the local existence and uniqueness of classical so-
lutions are known [28, 31] in the absence of vacuum. The authors of [35] showed both the
well- and ill-posedness for the mild solutions of the Navier–Stokes system with dissipation
through the generalized Carleson measure spaces of initial data that unify many diverse
spaces. Matsumura et al. [24–26] proved global existence of smooth solutions for data
close to a non-vacuum equilibrium. In particular, the theory requires that the solution
has small oscillations from a uniform non-vacuum state so that the density is strictly away
from the vacuum and the gradient of the density remains bounded uniformly in time. The
situation becomes more complex for arbitrary data (which may include vacuum states).
The major breakthrough is due to Lions [22] (see also Feireisl et al. [11]) who obtained
global existence of weak solutions when the exponent γ is suitably large, where the only
restriction on initial data is that the initial energy is finite, so that the density is allowed to
vanish. However, as emphasized in many related papers [15, 16, 20, 21, 36], the regularity,
uniqueness, and dynamical behavior of the weak solution for arbitrary initial data remain
largely open for compressible Navier–Stokes (CNS) equations with constant coefficients.

By some physical considerations, Liu, Xin, and Yang in [23] introduced the modified
CNS equations with density-dependent viscosity coefficients for isentropic fluids. In fact,
as presented in [23], while deriving the CNS equations from the Boltzmann equations by
the Chapman–Enskog expansions, the viscosity depends on the temperature, and corre-
spondingly on the density for isentropic cases. However, for these more physical models
new mathematical challenges are encountered. Degeneration at vacuum occurs because of
the dependence of viscosity coefficients on flow density, which makes it very difficult to de-
rive a uniform a priori estimate for the velocity and trace the motion of particle paths near
vacuum regions. Moreover, it is not known yet whether or not the vacuum states form for
global (weak) solutions to (1.4) even if initial data is far from vacuum. With the help of BD
entropy for (1.4) and the compactness results, Bresch et al. have made significant progress
on the global existence of weak solutions to the multi-dimensional CNS equations and the
2D shallow water model where either a drag friction or a cold pressure term is involved; we
refer to [1–3, 27] and references therein. For the spherical symmetric case, [8, 12, 13] show
the global existence of weak solutions of the CNS with density-dependent viscosity, and
in [17] the authors have established the regularity for the CNS equations with density-
dependent viscosity in H2 and H4 under certain initial assumptions. Recently, Alexis F.
Vasseur and Cheng Yu [34] have given a breakthrough result of the existence of global
weak solutions for 3D compressible Navier–Stokes equations with degenerate viscosity
and large initial data, possibly vanishing in vacuum, by deriving a Mellet and Vasseur [27]
type inequality for weak solutions.
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For the coupling system of Navier–Stokes and other equation, many authors have given
significant results. G.M. Shao and X.J. Chai in [32] proved the unique existence of solutions
for the 2D coupling system of Navier–Stokes and electronic equation (i.e., electrohydro-
dynamics system). Concerning the Navier–Stokes–Poisson (NSP) system, there are also
extensive studies about the global existence and dynamical behavior of solutions. For the
constant viscosity, Ducomet and Feireisl [5] considered the full NSP equations and proved
that, when γ > 3

2 , there exists a global-in-time variational weak solution. Ducomet et al.
[6] have also proved that there exists a global weak solution to the barotropic compressible
NSP equations with nonmonotone pressure, provided that γ > 3

2 . Donatelli [7] considered
the Cauchy problem for the coupled NSP equations and gave a positive answer to the exis-
tence of local and global weak solutions. Zhang and Tan [39], by using the theory of Orlicz
spaces, have proved the existence of globally defined finite energy weak solutions. Cai and
Tan [4] also proved that the system has a global weak time-periodic solution for the NSP
equations in a bounded domain with periodic boundary condition as soon as γ > 5

3 and
when the external force is time-periodic. Tan and Wang [33] studied the stability of the
steady state of the compressible NSP equations and proved the global existence of solu-
tions near the steady state for the large doping profile.

However, for the case of density-dependent viscosity coefficients, the problem is much
more challenge because of the degeneration near the vacuum and the related results are
limited. Alexander Zlotnik [40] proved the global-in-time bounds for solutions and stud-
ied the large time behavior around a hard core. Under small perturbations, Zhang and
Fang [38] obtained the global existence and uniqueness of the weak solution for the spher-
ically symmetric case and without a hard core, also showing that such a system is sta-
ble. B. Ducomet et al. [10] considered the Cauchy problem for the Navier–Stoles–Poisson
equations of spherically symmetric motions in R3, and they proved that the problem ad-
mits a global weak solution, provided that the polytropic index γ satisfies γ > 1. Duan and
Li [9] studied the multi-dimensional compressible NSP system with γ law pressure in the
simulation of the motion of gaseous stars for γ ∈ ( 6

5 , 4
3 ].

Inspired by [10] and [12], in the present paper, we consider the global existence of the
three-dimensional spherically symmetric solutions of (1.1) with degenerate viscosities; for
simplicity, we deal with the case h(ρ) = ρ , g(ρ) = 0, and take D(U) = ∇U . Our result holds
true for general h(ρ) = ρα , g(ρ) = (α – 1)ρα for some α > N–1

N (N = 2, 3). We construct a
suitable approximate system and, to exclude the singularity at the origin r = 0, consider
the radial symmetric approximate system only on the annular domain. The global exis-
tence of classic solutions to such an approximate system can be obtained by the standard
arguments. Then we obtain the a priori estimates required in the L1 stability analysis.
Therefore, by taking a limit, we show that a global spherically symmetric entropy weak
solution to (1.1) exists for general initial data with finite entropy for γ ∈ (1, 3).

It is different from the situation in [10] where the two viscosity coefficients need to sat-
isfy the relation μ(ρ) = μ1Ψ (ρ), λ(ρ) = 2μ1(ρΨ ′(ρ) – Ψ (ρ)), and μ(ρ) also has to satisfy
another condition μ(ρ) ≤ Cρ

γ –1
2 , i.e., the viscosity coefficient μ(ρ) in [10] needs to be

bounded by a function depending on ρ and γ . However, in this paper, we consider two
viscosity coefficients h(ρ) and g(ρ) of the form h(ρ) = ρα , g(ρ) = (α – 1)ρα , and α only
needs to satisfy α > N–1

N (N = 2, 3).
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2 Preliminaries
The following lemmas are two standard compactness results and will help us in Sect. 5 get
the strong convergence of the solutions.

Lemma 2.1 (Aubin–Lions Lemma) Let X0, X and X1 be three Banach spaces with X0 ⊆
X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded
in X1. For 1 ≤ p, q ≤ +∞, let

W =
{

u ∈ Lp([0, T]; X0
) | ∂tu ∈ Lq([0, T]; X1

)}
. (2.1)

(i) If p < +∞, then the embedding of W into Lp([0, T]; X) is compact.
(ii) If p = +∞ and q > 1, then the embedding of W into C([0, T]; X) is compact.

Lemma 2.2 (Egorov’s uniform convergence theorem) Let fn → f a.e. in Ω , a bounded
measurable set in Rn, with f finite a.e. Then for any ε > 0 there exists a measurable subset
Ωε ⊂ Ω such that |Ω\Ωε | < ε and fn → f uniformly in Ωε , moreover, if

fn → f a.e. in Ω ,

fn ∈ Lp(Ω) and uniformly bounded, for any 1 < p ≤ +∞,

then, we have

fn → f strongly in Ls(Ω), for any s ∈ [1, p).

3 Main result
In this paper, we set h(ρ) = ρ , g(ρ) = 0 and D(U) = ∇U in (1.1)2 for simplicity. Then the
isentropic compressible Navier–Stokes–Poisson system (1.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U) + ∇ργ – div(ρ∇U) = ρ∇Φ , (x, t) ∈ Ω × (0,∞),

�Φ = ρ – b.

(3.1)

The initial and boundary conditions are

(ρ,ρU ,Φ)|t=0 =
(
ρ0(x), m0(x),Φ0(x)

)
, in Ω , (3.2)

m = ρU = 0,
∂Φ

∂ν
= 0, on ∂Ω , (3.3)

here ν is the unit outer normal vector on ∂Ω . Consider a spherically symmetric solution
(ρ, u) to (3.1) in a ball Ω of radius R centered at the origin in R3. Then

ρ(x, t) = ρ(r, t), U(x, t) = u(r, t)
x
r

, Φ(x, t) = φ(r, t),

b(x) = b(r), r = |x|,
(3.4)
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and system (3.1) is changed to

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)r + 2ρu
r = 0,

(ρu)t + (ρu2 + ργ )r + 2ρu2

r – (ρur)r – ρ( 2u
r )r = ρφr ,

φrr + 2
r φr = ρ – b,

(3.5)

for 0 < r < R. The corresponding initial data and boundary conditions are

(ρ,ρu,φ)|t=0 = (ρ0, m0,φ0), (3.6)

ρu(0, t) = 0, ρu(R, t) = 0, φr(0, t) = 0, φr(R, t) = 0. (3.7)

Moreover, by solving (3.5)3, we get φr = 1
r2

∫ r
0 ρs2 ds – 1

r2

∫ r
0 b(s)s2 ds =: fρ – fb.

First we obtain the following usual a priori energy estimates for smooth solutions to
(3.1)–(3.3).

Lemma 3.1 If (ρ, U) is a smooth solution to (3.1)–(3.3) and the initial assumption (3.31)
is satisfied, then the following inequality holds for T > 0:

∫

Ω

{
1
2
ρU2 +

1
2
|∇Φ|2 +

ργ

γ – 1

}

dx +
∫ t

0

∫

Ω

ρ|∇U|2 dx dt ≤ C, (3.8)

here C is a positive constant.

Proof Multiplying (3.1)1 by U2

2 , (3.1)1 by γ

γ –1 and (3.1)2 by U , then summing up and inte-
grating the resulting formula with respect to x by parts, one can easily get

d
dt

∫

Ω

{
1
2
ρU2 +

1
2
|∇Φ|2 +

ργ

γ – 1

}

dx +
∫

Ω

ρ|∇U|2 dx ≤ 0. (3.9)

Integrating the above formula with respect to t, we obtain

∫

Ω

{
1
2
ρU2 +

1
2
|∇Φ|2 +

ργ

γ – 1

}

dx +
∫ t

0

∫

Ω

ρ|∇U|2 dx dt

≤
∫

Ω

{
1
2

m2
0

ρ0
+

1
2
|∇Φ0|2 +

ρ
γ
0

γ – 1

}

dx. (3.10)

Integrating by parts yields

∫

Ω

|∇Φ0|2 dx = –
∫

Ω

Φ0(ρ0 – b) dx

≤ ‖ρ0 – b‖Lp(Ω)‖Φ0‖Lp′ (Ω)

≤ ‖ρ0 – b‖θ

Lβ (Ω)‖ρ0 – b‖1–θ
L1(Ω)‖Φ0‖Lp′ (Ω), (3.11)

where 1
p + 1

p′ = 1, 1
p = θ

β
+ 1–θ

1 .
Then by Hardy–Littlewood–Sobolev imbedding theorem, one has

‖Φ0‖Lp′ (Ω) ≤ C(β)‖ρ0 – b‖Lβ (Ω),
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here 1
β

= 1
p′ + 2

3 . Hence we have

∫

Ω

|∇Φ0|2 dx ≤ C(β)‖ρ0 – b‖1+θ

Lβ (Ω)‖ρ0 – b‖1–θ
L1(Ω). (3.12)

It follows from 1
β

= 1
p′ + 2

3 , 1
p + 1

p′ = 1, 1
p = θ

β
+ 1–θ

1 and 0 < θ < 1 that 6
5 < β < 3

2 , thus
W 1,2(Ω) ↪→ Lβ (Ω).

Under the initial assumption (3.31), we can deduce

∫

Ω

|∇Φ0|2 dx ≤ C(β)‖ρ0 – b‖1+θ
W 1,2(Ω)‖ρ0 – b‖1–θ

L1(Ω) ≤ C. (3.13)

Returning to (3.10), we can obtain the desired basic energy estimate (3.8).
It is also easy to get the following usual a priori energy estimate for smooth solutions to

(3.5)–(3.7):

d
dt

∫ R

0

{
1
2
(
ρu2 + φ2

r
)

+
ργ

γ – 1

}

r2 dr +
∫ R

0
ρ
(
u2

r r2 + 2u2)dr ≤ 0, (3.14)

and then

∫ R

0

{
1
2
ρu2 +

1
2
φ2

r +
ργ

γ – 1

}

r2 dr +
∫ t

0

∫ R

0
ρ
(
u2

r r2 + 2u2)dr ds ≤ C, (3.15)

where C is a positive constant. �

Furthermore, system (3.1) admits an additional a priori estimate, as observed by Bresch,
Desjardins, and Lin [3], which reads as follows for three-dimensional spherically symmet-
ric equations (3.5):

Lemma 3.2 If (ρ, u) is a smooth solution to (3.5) with ρ > 0, then the following inequality
holds:

d
dt

∫ R

0

{
1
2
ρ
∣
∣u + (logρ)r

∣
∣2 +

1
2
φ2

r +
ργ

γ – 1

}

r2 dr +
∫ R

0

4
γ

((
ρ

γ
2
)

rr
)2 dr

+
∫ R

0

{
(ρ – b)2 + ρb

}
r2 dr ≤ C, (3.16)

i.e.,

d
dt

∫ R

0

{
1
2
ρu2 + ρru +

∣
∣(
√

ρ)r
∣
∣2 +

1
2
φ2

r +
ργ

γ – 1

}

r2 dr +
∫ R

0

4
γ

((
ρ

γ
2
)

rr
)2 dr

+
∫ R

0

{
(ρ – b)2 + ρb

}
r2 dr ≤ C, (3.17)

where C is a positive constant.

Proof Multiplying equation (3.5)1 by |(logρ)r |2r2

2 , we have

ρt
|(logρ)r|2r2

2
+

|(logρ)r|2
2

(
ρur2)

r = 0. (3.18)
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Furthermore, (3.5)1 implies that

ρ

( |(logρ)r|2r2

2

)

t
+

( |(logρ)r|2
2

)

r
ρur2

= –ρrurrr2 – ρrur(logρ)rr2 – 2ρrurr + 2ρru. (3.19)

Adding (3.18) and (3.19), then integrating the result equation over (0, R), one gets

d
dt

∫ R

0

ρ|(logρ)r|2
2

r2 dr =
∫ R

0

(
2ρru – ρrurrr2 – ρrur(logρ)rr2 – 2ρrurr

)
dr. (3.20)

Using integration by parts and (3.5)1, we also get that

d
dt

∫ R

0
(logρ)rρur2 dr

=
∫ R

0
(logρ)r∂t(ρu)r2 dr +

∫ R

0

(
ρur2)

r(logρ)ru dr

+
∫ R

0

(
ρruurr2 + ρu2

r r2 + 4ρuurr + 2ρru2r + 4ρu2)dr. (3.21)

It follows from (3.5)2 that

∫ R

0
(logρ)r∂t(ρu)r2 dr

=
∫ R

0
ρφr(logρ)rr2 dr –

∫ R

0

4
γ

[(
ρ

γ
2
)

rr
]2 dr –

∫ R

0

(
ρur2)

r(logρ)ru dr

–
∫ R

0
ρruurr2 dr +

∫ R

0

(
ρrurrr2 + ρrur(logρ)rr2 + 2ρrurr – 2ρru

)
dr. (3.22)

Returning to (3.21), we have

d
dt

∫ R

0
(logρ)rρur2 dr

=
∫ R

0
ρφr(logρ)rr2 dr –

∫ R

0

4
γ

((
ρ

γ
2
)

rr
)2 dr +

∫ R

0

(
ρrurrr2 + ρrur(logρ)rr2

+ 2ρrurr – 2ρru + ρu2
r r2 + 4ρuurr + 2ρru2r + 4ρu2)dr. (3.23)

Summing (3.20) and (3.23) then using integration by parts, we have

d
dt

∫ R

0

{

(logρ)rρu +
ρ|(logρ)r|2

2

}

r2 dr +
∫ R

0

4
γ

[(
ρ

γ
2
)

rr
]2 dr

=
∫ R

0
ρφr(logρ)rr2 dr +

∫ R

0

(
ρu2

r r2 + 4ρuurr + 2ρru2r + 4ρu2)dr

=
∫ R

0
ρφr(logρ)rr2 dr +

∫ R

0
ρ
(
u2

r r2 + 2u2)dr. (3.24)
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Combining (3.24) with inequality (3.14), one obtains

d
dt

∫ R

0

{
1
2
ρ
∣
∣u + (logρ)r

∣
∣2 +

1
2
φ2

r +
ργ

γ – 1

}

r2 dr +
∫ R

0

4
γ

((
ρ

γ
2
)

rr
)2 dr

≤
∫ R

0
ρφr(logρ)rr2 dr. (3.25)

We now estimate the right-hand side of (3.25). Integrating by parts and using the bound-
ary condition (3.3), as well as the property of function b(x), we obtain the following:

∫ R

0
ρφr(logρ)rr2 dr =

∫

Ω

∇Φ · ∇ρ dx

=
∫

Ω

∇Φ · ∇(ρ – b) dx +
∫

Ω

∇Φ · ∇b dx

= –
∫

Ω

(ρ – b)2 dx –
∫

Ω

ρb dx +
∫

Ω

b2 dx

≤ –
∫

Ω

(ρ – b)2 dx –
∫

Ω

ρb dx + C

= –
∫ R

0

{
(ρ – b)2 + ρb

}
r2 dr + C. (3.26)

Substituting the above inequality into (3.25), one obtains the desired estimate (3.16), and
so the lemma is proved. �

Now we give a definition of weak solutions to (3.1) with the initial and boundary condi-
tions (3.2) and (3.3).

Definition 3.3 A pair (ρ, U) with ρ ≥ 0 a.e. is said to be a weak solution to (3.1) provided
that ρ ∈ L∞(0, T ; L1(Ω) ∩ Lγ (Ω)) ∩ C([0,∞); W 1,∞(Ω)∗), √

ρ ∈ L∞(0, T ; H1(Ω)), √
ρU ∈

L∞(0, T ; L2(Ω)), where W 1,∞(Ω)∗ is the dual space of W 1,∞(Ω), and the equations are
satisfied in sense of distributions. That is, it holds for any t2 > t1 ≥ 0 and ψ ∈ C1(Ω̄ ×[0, T])
that

∫

Ω

ρψ dx
∣
∣
∣
∣

t2

t1

=
∫ t2

t1

∫

Ω

(ρψt + ρU · ∇ψ) dx dt, (3.27)

and for ψ = (ψ1,ψ2,ψ3) ∈ C1(Ω̄ × [0, T]) satisfying ψ(x, t) = 0 on ∂Ω and ψ(x, T) = 0, it
holds that

∫

Ω

m0 · ψ(·, 0) dx +
∫ T

0

∫

Ω

{√
ρ(

√
ρU) · ∂tψ +

√
ρU ⊗ √

ρU : ∇ψ
}

dx dt

+
∫ T

0

∫

Ω

ργ divψ dx dt – 〈ρ∇U ,∇ψ〉 =
∫ T

0

∫

Ω

ρ∇Φψ dx dt, (3.28)

where m0 = m0
x
r and the diffusion term is defined for any ψ ∈ C1(Ω̄ × [0, T]) as

〈ρ∇U ,∇ψ〉 = –
∫ T

0

∫

Ω

√
ρ(

√
ρU) · �ψ dx dt

– 2
∫ T

0

∫

Ω

(
√

ρU) · (∇√
ρ · ∇)ψ dx dt (3.29)
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and

�Φ = ρ – b a.e. (3.30)

In this paper, the initial data are assumed to satisfy

ρ0 ≥ 0 a.e. in Ω ; m0 = 0 a.e. on
{

x ∈ Ω | ρ0(x) = 0
}

;

ρ0 ∈ W 1,2(Ω);
m2

0
ρ0

∈ L1(Ω);
m2+η

0

ρ
1+η
0

∈ L1(Ω),
(3.31)

with η ∈ (0, 1) a suitably small constant. It follows from the above assumption that

ρ0U2+η
0 ∈ L1(Ω); ρ0U2

0 ∈ L1(Ω). (3.32)

Then we have the following global existence result.

Theorem 3.4 Let N = 3, 1 < γ < 3. Assume that (3.31) holds and the initial data have the
form

ρ0 = ρ0
(|x|), U0 = u0

(|x|)x
r

,

then the initial boundary value problem (3.1)–(3.3) has a global spherically symmetric
weak solution

ρ = ρ
(|x|, t

)
, U = u

(|x|, t
)x

r

in the sense of Definition 3.3 satisfying for all T > 0,

ρ(x, t) ∈ C
(
[0, T]; L

3
2 (Ω)

)
,

√
ρU ∈ L∞(

0, T ; L2(Ω)
)
, (3.33)

∫

Ω

ρ(x, t) dx =
∫

Ω

ρ0(x) dx, (3.34)

sup
t∈[0,T]

∫

Ω

(
ργ + |√ρU|2)dx +

∫ T

0

∫

Ω

|√ρ∇U|2 dx dt ≤ C, (3.35)

and

sup
t∈[0,T]

∫

Ω

|∇√
ρ|2 dx +

∫ T

0

∫

Ω

∣
∣√ρ

γ
2
∣
∣2 dx dt ≤ C, (3.36)

where C is a constant.

Remark 3.5 It can be checked easily that, for N = 2, the conclusions in Theorem 3.4 hold
true for any γ > 1.

4 Approximate solutions
The crucial step in the proof of Theorem 3.4 is to construct smooth approximate solutions
satisfying the a priori estimates required in the L1-stability analysis. The key point is to
obtain lower and upper bounds of the density. In this section, we construct the suitable
approximate solutions and obtain their estimates.
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4.1 Approximate system in Euler coordinates and the estimates
To this end, we study the following system as an approximate system of (3.1):

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρU) = 0,

(ρU)t + div(ρU ⊗ U) – div((ρ + ερ
3
4 )∇U) + ∇( ε

4ρ
3
4 div U) + ∇ργ = ρ∇Φ ,

�Φ = ρ – b,

(4.1)

where ε > 0 is a constant. Considering a spherically symmetric solution, system (4.1) be-
comes

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)r + 2ρu
r = 0,

(ρu)t + (ρu2 + ργ )r + 2ρu2

r + (ρ + ερ
3
4 )r

2u
r = ((ρ + 3

4ερ
3
4 )(ur + 2u

r ))r + ρφr ,

φrr + 2
r φr = ρ – b,

(4.2)

for 0 < ε < r < R with the following initial condition:

(ρ,ρu,φ)(r, 0) = (ρ0 + ε, m0,φ0), (4.3)

and the boundary conditions

u|r=ε = u|r=R = 0, φr|r=ε = φr|r=R = 0. (4.4)

For the approximate solutions which will possess a lower bound of the density, the bound-
ary conditions (4.4) are equivalent to (ρu,φr)(r, t)|r=ε = 0, (ρu,φr)(r, t)|r=R = 0. Without loss
of generality, it is assumed in this section that the initial data are smooth enough and sat-
isfy the bounds in (3.31) with constants independent of ε.

In the following, we will state the energy and entropy estimates which have been proved
in the preceding section for these approximate solutions.

Lemma 4.1 Let (ρε , uε) be smooth solutions of (4.2)–(4.4) such that ρε > 0. Then there
exists a constant C independent of ε such that

∫ R

ε

ρε(r, t)r2 dr ≤ C, (4.5)

∫ R

ε

{
1
2
ρε

(
uε

)2 +
1

γ – 1
(
ρε

)γ +
1
2
(
φε

r
)2

}

r2 dr

+
∫ T

0

∫ R

ε

{

ρε +
ε

4
(
ρε

) 3
4

}
{(

uε
r
)2r2 + 2

(
uε

)2}dr dt ≤ C, (4.6)

∫ R

ε

{
1
2
ρε

∣
∣
∣
∣u

ε +
(
logρε

)

r +
3
4
ε
(
ρε

)– 5
4 ρε

r

∣
∣
∣
∣

2

+
1
2
(
φε

r
)2 +

1
γ – 1

(
ρε

)γ

}

r2 dr

+
∫ T

0

∫ R

ε

{

γ
(
ρε

)γ –2 +
3
4
εγ

(
ρε

)γ – 9
4

}
∣
∣ρε

r
∣
∣2r2 dr dt

+
∫ T

0

∫ R

ε

{(
ρε – b

)2 + bρε
}

r2 dr dt ≤ C. (4.7)
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To simplify the presentation, we drop the superscript ε in the rest of this section.

Lemma 4.2 Given ε > 0, there is an absolute constant C, which is independent of ε, such
that

0 ≤ ρ(r, t) ≤ C
ε2 , (4.8)

for ε ≤ r ≤ R and t ≥ 0.

Proof Let r(t) denote a particle path satisfying

dr(t)
dt

= u
(
r(t), t

)
. (4.9)

Then along the particle path, (4.2)1 can be solved to get

ρ
(
r(t), t

)
r2(t) =

(
ρ0

(
r(0)

)
+ ε

)
r2(0)e–

∫ t
0 ur (r(s),s) ds, (4.10)

which implies that ρ > 0, provided ρ0 ≥ 0.
Moreover,

∫ R

ε

1
2
ρ

{

(logρ)2
r +

3
2
ερ– 5

4 ρ2
r +

9
16

ε2ρ– 3
2 ρ2

r

}

r2 dr

=
∫ R

ε

1
2
ρ

∣
∣
∣
∣(logρ)r +

3
4
ερ– 5

4 ρr

∣
∣
∣
∣

2

r2 dr

≤
∫ R

ε

1
2
ρ

∣
∣
∣
∣(logρ)r +

3
4
ερ– 5

4 ρr + u
∣
∣
∣
∣

2

r2 dr +
∫ R

ε

1
2
ρurr2 dr

≤ C (4.11)

due to (4.6) and (4.7), then we obtain

∫ R

ε

ρ2
r

ρ
r2 dr ≤ C, (4.12)

for some absolute constant C independent of ε. Then, it follows from (4.5) and (4.12) that,
for ε ≤ r ≤ R,

ρ(r, t) ≤
∫ R

ε

ρ(r, t) dr +
∫ R

ε

∣
∣ρr(r, t)

∣
∣dr

≤ 1
ε2

∫ R

ε

ρ(r, t)r2 dr +
1
ε2

∫ R

ε

√
ρ

|ρr(r, t)|√
ρ

r2 dr

≤ C
ε2 (4.13)

for all t ≥ 0. The lemma is proved. �
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4.2 Approximate system in Lagrangian coordinates and the estimates
To obtain the a priori estimates for the velocity of the approximate solutions, the key point
is to derive lower bounds of the density. To this end, we introduce Lagrangian coordinates
for the radial system (4.2) as follows. Let ε > 0 be fixed and define

x(r, t) =
∫ r

ε

ρr2 dr, τ = t. (4.14)

Set
∫ 1
ε

ρr2 dr = 1 for ε > 0, without loss of generality. Then,

∂x
∂r

= ρr2,
∂x
∂t

= –ρur2,
∂τ

∂r
= 0,

∂τ

∂t
= 1. (4.15)

Then system (4.2) becomes

⎧
⎨

⎩

ρτ + ρ2(r2u)x = 0,

r–2uτ + (ργ )x = {(ρ2 + 3
4ερ

7
4 )(r2u)x}x – (ρ + ερ

3
4 )x

2u
r + x

r4 – gb
r2

(4.16)

for τ > 0 and 0 ≤ x ≤ 1, where gb(x, τ ) := fb(r(x, τ )) = 1
r2(x,τ )

∫ r(x,τ )
ε

b(s)s2 ds. The correspond-
ing initial data and the boundary conditions are

(ρ,ρu,φ)(·, 0) = (ρ0 + ε, m0,φ0), (4.17)

u(0, τ ) = 0, u(1, τ ) = 0. (4.18)

Lemma 4.3 For all τ ∈ [0, T], it holds that

∫ 1

0

(
u2

2
+

ργ –1

γ – 1
+

x
r

+ r
)

dx +
∫ τ

0

∫ 1

0

(
2u2

r2 + ρ2u2
xr4

)

dx ds +
∫ τ

0

∫ 1

0
ε

u2

ρ
1
4 r2

dx ds

+
∫ τ

0

∫ 1

0
ερ

7
4 u2

xr4 dx ds ≤
∫ 1

0

(
u2

0
2

+
ρ

γ –1
0

γ – 1
+

x
r0

+ r0

)

dx, (4.19)

0 ≤ ρ(x, τ ) ≤ C(ε, T), (4.20)

ε ≤ r(x, τ ) ≤ R, (4.21)
∫ 1

0
u4 dx +

∫ τ

0

∫ 1

0

(
4u4

r2 + 6ρ2u2u2
xr4 +

2εu4

ρ
1
4 r2

+ ερ
7
4 u2u2

xr4
)

dx ds

≤
∫ 1

0
u4

0 dx + C(ε, T). (4.22)

Proof Multiplying (4.16)2 by ur2, a direct computation gives

d
dτ

∫ 1

0

(
u2

2
+

ργ –1

γ – 1
+

x
r

+ gbr
)

dx +
∫ 1

0

(

ρ2 +
3
4
ερ

7
4

)(

4
u2

ρ2r2 + 4
uuxr
ρ

+ u2
xr4

)

dx

= 4
∫ 1

0

(
ρ + ερ

3
4
)
uuxr dx + 2

∫ 1

0

(

1 +
ε

ρ
1
4

)
u2

r2 dx. (4.23)
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Using Young inequality, we obtain

d
dτ

∫ 1

0

(
u2

2
+

ργ –1

γ – 1
+

x
r

+ gbr
)

dx +
∫ 1

0

(
2u2

r2 + ρ2u2
xr4

)

dx +
(

1 –
λ

2

)∫ 1

0

εu2

ρ
1
4 r2

dx

+
(

3
4

–
1

2λ

)∫ 1

0
ερ

7
4 u2

xr4 dx ≤ 0, ∀λ ∈
(

2
3

, 2
)

. (4.24)

Since b is a smooth function and satisfies (1.3), there exist constants C1, C2 > 0 such that

C1 ≤ gb(x, τ ) := fb
(
r(x, τ )

)
=

1
r2(x, τ )

∫ r(x,τ )

ε

b(s)s2 ds ≤ C2. (4.25)

Integrating both sides of (4.24) with respect to τ and using (4.25), we can get

∫ 1

0

(
u2

2
+

ργ –1

γ – 1
+

x
r

+ r
)

dx +
∫ τ

0

∫ 1

0

(
2u2

r2 + ρ2u2
xr4

)

dx ds

+
(

1 –
λ

2

)∫ τ

0

∫ 1

0

εu2

ρ
1
4 r2

dx ds +
(

3
4

–
1

2λ

)∫ τ

0

∫ 1

0
ερ

7
4 u2

xr4 dx ds

≤
∫ 1

0

(
u2

0
2

+
(ρ0 + ε)γ –1

γ – 1
+

x
r0

+ r0

)

dx, r0 := r(x, τ = 0),λ ∈
(

2
3

, 2
)

, (4.26)

thus (4.19) holds.
Multiplying (4.16)2 by u3r2, we deduce

1
4

d
dτ

∫ 1

0
u4 dx +

∫ 1

0

(

ρ2 +
3
4
ερ

7
4

)
(
r2u

)2
xu2 dx + 2

∫ 1

0

(

ρ2 +
3
4
ερ

7
4

)
(
r2u

)

xr2u2ux dx

=
∫ 1

0
ργ

(
u3r2)

x dx +
∫ 1

0

(
ρ + ερ

3
4
)(

2ru4)

x dx +
∫ 1

0

(
x
r2 – gb

)

u3 dx, (4.27)

i.e.,

1
4

d
dτ

∫ 1

0
u4 dx +

∫ 1

0

(

3ρ2u2u2
xr4 +

2u4

r2

)

dx +
∫ 1

0

(
9
4
ερ

7
4 u2u2

xr4 +
εu4

ρ
1
4 r2

)

dx

=
∫ 1

0
2ερ

3
4 u3uxr dx +

∫ 1

0

(

ργ –1 2u3

r
+ 3ργ u2uxr2

)

dx

+
∫ 1

0

(
x
r2 – gb

)

u3 dx. (4.28)

Using Hölder and Young inequalities together with Lemma 3.2, we can estimate the
right-hand side of (4.28) as follows:

∫ 1

0
2ερ

3
4 u3uxr dx ≤ 1

2

∫ 1

0

εu4

ρ
1
4 r2

dx + 2
∫ 1

0
ερ

7
4 u2u2

xr4 dx, (4.29)

∫ 1

0
ργ –1 2u3

r
dx ≤ 1

2

∫ 1

0

u4

r2 dx + C
∫ 1

0
ρ4(γ –1)r2 dx

≤ 1
2

∫ 1

0

u4

r2 dx + C(ε), (4.30)
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∫ 1

0
3ργ u2uxr2 dx ≤ 3

2

∫ 1

0
ρ2(γ –1)u2 dx +

3
2

∫ 1

0
ρ2u2u2

xr4 dx

≤ 3
2

(∫ 1

0
ρ4(γ –1)r2 dx

) 1
2
(∫ 1

0

u4

r2 dx
) 1

2
+

3
2

∫ 1

0
ρ2u2u2

xr4 dx

≤ 1
2

∫ 1

0

u4

r2 dx +
3
2

∫ 1

0
ρ2u2u2

xr4 dx + C(ε), (4.31)

∫ 1

0

(
x
r2 – gb

)

u3 dx ≤ C
∫ 1

0
|u|3 dx ≤ C

∫ 1

0
u4 dx. (4.32)

Putting the above estimates (4.29)–(4.32) into (4.28), we easily obtain

d
dτ

∫ 1

0
u4 dx +

∫ 1

0

(
4u4

r2 + 6ρ2u2u2
xr4 +

2εu4

ρ
1
4 r2

+ ερ
7
4 u2u2

xr4
)

dx

≤ C(ε) + C
∫ 1

0
u4 dx. (4.33)

By applying Gronwall’s inequality to (4.33), we have

∫ 1

0
u4 dx ≤ exp

{∫ τ

0
C ds

(∫ τ

0
u4

0 ds +
∫ τ

0
C ds

)}

≤ C(T) + C
∫ 1

0
u4

0 dx. (4.34)

Thus, it is easy to obtain (4.22). The proof of this lemma is completed. �

Lemma 4.4 There is a positive constant C = C(ε, T ,‖u0‖L4 ,‖(ρ
3
4

0 )x‖L4 ) such that

∫ 1

0

((
ρ

3
4
)

x

)4(x, τ ) dx ≤ C, ∀τ ∈ [0, T]. (4.35)

Proof By making use of (4.16), we have

(
ρ + ερ

3
4
)

xτ
= –

{(

ρ2 +
3
4
ερ

7
4

)
(
r2u

)

x

}

x
, (4.36)

then we can rewrite (4.16)2 as follows:

r2(ρ + ερ
3
4
)

xτ
+

(
ρ + ερ

3
4
)

x2ur = –uτ –
(
ργ

)

xr2 +
x
r2 – gb, (4.37)

i.e.,

{
r2(ρ + ερ

3
4
)

x

}

τ
= –uτ –

(
ργ

)

xr2 +
x
r2 – gb, (4.38)

where we have used the fact that ∂r
∂τ

= u.
Integrating (4.38) over [0, t] shows

– u(x, t) + u0(x) –
∫ t

0

(
ργ

)

xr2(x, s) ds +
∫ t

0

(
x
r2 – gb

)

ds

= r2(ρ + ερ
3
4
)

x – r2
0
{
ρ0 + ε + ε(ρ0 + ε)

3
4
}

x

= r2
(

4
3
ρ

1
4 + ε

)

∂x
(
ρ

3
4
)

– r2
0

{
4
3
ρ

1
4

0 + ερ
1
4

0 (ρ0 + ε)– 1
4

}

∂x
(
ρ

3
4

0
)
, (4.39)
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i.e.,

r2
(

4
3
ρ

1
4 + ε

)

∂x
(
ρ

3
4
)

= –u(x, t) + u0(x) –
∫ t

0

(
ργ

)

xr2(x, t) ds

+
∫ t

0

(
x
r2 – g�

)

ds + r2
0

{
4
3
ρ

1
4

0 + ερ
1
4

0 (ρ0 + ε)– 1
4

}

∂x
(
ρ

3
4

0
)
. (4.40)

Multiplying (4.40) by {∂x(ρ 3
4 )r2}3 and integrating over [0, 1] with respect to x, one gets

∫ 1

0

(
4
3
ρ

1
4 + ε

)
{
∂x

(
ρ

3
4
)
r2}4 dx

=
∫ 1

0

{

–u(x, t) + u0(x) –
∫ t

0

(
ργ

)

xr2(x, t) ds

+
∫ t

0

(
x
r2 – g�

)

ds + r2
0

{
4
3
ρ

1
4

0 + ερ
1
4

0 ρ0 + ε)– 1
4

}

∂x
(
ρ

3
4

0
)
}

(4.41)

and

{
∂x

(
ρ

3
4
)
r2}3 dx

≤
{∫ 1

0

(
∂x

(
ρ

3
4
)
r2)4 dx

} 3
4
{
∥
∥–u(x, t) + u0(x)

∥
∥

L4 +
∥
∥
∥
∥

∫ t

0

(
ργ

)

xr2(x, t) ds
∥
∥
∥
∥

L4

+
∥
∥
∥
∥

∫ t

0

(
x
r2 – g�

)

ds
∥
∥
∥
∥

L4
+

∥
∥
∥
∥r2

0

{
4
3
ρ

1
4

0 + ερ
1
4

0 (ρ0 + ε)– 1
4

}

∂x
(
ρ

3
4

0
)
∥
∥
∥
∥

L4

}

≤ C
{∫ 1

0

(
∂x

(
ρ

3
4
)
r2)4 dx

} 3
4
{

C
(
ε, T ,‖u0‖L4 ,

∥
∥∂x

(
ρ

3
4

0
)∥
∥

L4
)

+
∥
∥
∥
∥

∫ t

0

(
ργ

)

xr2(x, t) ds
∥
∥
∥
∥

L4

}

. (4.42)

Using Lemma 4.3 and Young’s inequality, one gets from (4.41) that

ε

∫ 1

0

{
∂x

(
ρ

3
4
)
r2}4 dx

≤ ε

2

∫ 1

0

{
∂x

(
ρ

3
4
)
r2}4 dx + C

∫ t

0

∫ 1

0

(
∂xρ

γ
)4 dx ds

+ C
(
ε, T ,‖u0‖L4 ,

∥
∥∂x

(
ρ

3
4

0
)∥
∥

L4
)
, (4.43)

whence
∫ 1

0

{
∂x

(
ρ

3
4
)
r2}4 dx

≤ C
∫ t

0

∫ 1

0

(
ργ

)4
x(x, t) dx ds + C

(
ε, T ,‖u0‖L4 ,

∥
∥∂x

(
ρ

3
4

0
)∥
∥

L4
)

≤ C
∫ t

0
max
[0,1]

(
ρ4γ –3)

∫ 1

0

[
∂x

(
ρ

3
4
)]4 dx ds + C

(
ε, T ,‖u0‖L4 ,

∥
∥∂x

(
ρ

3
4

0
)∥
∥

L4
)
. (4.44)
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Then we can get

∫ 1

0

{
∂x

(
ρ

3
4
)
r2}4 dx ≤ C, (4.45)

due to Gronwall’s inequality and Lemma 4.2. This completes the proof. �

Lemma 4.5 There is a positive constant C = C(ε, T ,‖u0‖L4 ,‖(ρ
3
4

0 )x‖L4 ) such that

ρ ≥ C, ∀x ∈ [0, 1], τ ∈ [0, T]. (4.46)

Proof Set v(x, t) = 1
ρ(x,t) and V (τ ) = max[0,1]×[0,τ ] v(x, s). Equation (4.16)1 can be rewritten

as vτ = (r2u)x, and then we have

∫ τ

0

∫ 1

0
vs dx ds =

∫ τ

0

∫ 1

0

(
r2u

)

x dx ds, (4.47)

i.e.,

∫ 1

0
v(x, τ ) dx =

∫ 1

0
v0(x) dx =

∫ 1

0

1
ρ0 + ε

dx ≤ C(ε). (4.48)

Using Hölder inequality, Lemma 4.4, and Sobolev’s embedding W 1,1([0, 1]) ↪→ L∞([0, 1])
yields, for any 0 < β < 1,

vβ (x, τ ) ≤
∫ 1

0
vβ (x, τ ) dx +

∫ 1

0

∣
∣∂xvβ (x, τ )

∣
∣dx

≤
(∫ 1

0
v(x, τ ) dx

)β

+
4
3
β

∫ 1

0

∣
∣vβ+ 3

4 ∂x
(
ρ

3
4
)∣
∣dx

≤ C + Cβ

(∫ 1

0

(
vβ+ 3

4
) 4

3 dx
) 3

4
(∫ 1

0

(
∂x

(
ρ

3
4
))4 dx

) 1
4

≤ C + CβV β

(∫ 1

0
v dx

) 3
4
(∫ 1

0

(
∂x

(
ρ

3
4
))4 dx

) 1
4

≤ C + CβV β , (4.49)

where C is a constant depending on ε, T , ‖u0‖L4 , and ‖(ρ
3
4

0 )x‖L4 . Taking the supremum on
both sides of the above inequality and choosing β > 0 small enough, which may depend
on ε and T , we obtain

V β (T) ≤ C
(
ε, T ,‖u0‖L4 ,

∥
∥
(
ρ

3
4

0
)

x

∥
∥

L4
)
. (4.50)

Then we have

ρ(x, τ ) ≥ 1
V (x, t)

≥ C
(
ε, T ,‖u0‖L4 ,

∥
∥
(
ρ

3
4

0
)

x

∥
∥

L4
)
, (4.51)

and so the lemma is proved. �
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5 Proof of the main result
In this section, we will prove Theorem 3.4 by completing the constructions of approximate
solutions and applying the a priori bounds of Sects. 3 and 4 to take appropriate limits.

5.1 Global existence of the approximate solutions
In Sect. 4, we have established the a priori estimates in Lemmas 4.1–4.5. First, we prove
the existence of approximate solutions. For the approximate system (4.16)–(4.18), we first
regularize the initial data as follows. We denote by Jδ the Friedrichs mollifier of width δ.
Let (ρ0 + ε, u0) be the initial data in Eulerian coordinates, where u0 = m0

ρ0+ε
. For simplicity

we still denote by (ρ0 + ε, u0) the extension of (ρ0 + ε, u0), i.e.,

ρ0(r) + ε :=

⎧
⎪⎪⎨

⎪⎪⎩

ρ0(ε) + ε, r ∈ [0, ε],

ρ0(r) + ε, r ∈ (ε, r),

ρ0(R) + ε, r ∈ [R, +∞],

(5.1)

and

u0(r) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, r ∈ [0, ε + 2δ],

u0(r), r ∈ (ε + 2δ, R – 2δ),

0, r ∈ [R – 2δ, R].

(5.2)

Then we mollify (ρ0(r) + ε, u0(r)) above with Jδ to get smooth approximate initial data
denoted by (ρε,δ

0 (r), uε,δ
0 (r)).

Obviously, the resulting data (ρε,δ
0 (r), uε,δ

0 (r)) satisfy hypotheses (3.31) (uniformly
bounded on ε and δ). For any fixed ε > 0, we denote the corresponding initial data in La-
grangian coordinates by (ρδ

0 , uδ
0). Then ρδ

0 ∈ C1+σ [0, 1] and uδ
0 ∈ C2+σ [0, 1] for any 0 < σ < 1.

Moreover, as δ → 0, we have

ρδ
0 → ρ0 + ε in W 1,2([0, 1]

)
, uδ

0 → u0 in L2([0, 1]
)
, (5.3)

furthermore,

uδ
0(0, τ ) = uδ

0(1, τ ) = 0. (5.4)

The short-time existence of a unique classical solution (ρδ , uδ) to the initial bound-
ary value problem (4.16) with the initial data (ρδ

0 , uδ
0) and the boundary condition (5.4)

can be shown by the standard argument as in [18]. By the a priori estimates established
in Lemmas 4.1–4.5 for (ρδ , uδ) and a continuity argument, we show that it is indeed a
global classical solution to (4.16) with the initial data (ρδ

0 , uδ
0) and the boundary condition

(5.4). Then by transforming it into Euler coordinates again, we can obtain the solutions
(ρε,δ(r, t), uε,δ(r, t)) to the approximate system (4.2), and consequently Lemma 4.1 holds
for these approximate solutions.
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5.2 Energy and entropy estimates of the approximate solutions
So far, (ρε,δ , uε,δ) are defined on ε ≤ r ≤ R. To take the limit as {εj, δj} → 0, we extend
ρεj ,δj (r, t), uεj ,δj (r, t) to the whole domain Ω in the following way:

ρ̃εj ,δj =

⎧
⎨

⎩

ρεj ,δj (r, t), r ∈ [εj, R],

ρεj ,δj (εj, t), r ∈ [0, εj],
(5.5)

ũεj ,δj =

⎧
⎨

⎩

uεj ,δj (r, t), r ∈ [εj, R],

0, r ∈ [0, εj],
(5.6)

and keep denoting the so-obtained approximate solutions {ρ̃εj ,δj , ũεj ,δj} by {ρεj ,δj , uεj ,δj}. Let
ρεj ,δj (x, t) = ρεj ,δj (r, t), Uεj ,δj (x, t) = uεj ,δj (r, t) x

r . For simplicity, we write (ρ j, Uj) instead of
(ρεj ,δj , Uεj ,δj ) and denote Ωε = Ω \ Bε(0) for ε > 0 and Ω 1

n
= Ω \ B 1

n
(0) for n ∈ N , where N

is the set of the positive integers. It then follows directly from Lemma 3.1 that

Lemma 5.1 Let (ρ j, Uj)(x, t) be the approximate solutions of (3.1)–(3.3) constructed above.
Then there exists a constant C independent of ε such that

sup
t∈[0,T]

∫

Ωεj

ρ j(x, t) dx ≤ C, (5.7)

sup
t∈[0,T]

∫

Ωεj

{
1
2
ρ j∣∣Uj∣∣2 +

∣
∣∇φj∣∣2 +

1
γ – 1

(
ρ j)γ

}

dx +
∫ T

0

∫

Ωεj

ρ j∣∣∇Uj∣∣2 dx dt

+
1
4

∫ T

0

∫

Ωεj

εj
(
ρ j) 3

4
∣
∣∇Uj∣∣2 dx dt ≤ C, (5.8)

sup
t∈[0,T]

∫

Ωεj

1
2
ρ j

∣
∣
∣
∣U

j + ∇ logρ j +
3
4
εj

(
ρ j)– 5

4 ∇ρ j
∣
∣
∣
∣

2

dx

+
∫ T

0

∫

Ωεj

{
1
2
∣
∣∇φj∣∣2 +

1
γ – 1

(
ρ j)γ

}

dx dt

+
∫ T

0

∫

Ωεj

4
γ

∣
∣∇(

ρ j)
γ
2
∣
∣2 dx dt +

∫ T

0

∫

Ωεj

48εγ

(4γ – 1)2

∣
∣∇(

ρ j)
4γ –1

8
∣
∣2 dx dt ≤ C. (5.9)

Moreover, the following uniform estimates hold:

sup
t∈[0,T]

∥
∥
√

ρ j
∥
∥

H1(Ω) ≤ C, (5.10)

sup
t∈[0,T]

∫

Ω

ρ j∣∣Uj∣∣2 dx ≤ C. (5.11)

Proof Inequalities (5.7)–(5.9) follow directly from Lemma 4.1. It suffices to prove (5.10)
and (5.11).

Note that

sup
t∈[0,T]

∥
∥
√

ρ j
∥
∥2

L2(Ω) ≤ sup
t∈[0,T]

∫ εj

0
ρ jr2 dr + sup

t∈[0,T]

∫ R

εj

ρ jr2 dr
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≤ C
ε2

∫ εj

0
r2 dr + C

≤ C, (5.12)

due to Lemma 4.1 and Lemma 4.2.
Equation (5.5) gives

∇
√

ρ j(x, t) = 0, x ∈ B̄j. (5.13)

Thus, using (4.12) and (5.13) yields

sup
t∈[0,T]

∥
∥∇

√
ρ j

∥
∥2

L2(Ω) = sup
t∈[0,T]

∫

Ωεj

(
1
2

∇ρ j
√

ρ j

)2

dx

= sup
t∈[0,T]

1
4

∫ R

εj

(ρ j
r)2

ρ j r2 dr

≤ C, (5.14)

therefore, combining (5.12) and (5.14), we obtain (5.10).
Using (5.6) and (5.8) yields

sup
t∈[0,T]

∫

Ω

ρ j∣∣Uj∣∣2 dx ≤ sup
t∈[0,T]

∫

Ωεj

ρ j∣∣Uj∣∣2 dx ≤ C, (5.15)

and so the proof of the lemma is completed. �

5.3 Passage to the limit
Proposition 5.2 There exists a sequence (εj, δj) and a limiting function ρ(x, t) such that,
up to a subsequence, as j → ∞ we have

√
ρ j(x, t) → √

ρ(x, t) a.e. and strongly in L2(0, T ; L2(Ω)
)
, (5.16)

and

ρ j(x, t) → ρ(x, t) strongly in C
(
[0, T], L

3
2 (Ω)

)
. (5.17)

Moreover, ρ(x, t) = ρ(r, t) is a spherically symmetric function.

Proof Equation (5.10) shows that
√

ρ j is bounded in L∞(0, T ; H1(Ω)). Next we notice that

∂t
√

ρ j = –
1
2
√

ρ j div uj – uj · ∇
√

ρ j =
1
2
√

ρ j div uj – div
(
uj

√
ρ j

)
. (5.18)

Therefore, ∂t
√

ρ j is bounded in L∞(0, T ; H–1(Ω)) due to Lemma 5.1. Thus (5.16) holds.
Using (5.5), (5.6) and Hölder inequality yields

∥
∥ρ jUj∥∥

3
2

L∞(L
3
2 )

≤ sup
t∈[0,T]

{∫

Ω

(
ρ j)3 dx

} 1
4
{∫

Ω

(√
ρ jUj)2 dx

} 3
4 ≤ C, (5.19)
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from which, combining with the fact that ρ
j
t = – div(ρ jUj), we have

∥
∥ρ

j
t
∥
∥

L∞(0,T ;W –1, 3
2 (Ω))

≤ C. (5.20)

By a similar method, we deduce

∥
∥∇ρ j∥∥

3
2

L∞(L
3
2 )

= 2
∫

Ω

√
ρ j

3
2 (∇

√
ρ j

) 3
2 dx

≤ 2
(∫

Ω

(
ρ j)3 dx

) 1
4
(∫

Ω

(∇
√

ρ j
)2 dx

) 3
4

≤ C. (5.21)

It follows from (5.10) and (5.21) that

∥
∥ρ j∥∥

L∞(0,T ;W 1, 3
2 (Ω))

≤ C, (5.22)

which combined with (5.20) yields

{
ρ j}∞

j=1 is precompact in C
(
[0, T]; W 1, 3

2 – w
)
. (5.23)

Thus, we get

ρ j(x, t) → ρ(x, t) strongly in C
(
[0, T], L

3
2 (Ω)

)
, (5.24)

since W 1, 3
2 (Ω) ↪→↪→ L 3

2 (Ω). The proof of this proposition is completed. �

Proposition 5.3 Suppose 1 < γ < 3. Then (ρ j)γ converges to ργ in L1((0, T), L1(Ω)).

Proof It follows from the fact that ‖ρ j‖L∞(L3(Ω)) is bounded and ρ j(x, t) → ρ(x, t) strongly
in L∞([0, T]; L 3

2 (Ω)) that

ρ j(x, t) −→ ρ(x, t) strongly in L∞(
[0, T]; Lp(Ω)

)
,

3
2

≤ p < 3. (5.25)

Since Ω is bounded,

ρ j(x, t) −→ ρ(x, t) strongly in L∞(
[0, T]; Lγ (Ω)

)
, 1 < γ < 3. (5.26)

Applying Hölder inequality and (5.26), we have

∫

Ω

∣
∣
(
ρ j)γ – ργ

∣
∣dx ≤

∫

Ω

∣
∣
(
ρ j – ρ

)
max

{(
ρ j)γ –1,ργ –1}∣∣dx

≤
(∫

Ω

∣
∣ρ j – ρ

∣
∣γ dx

) 1
γ
(∫

Ω

max
{(

ρ j)γ –1,ργ –1}
γ

γ –1 dx
) γ –1

γ

→ 0, as j → ∞, (5.27)

i.e., (ρ j)γ → ργ strongly in L∞(L1(Ω)). This proves the proposition. �
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Lemma 5.4 The pressure (ρ j)γ is bounded in L 5
3 ((0, T), L 5

3 (Ωεj )).

Proof Lemma 5.1 shows that

(
ρ j)γ /2 ∈ L2(0, T ; H1(Ωεj)

)
and

(
ρ j)γ ∈ L1(0, T ; L3(Ωεj)

)
.

Since (ρ j)γ is bounded in L∞(0, T ; L1(Ωεj)) by (5.8), using Hölder inequality, we have

∥
∥
(
ρ j)γ ∥

∥5/3
L5/3(L5/3(Ωεj))

≤
∫ T

0

(∫

Ωεj

(
ρ j)γ dx

) 2
3
(∫

Ωεj

(
ρ j)3γ dx

) 1
3

dt

≤ ∥
∥
(
ρ j)γ ∥

∥
2
3
L∞(L1(Ωεj))

∥
∥
(
ρ j)γ ∥

∥
L1(L3(Ωεj))

≤ C, (5.28)

where C is independent of εj. The proof of the lemma is completed. �

Proposition 5.5 If 1 < γ < 3 and
∫ R

0 ρ0|u0|2r2 dr ≤ C, then the following inequality holds:

∫ R

εj

ρ j |uj|2+η

2 + η
r2 dr +

∫ t

0

∫ R

εj

(
3
4
ρ j +

εj

8
(
ρ j) 3

4

)
∣
∣uj∣∣η

(
uj

r
)2r2 dr dt

+
∫ t

0

∫ R

εj

(
7
4
ρ j +

3εj

8
(
ρ j) 3

4

)
∣
∣uj∣∣η+2 dr dt ≤ C (5.29)

for small η ∈ (0, 1) and C being a constant independent of εj.

Proof Letting 0 < η < 1
2 , multiplying (4.2)2 by r2uj|uj|η , then integrating the resulting equa-

tion, one gets

∫ R

εj

ρ juj
tuj∣∣uj∣∣ηr2 dr +

∫ R

εj
ρ

j
t
∣
∣uj∣∣2+ηr2 dr +

∫ R

εj

(
ρ j(uj)2 +

(
ρ j)γ )

ruj∣∣uj∣∣ηr2 dr

+
∫ R

εj

2ρ juj∣∣uj∣∣2+ηr dr +
∫ R

εj

2
∣
∣uj∣∣2+η(

ρ j + εj
(
ρ j) 3

4
)

rr dr

=
∫ R

εj

{(

ρ j +
3
4
εj

(
ρ j) 3

4

)(

uj
r +

2uj

r

)}

r
uj∣∣uj∣∣ηr2 dr +

∫ R

εj

ρ jφj
ruj∣∣uj∣∣ηr2 dr. (5.30)

With the help of (4.2)1 and integration by parts, we deduce

∫ R

εj

ρ j∂t

( |uj|2+η

2 + η

)

r2 dr +
∫ R

εj

ρ juj∂r

( |uj|2+η

2 + η

)

r2 dr +
∫ R

εj

((
ρ j)γ )

ruj∣∣uj∣∣ηr2 dr

+ (1 + η)
∫ R

εj

(

ρ j +
3
4
εj

(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr +

∫ R

εj

(
2ρ j + εj

(
ρ j) 3

4
)∣
∣uj∣∣2+η dr

=
(

1 +
η

2

)∫ R

εj

εj
(
ρ j) 3

4 uj∣∣uj∣∣ηuj
rr dr +

∫ R

εj

ρ jφj
ruj∣∣uj∣∣ηr2 dr. (5.31)
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Then using Cauchy inequality gives

∫ R

εj

ρ j∂t

( |uj|2+η

2 + η

)

r2 dr +
∫ R

εj

ρ juj∂r

( |uj|2+η

2 + η

)

r2 dr +
∫ R

εj

((
ρ j)γ )

ruj∣∣uj∣∣ηr2 dr

+
∫ R

εj

(

ρ j +
εj

8
(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr +

∫ R

εj

(

2ρ j +
3
8
εj

(
ρ j) 3

4

)
∣
∣uj∣∣2+η dr

≤
∫ R

εj

ρ jφj
ruj∣∣uj∣∣ηr2 dr. (5.32)

Multiplying (4.2)1 by r2|uj|2+η

2+η
and integrating by parts yields

∫ R

εj

|uj|2+η

2 + η
ρ

j
tr2 dr –

∫ R

εj

ρ juj
( |uj|2+η

2 + η

)

r
r2 dr = 0. (5.33)

Adding the last two inequalities gives

d
dt

∫ R

εj

|uj|2+η

2 + η
ρ jr2 dr +

∫ R

εj

(

ρ j +
1
8
εj

(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr

+
∫ R

εj

{

2ρ j +
3
8
εj

(
ρ j) 3

4

}
∣
∣uj∣∣2+η dr

≤
∣
∣
∣
∣

∫ R

εj

[(
ρ j)γ ]

ruj∣∣uj∣∣ηr2 dr
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ R

εj

ρ jφj
ruj∣∣uj∣∣ηr2 dr

∣
∣
∣
∣. (5.34)

It follows from Hölder and Young inequalities that the first term on the right-hand side
of (5.34) is estimated as follows:

∣
∣
∣
∣

∫ R

εj

[(
ρ j)γ ]

ruj∣∣uj∣∣ηr2 dr
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫ R

εj

(
ρ j)γ (

uj∣∣uj∣∣ηr2)

r dr
∣
∣
∣
∣

≤ (1 + η)
(∫ R

εj

ρ j∣∣uj∣∣η
∣
∣uj

r
∣
∣2r2 dr

) 1
2
(∫ R

εj

(
ρ j)2γ –1∣∣uj∣∣ηr2 dr

) 1
2

+ 2
∫ R

εj

∣
∣uj∣∣η+1(

ρ j)γ r dr

≤ 1
4

∫ R

εj

ρ j∣∣uj∣∣η
∣
∣uj

r
∣
∣2r2 dr + C

∫ R

εj

(
ρ j)2γ –1∣∣uj∣∣ηr2 dr

+ 2
∫ R

εj

∣
∣uj∣∣η+1(

ρ j)γ r dr, (5.35)

where constant C > 0 is independent of εj.
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Now it remains to bound the last two terms on the right-hand side of (5.35). Using
Lemma 5.1 and Hölder inequality yields

∫ R

εj

(
ρ j)2γ –1∣∣uj∣∣ηr2 dr ≤

(∫ R

εj

ρ j∣∣uj∣∣2r2 dr
) η

2
(∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr

) 2–η
2

≤ C
∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr + C, (5.36)

∫ R

εj

∣
∣uj∣∣η+1(

ρ j)γ r dr ≤
(∫ R

εj

ρ j∣∣uj∣∣η+2 dr
) 1+η

2+η
(∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2+η dr
) 1

2+η

≤ 1
4

∫ R

εj

ρ j∣∣uj∣∣η+2 dr + C(R)
∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2 dr. (5.37)

Substituting the above two estimates into (5.35) yields

∣
∣
∣
∣

∫ R

εj

((
ρ j)γ )

ruj∣∣uj∣∣ηr2 dr
∣
∣
∣
∣

≤ 1
4

∫ R

εj

ρ j∣∣uj∣∣η
∣
∣uj

r
∣
∣2r2 dr + C

∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr +

1
4

∫ R

εj

ρ j∣∣uj∣∣η+2 dr

+ C
∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2 dr + C. (5.38)

Then using Hölder and Young inequalities, as well as the fact

∫

Ωεj

∣
∣∇φj∣∣3+ 3

2 η dx ≤ C, when 0 < η <
1
2

, (5.39)

which will be proved later, the second term on the right-hand side of (5.34) can be esti-
mated as follows:

∣
∣
∣
∣

∫ R

εj

ρ jφj
ruj∣∣uj∣∣ηr2 dr

∣
∣
∣
∣

≤
∫

Ωεj

ρ j∣∣∇φj∣∣
∣
∣Uj∣∣η+1 dx

≤ C
∫

Ωεj

ρ j∣∣Uj∣∣η+2 dx + C
∫

Ωεj

∣
∣∇φj∣∣η+2

ρ j dx

≤ C
∫

Ωεj

ρ j∣∣Uj∣∣η+2 dx + C
(∫

Ωεj

∣
∣∇φj∣∣3+ 3

2 η dx
) 2

3
(∫

Ωεj

(
ρ j)3 dx

) 1
3

≤ C + C
∫

Ωεj

ρ j∣∣Uj∣∣η+2 dx

= C + C
∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr. (5.40)
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Now we give the proof of (5.39). Lemma 5.1 shows that ρ j is bounded in L∞(L3(Ω)).
Using the regularity theory of elliptic equations, we have

∥
∥φj∥∥

H2(Ωεj ) ≤ C
(∥
∥φj∥∥

H1(Ωεj ) +
∥
∥ρ j – b

∥
∥

L2(Ωεj )

)
. (5.41)

It follows from Hardy–Littlewood–Sobolev embedding theorem that

∥
∥φj∥∥

Lp′ (Ωεj ) ≤ C
(
q′)∥∥ρ j – b

∥
∥

Lq′ (Ωεj ), (5.42)

where 1
q′ = 1

p′ + 2
3 . Letting p′ = 2 in (5.42), we get q′ = 7

6 . Obviously, ‖ρ j – b‖
L

7
6 (Ωεj )

≤ C,

which means that

∥
∥φj∥∥

L2(Ωεj ) ≤ C, (5.43)

so, combining with (5.8), one gets

∥
∥φj∥∥

H1(Ωεj ) ≤ C. (5.44)

Returning to (5.41), we obtain

∥
∥φj∥∥

H2(Ωεj ) ≤ C, (5.45)

which implies that (5.39) holds.
Substituting (5.38) and (5.40) into (5.34), we have

d
dt

∫ R

εj

|uj|2+η

2 + η
ρ jr2 dr +

∫ R

εj

(
3
4
ρ j +

1
8
εj

(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr

+
∫ R

εj

(
7
4
ρ j +

3
8
εj

(
ρ j) 3

4

)
∣
∣uj∣∣2+η dr

≤ C
∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr + C

∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2 dr

+ C
∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr + C. (5.46)

Integrating both sides of (5.46) with respect to t yields

∫ R

εj

|uj|2+η

2 + η
ρ jr2 dr +

∫ t

0

∫ R

εj

(
3
4
ρ j +

1
8
εj

(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr dt

+
∫ t

0

∫ R

εj

(
7
4
ρ j +

3
8
εj

(
ρ j) 3

4

)
∣
∣uj∣∣2+η dr dt

≤ C
∫ t

0

∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr dt + C

∫ t

0

∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2 dr dt

+ C
∫ t

0

∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr dt + C(T). (5.47)
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It follows from Lemma 5.4 that (ρ j)γ is bounded in L 5
3 ((0, T); L 5

3 (Ωεj )), thus the first and
second terms on the right-hand side of (5.47) are bounded when the following inequalities
both hold:

2
2 – η

(

2γ – 1 –
η

2

)

≤ 5
3
γ ,

(

γ –
1 + η

2 + η

)

(2 + η) ≤ 5
3
γ , (5.48)

which it means that

∫ t

0

∫ R

εj

(
ρ j) 2

2–η (2γ –1– η
2 )r2 dr dt ≤ C and

∫ t

0

∫ R

εj

(
ρ j)(γ – 1+η

2+η )(2+η)r2 dr dt ≤ C (5.49)

hold, provided that 1 < γ < 3.
Combining all the arguments above, we obtain

∫ R

εj

|uj|2+η

2 + η
ρ jr2 dr +

∫ t

0

∫ R

εj

(
3
4
ρ j +

1
8
εj

(
ρ j) 3

4

)
(
uj

r
)2∣∣uj∣∣ηr2 dr dt

+
∫ t

0

∫ R

εj

(
7
4
ρ j +

3
8
εj

(
ρ j) 3

4

)
∣
∣uj∣∣2+η dr dt

≤ C
∫ t

0

∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr dt + C(T). (5.50)

An application of Gronwall’s inequality to (5.50) yields immediately that

∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr ≤ C(T), (5.51)

hence

∫ t

0

∫ R

εj

ρ j∣∣uj∣∣η+2r2 dr dt ≤ C(T). (5.52)

The proof of this proposition is completed. �

Lemma 5.6 If 1 < γ < 3, then
√

ρ jUj is bounded in L∞(0, T ; L2+2ξ (Ω)) for some small ξ > 0.

Proof It follows from (5.6) and (5.29) that

∫

Ω

ρ j |uj|2+η

2 + η
dx ≤ C, (5.53)

hence

∫

Ω

(
ρ j∣∣Uj∣∣2)1+ξ dx ≤

(∫

Ω

ρ j∣∣Uj∣∣2+η dx
) 2+2ξ

2+η
(∫

Ω

(
ρ j)1+ (2+η)ξ

η–2ξ dx
) η–2ξ

2+η

≤ C
(∫

Ω

(
ρ j)1+ (2+η)ξ

η–2ξ dx
) η–2ξ

2+η

. (5.54)
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Equation (5.10) implies that ρ j ∈ L∞(L3(Ω)). Now letting 1 + (2+η)ξ
η–2ξ

≤ 3, we get

∫

Ω

(
ρ j)1+ (2+η)ξ

η–2ξ dx ≤ C, (5.55)

whenever 0 < ξ ≤ 2η

6+η
, i.e., the lemma is proved. �

Proposition 5.7
(1) Up to a subsequence, mj = ρ jUj converges strongly in L2((0, T); L1+β (Ω 1

n
)) and almost

everywhere to some m(x, t) for any positive integer n and some 0 < β < ξ .
(2)

√
ρ jUj converges strongly in L2((0, T) × Ω 1

n
) and almost everywhere to m√

ρ
(defined

to be zero when m = 0) for any positive integer n. In particular, m(x, t) = 0 a.e. on
{ρ(x, t) = 0}, and there exists a function U(x, t) such that

m(x, t) = ρ(x, t)U(x, t).

Proof (1) It can be easily obtained that

ρ jUj =
√

ρ j
√

ρ jUj ∈ L∞(
L

3
2 (Ωεj )

)
, (5.56)

due to Lemma 5.1 and Hölder inequality.
Furthermore, since ∇(ρ jUj) =

√
ρ j

√
ρ j∇Uj + 2

√
ρ jUj∇√

ρ j, for any 0 < β < ξ , we have

√
ρ j

√
ρ j∇Uj ∈ L2(L

3
2 (Ωεj )

)
(5.57)

and

√
ρ jUj∇

√
ρ j ∈ L∞(L1+β (Ω), (5.58)

due to Lemmas 5.1, 5.6 and Hölder inequality. Hence, we get

∇(
ρ jUj) ∈ L2(L1+β (Ωεj )

)
. (5.59)

Equations (5.56) and (5.59) show that

ρ jUj ∈ L2(W 1,1+β(Ωεj )
)
. (5.60)

Moreover,

(
ρ jUj)

t = ρ j∇Φ j – div
(
ρ jUj ⊗ Uj) + div

((
ρ j + εj

(
ρ j) 3

4
)∇Uj)

– ∇
(

εj

4
(
ρ j) 3

4 div Uj
)

– ∇(
ρ j)γ . (5.61)

Lemma 5.1 and (5.45) imply that

ρ j∇Φ j ∈ L∞(
L2(Ωεj )

)
↪→ L∞(

W –1,1+β(Ωεj )
)
. (5.62)
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Lemma 5.6 gives that
√

ρ jUj ⊗ √
ρ jUj ∈ L∞(0, T ; L1+ξ (Ω)). Thus we get div(

√
ρ jUj ⊗

√
ρ jUj) ∈ L∞(W –1,1+ξ (Ωεj )) ↪→ L∞(W –1,1+β(Ωεj )) (when β < ξ ).
Next we check that div((ρ j + εj(ρ j) 3

4 )∇Uj) and ∇(εj(ρ j) 3
4 div Uj) are uniformly bounded

in L2(W –1,1+β(Ωεj )).
Due to (5.57) and the fact

(
ρ j) 3

4 ∇Uj =
(
ρ j) 1

4
√

ρ j∇Uj ∈ L2(L
3
2 (Ωεj )

)
, (5.63)

we deduce

div
((

ρ j + εj
(
ρ j) 3

4
)∇Uj) ∈ L2(W –1, 3

2 (Ωεj )
)
↪→ L2(W –1,1+β(Ωεj )

)
. (5.64)

Similarly, we have

∇
(

3
4
(
ρ j) 3

4 div Uj
)

∈ L2(W –1,1+β(Ωεj )
)
. (5.65)

It follows from Lemma 5.4 that ∇(ρ j)γ ∈ L 5
3 (W –1, 5

3 (Ωεj )). Returning to (5.61), we can
get

(
ρ jUj)

t ∈ L
5
3
(
W –1,1+β(Ωεj )

)
. (5.66)

Furthermore, W 1,1+β(Ωεj ) ↪→↪→ L1+β (Ωεj ) ↪→ W –1,1+β(Ωεj ). So according to Lions–
Aubin’s Lemma, we obtain the compactness of mj = ρ jUj in L2(0, T ; L1+β (Ω 1

n
)) for all

n ∈ N+, i.e., there exists a function m(x, t) such that for any positive integer n and some
0 < β < ξ , it holds that

mj = ρ jUj → m strongly in L2(0, T ; L1+β (Ω 1
n

)
)
. (5.67)

(2) From the proof of (1), if we define m2

ρ
to be zero when m = 0, we have m(x, t) = 0 a.e.

whenever ρ(x, t) = 0. Since mj√
ρj

is uniformly bounded in L∞(0, T ; L2(Ωεj )) and hence in

L∞(0, T ; L2(Ω 1
n

)) for any n ∈ N satisfying εj ≤ 1
n , by Fatou’s Lemma, we have

∫

Ω 1
n

m2

ρ
dx ≤ C. (5.68)

Now we fix n ∈ N and denote the set of vacuum by L := {x ∈ Ω 1
n

| ρ(x, t) = 0}. Note that
√

ρ jUj converges almost everywhere to m√
ρ

in the region Lc = {x ∈ Ω 1
n

| ρ(x, t) �= 0}. To

control
√

ρ jUj in the vacuum set, one sets N j := {x ∈ Ω 1
n

| (ρ j) 1
2+α |Uj| ≥ M} for M > 0 and

small α > 0 to be specified later.
Consider

∫ T

0

∫

Ω 1
n

∣
∣
∣
∣

√
ρ jUj –

m√
ρ

∣
∣
∣
∣

2

dx dt

=
∫ T

0

∫

(N j)c\L

∣
∣
∣
∣

√
ρ jUj –

m√
ρ

∣
∣
∣
∣

2

dx dt +
∫ T

0

∫

(N j)c∩L

∣
∣
∣
∣

√
ρ jUj –

m√
ρ

∣
∣
∣
∣

2

dx dt
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+
∫ T

0

∫

N j

∣
∣
∣
∣

√
ρ jUj –

m√
ρ

∣
∣
∣
∣

2

dx dt

=: I1 + I2 + I3. (5.69)

For the first term I1 in (5.69), we note that in {ρ(x, t) �= 0},
√

ρ jUj converges almost every-
where to m√

ρ
, and Lemma 5.6 shows that ‖√ρ

jUj‖L∞(L2+2ξ (Ω 1
n

)) ≤ C. By Egorov’s theorem,
we have

√
ρ jUj → m√

ρ
strongly in L2(L2(Ω 1

n
)
)
, (5.70)

which means that I1 → 0 as j → ∞.
For the third term I3, Tchebychev’s inequality yields |N j| ≤ C

M2 , and thus

I3 =
∫ T

0

∫

N j

∣
∣
∣
∣
√

ρ
jUj –

m√
ρ

∣
∣
∣
∣

2

dx dt

≤
∫ T

0

(∫

N j

∣
∣
∣
∣
√

ρ
jUj –

m√
ρ

∣
∣
∣
∣

2+2ξ

dx
) 1

1+ξ
(∫

N j
dx

) ξ
1+ξ

dt

≤ C(T)
(

∥
∥√

ρ
jUj∥∥

L∞(L2+ξ (N j)) +
∥
∥
∥
∥

m√
ρ

∥
∥
∥
∥

L∞(L2+ξ (N j))

)
∣
∣N j∣∣

ξ
1+ξ

≤ C

M
2ξ

1+ξ

→ 0 as M = M(j) → ∞ (as j → ∞). (5.71)

For the second term I2, the definition of N j implies that

√
ρ jUj =

(
ρ j) 1

2+α Uj(ρ j) 1
2 – 1

2+α < M
(
ρ j) 1

2 – 1
2+η → 0 a.e., (5.72)

when 1
2 – 1

2+α
> 0. That is,

√
ρ jUj → 0 a.e. in (N j)c ∩L. Using Egorov’s theorem yields

√
ρ jUj → 0 strongly in L2(L2((N j)c ∩L

))
, (5.73)

which means

I2 =
∫ T

0

∫

(N j)c∩L

∣
∣
√

ρ jUj∣∣2 dx dt → 0 as j → ∞. (5.74)

Combining all the arguments above and using the diagonal principle, we obtain that
√

ρ jUj converges strongly in L2((0, T) × Ω 1
n

) to m√
ρ

for any positive integer n. The proof
of this proposition is completed. �

The following lemma can be directly obtained from Propositions 5.2 and 5.7; the details
here are omitted.

Lemma 5.8 Let mj(r, t) = ρ j(r, t)uj(r, t). Then
(1) There exists a function m(r, t) such that m(x, t) = m(r, t) x

r and mj(r, t) = ρ j(r, t)uj(r, t)
converges to m(r, t) strongly in L2(0, T ; L1+β

loc ((0, R); r2 dr)).
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(2) There exists a function u(r, t) such that U(x, t) = u(r, t) x
r and the quantity

√
ρ juj

converges strongly in L2(0, T ; L2
loc((0, R); r2 dr)) to m√

ρ
(defined to be zero when m = 0).

Moreover, m(r, t) = ρu(r, t).

The following two propositions can be proved in a similar way as in [12], for the readers’
convenience, we still give the detailed process.

Proposition 5.9 Let (ρ, U) be the limit described as in Propositions 5.2, 5.3, 5.5 and 5.7,
then (3.27) holds. Moreover, ρ ∈ C([0,∞); W 1,∞(Ω)∗), where W 1,∞(Ω)∗ is the dual space
of W 1,∞(Ω).

Proof Firstly, we derive the weak form of (4.2)1. For any ϕ(r, t) ∈ C1([0, R] × [t1, t2]), it
follows from (4.2) that

∫ R

εj

ρ jϕr2 dr
∣
∣
∣
∣

t1

t1

–
∫ t1

t1

∫ R

εj

(
ρ jϕt + ρ jujϕr

)
r2 dr dt = 0, (5.75)

then by (5.5) and (5.6), we obtain

∫ R

0
ρ jϕr2 dr

∣
∣
∣
∣

t1

t1

–
∫ t1

t1

∫ R

0

(
ρ jϕt + ρ jujϕr

)
r2 dr dt

=
∫ εj

0
ρ jϕr2 dr

∣
∣
∣
∣

t1

t1

–
∫ t1

t1

∫ εj

0
ρ jϕtr2 dr dt. (5.76)

It can be easily obtained due to Proposition 5.2 that

∫ R

0
ρ jϕr2 dr

∣
∣
∣
∣

t1

t1

→
∫ R

0
ρϕr2 dr

∣
∣
∣
∣

t1

t1

, (5.77)

∫ t1

t1

∫ R

0
ρ jϕtr2 dr dt →

∫ t1

t1

∫ R

0
ρϕtr2 dr dt. (5.78)

Furthermore, (5.10) implies that
√

ρ j is bounded in L∞(Lq(Ω)), q ∈ [2, 6], and Proposi-
tion 5.2 tells that

√
ρ j → √

ρ a.e., thus by Egorov’s theorem, we have

√
ρ j → √

ρ strongly in L2(0, T ; L2((0, R); r2 dr
))

. (5.79)

By a similar method, Lemma 5.6, part (1) of Proposition 5.7, and Egorov’s theorem show
that

√
ρ juj → √

ρu strongly in L2(0, T ; L2((0, R); r2 dr
))

. (5.80)

Equations (5.79) and (5.80) show that

∫ t1

t1

∫ R

0
ρ jujϕrr2 dr dt →

∫ t1

t1

∫ R

0
ρuϕrr2 dr dt. (5.81)
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Now we prove that the right-hand side of (5.76) tends to zero as j → ∞. Indeed,

∫ εj

0
ρ jϕr2 dr ≤ C

(∫ εj

0

(
ρ j) 3

2 r2 dr
) 2

3
(

εj

3

) 1
3 ≤ Cε

1
3

j → 0 as j → ∞. (5.82)

Similarly,

∫ t1

t1

∫ εj

0
ρ jϕtr2 dr dt → 0 as j → ∞. (5.83)

Therefore, we have proved that the weak form of (3.5)1 is as follows:

∫ R

0
ρϕr2 dr

∣
∣
∣
∣

t2

t1

=
∫ t2

t1

∫ R

0
(ρϕt + ρuϕr)r2 dr dt. (5.84)

Now let ψ : Ω̄ × [t1, t2] → R be any C1 function. Define ϕ(r, t) :=
∫

S ψ(ry, t) dSy, where
the integral is over the unit sphere S = S2 in R3. Then

∫ R

0
ρ(r, t)ϕ(r, t)r2 dr =

∫ R

0

∫

S
ρ(r, t)ψ(ry, t)r2 dSy dr

=
∫

Ω

ρ(x, t)ψ(x, t) dx. (5.85)

Similarly,

∫ t2

t1

∫ R

0
ρ(r, t)ϕt(r, t)r2 dr dt =

∫ t2

t1

∫

Ω

ρψt(x, t) dx dt (5.86)

and

∫ t2

t1

∫ R

0
ρuϕrr2 dr dt =

∫ t2

t1

∫

Ω

ρ(x, t)U(x, t) · ∇ψ(x, t) dx dt. (5.87)

It follows from (5.85)–(5.87) that

∫

Ω

ρψ dx
∣
∣
∣
∣

t2

t1

=
∫ t2

t1

∫

Ω

(ρψt + ρU · ∇ψ) dx dt, (5.88)

which establishes the weak form of the mass equation, i.e., (3.27) holds.
Now we prove that ρ ∈ C([0,∞); W 1,∞(Ω)∗). If ζ is a C1 function of x, then by the con-

tinuity equation, we have

∣
∣
∣
∣

∫

Ω

ρζ dx
∣
∣
∣
∣

t2

t1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t2

t1

∫

Ω

ρ(x, t)U(x, t) · ∇ζ (x, t) dx dt
∣
∣
∣
∣

≤ ‖∇ζ‖L∞
∫ t2

t1

(∫

Ω

ρ dx
) 1

2
(∫

Ω

ρU2 dx
) 1

2
dt

≤ C(T)‖∇ζ‖L∞|t2 – t1|. (5.89)
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By the density argument, we can extend this to functions ζ ∈ W 1,∞(Ω), so that

∥
∥ρ(·, t2) – ρ(·, t1)

∥
∥

W 1,∞(Ω)∗ = sup
‖ζ‖W 1,∞ =1

∣
∣
∣
∣

∫

Ω

ρφ̃ dx
∣
∣
∣
∣

t2

t1

∣
∣
∣
∣ ≤ C(T)|t2 – t1| (5.90)

for t1, t2 ∈ [0, T]. The proof of this proposition is completed. �

In the following, we prove that (ρ, U) satisfies the weak form of the momentum equation
(3.1)2, and (ρ,Φ) satisfies the Poisson equation a.e., that is, (3.28) and (3.30) hold.

Proposition 5.10 Let (ρ, U) be the limit described as in Propositions 5.2, 5.3, 5.5, and 5.7,
then (3.28) and (3.30) hold.

Proof Let ϕ be a C2 function on [0, R] × [0, T] with ϕ(0, t) = ϕ(R, t) = 0 for all t ∈ [0, T],
and ϕ(r, T) = 0. Then using (4.2)2 and integration by parts yields

∫ T

0

∫ R

εj

(

ρ jujϕt + ρ j∣∣uj∣∣2
ϕr +

(
ρ j)γ

(

ϕr +
2ϕ

r

))

r2 dr dt +
∫ R

εj

mj
0(r)ϕ(r, 0)r2 dr

–
∫ T

0

∫ R

εj

ρ j
(

uj
rϕr +

2ujϕ

r2

)

r2 dr dt

=
∫ T

0

∫ R

εj

3
4
εj

(
ρ j) 3

4

(

uj
r +

2uj

r

)(

ϕr +
2ϕ

r

)

r2 dr dt –
∫ T

0

∫ R

εj

εj
(
ρ j) 3

4

(
2uj

rϕ

r

+
2ujϕr

r
+

2ujϕ

r2

)

r2 dr dt –
∫ T

0

∫ R

εj

ρ jφj
rϕr2 dr dt + ε

j
b, (5.91)

where

ε
j
b =

∫ T

0

{(

ρ j(εj, t) +
3
4
εj

(
ρ j) 3

4 (εj, t)
)

uj
r(εj, t)ϕ(εj, t)ε2

j

– ε2
j
(
ρ j)γ (εj, t)ϕ(εj, t)

}

dt. (5.92)

We claim that

ε
j
b → 0 as εj → 0. (5.93)

To check this, we first show that

lim
εj→0+

∫ T

0
ε2

j
(
ρ j)γ (εj, t)ϕ(εj, t) dt = 0. (5.94)

Indeed, note that

∣
∣
∣
∣ε

2
j

∫ T

0

(
ρ j)γ (εj, t)ϕ(εj, t) dt

∣
∣
∣
∣

≤ max
0≤t≤T

∣
∣ϕ(εj, t)

∣
∣

{∫ T

0

∫ R

εj

(
ρ j)γ (r, t)r2 dr dt +

∫ T

0

∫ R

εj

∣
∣∂r

(
ρ j)γ (r, t)

∣
∣r2 dr dt

}
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≤ max
0≤t≤T

∣
∣ϕ(εj, t)

∣
∣

{

C + 2
(∫ T

0

∫ R

εj

(
ρ j)γ (r, t)r2 dr dt

) 1
2

×
(∫ T

0

∫ R

εj

∣
∣∂r

(
ρ j)

γ
2
∣
∣2r2 dr dt

) 1
2
}

≤ max
0≤t≤T

∣
∣ϕ(εj, t)

∣
∣

{

C +
∫ T

0

∫ R

εj

(
ρ j)γ (r, t)r2 dr dt +

∫ T

0

∫ R

εj

∣
∣∂r

(
ρ j)

γ
2
∣
∣2r2 dr dt

}

≤ C max
0≤t≤T

∣
∣ϕ(εj, t)

∣
∣ → 0 as εj → 0, (5.95)

i.e., (5.94) holds.
Next we show that

lim
εj→0+

∫ T

0

(
ρ juj

r
)
(εj, t)ϕ(εj, t)ε2

j dt = 0. (5.96)

Thanks to (4.2)1 and the boundary condition u(εj, t) = 0, one has

ρ
j
t(εj, t) + ρ j(εj, t)uj

r(εj, t) = 0. (5.97)

Thus, by integration by parts, we have

lim
εj→0+

∫ T

0

(
ρ juj

r
)
(εj, t)ϕ(εj, t)ε2

j dt

= lim
εj→0+

{

–ε2
j

∫ T

0
ρ

j
t(εj, t)ϕ(εj, t) dt

}

= lim
εj→0+

{

ε2
j

∫ T

0
ρ j(εj, t)ϕt(εj, t) dt + ε2

j
(
ρ0(εj) + εj

)
ϕ(εj, 0)

}

= lim
εj→0+

ε2
j

∫ T

0
ρ j(εj, t)ϕt(εj, t) dt. (5.98)

On the other hand, it is easy to get

ε2
j

∣
∣
∣
∣

∫ T

0
ρ j(εj, t)ϕt(εj, t) dt

∣
∣
∣
∣ ≤ ε

2– 2
γ

j

{

ε2
j

∫ T

0

(
ρ j)γ (εj, t) dt

} 1
γ
{∫ T

0
ϕ

γ
γ –1

t (ε, t) dt
} γ –1

γ

≤ Cε
2– 2

γ

j → 0 as εj → 0+ (1 < γ < 3), (5.99)

thus, (5.96) holds.
Similarly, one can show that

lim
εj→0+

3
4
εj

∫ T

0
ε2

j
{(

ρ j) 3
4 uj

r
}

(εj, t)ϕ(εj, t) dt = 0. (5.100)

Indeed, using (5.97) and ρ > 0 yields

(
ρ j)– 1

4 ρ
j
t(εj, t) +

(
ρ j) 3

4 (εj, t)uj
r(εj, t) = 0, (5.101)
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i.e.,

4
3
∂t

(
ρ j) 3

4 (εj, t) +
(
ρ j) 3

4 (εj, t)uj
r(εj, t) = 0. (5.102)

Integrating by parts, we have

3
4
εj

∫ T

0
ε2

j
{(

ρ j) 3
4 uj

r
}

(εj, t)ϕ(εj, t) dt

= –
∫ T

0
ε3

j ∂t
(
ρ j) 3

4 (εj, t)ϕ(εj, t) dt

=
∫ T

0
ε3

j
(
ρ j) 3

4 (εj, t)ϕt(εj, t) dt + ε3
j
(
ρ0(εj) + εj

) 3
4 ϕt(εj, 0)

≤ ε
3– 3

2γ

j

{

ε2
j

∫ T

0

(
ρ j)γ (εj, t) dt

} 3
4γ

{∫ T

0
ϕ

4γ
4γ –3

t (εj, t) dt
} 4γ –3

4γ

+ ε3
j (ρ0 + εj)

3
4 ϕt(εj, 0)

≤ Cε
3– 3

2γ

j + ε3
j (ρ0 + εj)

3
4 ϕt(εj, 0) → 0 as εj → 0 (1 < γ < 3), (5.103)

i.e., (5.100) holds. Equation (5.93) is a consequence of (5.94), (5.96), and (5.100).
Now, for any ω = (ω1,ω2,ω3) ∈ C2(Ω̄ × [0, T]) satisfying ω(x, t) = 0 on ∂Ω and ω(x, T) =

0, set ϕ(r, t) :=
∫

S w(ry, t) · y dSy, where S = S2 is the unit sphere in R3, and note that

(
r2ϕ

)

r = ∂r

∫

Sy

w(ry, t) · yr2 dSy

= ∂r

∫

|x|≤r
div w(x, t) dx

=
∫

|x|=r
div w(x, t) dSx

= r2
∫

Sy

(
wi)

xi
(ry, t) dSy. (5.104)

Now we convert every term in (5.91) to the form in Cartesian coordinates.
Direct calculations show that

∫ R

εj

mj
0(r)ϕ(r, 0)r2 dr =

∫

Ωεj

mj
0(x) · w(x, 0) dx. (5.105)

Similarly,
∫ T

0
∫ R
εj

ρ jujϕtr2 dr dt =
∫ T

0
∫

Ωεj

√
ρ j(

√
ρ jUj) · ∂tw dx dt,

∫ T

0

∫ R

εj

ρ j(uj)2
ϕrr2 dr dt =

∫ T

0

∫ R

εj

∫

|x|=r
ρ j(uj)2 xi

r
xk

r
(
wi)

xk
(x, t) dSx dr dt

=
∫ T

0

∫

Ωεj

√
ρ jUj ⊗

√
ρ jUj : ∇w dx dt (5.106)
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and

∫ T

0

∫ R

εj

(
ρ j)γ

(

ϕr +
2ϕ

r

)

r2 dr dt =
∫ T

0

∫ R

εj

(
ρ j)γ (

r2ϕ
)

r dr dt

=
∫ T

0

∫ R

εj

∫

|x|=r
div w(x, t)

(
ρ j)γ dSx dr dt

=
∫ T

0

∫

Ωεj

(
ρ j)γ

div w(x, t) dx dt, (5.107)

due to (5.104).
Moreover,

–
∫ T

0

∫ R

εj

ρ j
(

uj
rϕr +

2ujϕ

r2

)

r2 dr dt

= –
∫ T

0

∫ R

εj

ρ j
{(

uj

r

)

r
rϕr +

uj

r
r–2(r2ϕ

)

r

}

r2 dr dt

= –
∫ T

0

∫ R

εj

ρ j
{(

uj

r

)

r
r
∫

S

(
wi)

xk
(ry, t)yiyk dSy +

uj

r

∫

S
div w(ry, t) dSy

}

r2 dr dt

= –
∫ T

0

∫

Ωεj

ρ j
{(

uj

r

)

r

xixk

r
+

uj

r
δik

}
(
wi)

xk
dx dt

= –
∫ T

0

∫

Ωεj

ρ j ∂

∂xk

(

uj xi

r

)
(
wi)

xk
dx dt

= –
∫ T

0

∫

Ωεj

ρ j∇Uj : ∇w dx dt, (5.108)

∫ T

0

∫ R

εj

3
4
εj

(
ρ j) 3

4

(

uj
r +

2uj

r

)(

ϕr +
2ϕ

r

)

r2 dr dt

=
∫ T

0

∫ R

εj

∫

|x|=r

3
4
εj

(
ρ j) 3

4 div Uj div wj(x, t) dSx dr dt

=
∫ T

0

∫

Ωεj

3
4
εj

(
ρ j) 3

4 div Uj div wj dx dt, (5.109)

–
∫ T

0

∫ R

εj

εj
(
ρ j) 3

4

(
2uj

rϕ

r
+

2ujϕr

r
+

2ujϕ

r2

)

r2 dr dt

= –
∫ T

0

∫

Ωεj

εj
(
ρ j) 3

4 ∇Uj : ∇w dx dt, (5.110)

and

–
∫ T

0

∫ R

εj

ρ jφj
rϕr2 dr dt = –

∫ T

0

∫ R

εj

ρ jφj
r

∫

|x|=r
w(x, t) · x

r
r2 dSxr2 dr dt

= –
∫ T

0

∫

Ωεj

ρ jφj
rw(x, t) · x

r
dx dt

= –
∫ T

0

∫

Ωεj

ρ j∇Φ jw(x, t) dx dt. (5.111)
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Thus, it follows from (5.91) that

∫

Ωεj

mj
0(x) · w(x, 0) dx +

∫ T

0

∫

Ωεj

{√
ρ j

(√
ρ jUj) · ∂tw +

√
ρ jUj ⊗

√
ρ jUj : ∇w

}
dx dt

+
∫ T

0

∫

Ωεj

(
ρ j)γ

div w dx dt –
∫ T

0

∫

Ωεj

ρ j∇Uj : ∇w dx dt

=
∫ T

0

∫

Ωεj

3
4
εj

(
ρ j) 3

4 div Uj div wj dx dt –
∫ T

0

∫

Ωεj

εj
(
ρ j) 3

4 ∇Uj : ∇w dx dt

–
∫ T

0

∫

Ωεj

ρ j∇Φ j · w dx dt + ε
j
b. (5.112)

Thanks to (5.5), one has

∫

Ω

mj
0(x) · w(x, 0) dx +

∫ T

0

∫

Ω

(√
ρ j

(√
ρ jUj)wt +

√
ρ jUj ⊗

√
ρ jUj : ∇w

)
dx dt

+
∫ T

0

∫

Ω

(
ρ j)γ

div w(x, t) dx dt –
∫ T

0

∫

Ω

ρ j∇Uj : ∇w dx dt

+
∫ T

0

∫

Ω

ρ j∇φjw(x, t) dx dt

=
∫ T

0

∫

Bεj

(
ρ j)γ

div w dx dt +
∫ T

0

∫

Ωεj

3
4
εj

(
ρ j) 3

4 div Uj div wj dx dt

–
∫ T

0

∫

Ωεj

εj
(
ρ j) 3

4 ∇Uj : ∇w dx dt +
∫ T

0

∫

Bεj

ρ j∇Φ j · w dx dt + ε
j
b. (5.113)

We now prove that each term on the left-hand side of (5.113) converges to a correspond-
ing term in (3.28) and each term on the right-hand side of (5.113) vanishes as j → 0.

Obviously,

∫

Ω

mj
0(x) · w(x, 0) dx →

∫

Ω

m0 · w(x, 0) dx, (5.114)

and, similar to the process of the proof in Proposition 5.9, it holds that

∫ T

0

∫

Ω

√
ρ j

(√
ρ jUj) · ∂tw dx dt →

∫ T

0

∫

Ω

√
ρ(

√
ρU) · ∂tw dx dt. (5.115)

Moreover,

∫ T

0

∫

Ω

(√
ρ jUj ⊗

√
ρ jUj –

√
ρU ⊗ √

ρU
)

: ∇w dx dt

=
∫ T

0

∫

B 1
n

(√
ρ jUj ⊗

√
ρ jUj –

√
ρU ⊗ √

ρU
)

: ∇w dx dt

+
∫ T

0

∫

Ω 1
n

(√
ρ jUj ⊗

√
ρ jUj –

√
ρU ⊗ √

ρU
)

: ∇w dx dt
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≤ ‖∇w‖L∞(B 1
n

)

∫ T

0

∫

B 1
n

∣
∣
√

ρ jUj∣∣2 + |√ρU|2 dx dt

+
∣
∣
∣
∣

∫ T

0

∫

Ω 1
n

(√
ρ jUj ⊗

√
ρ jUj –

√
ρU ⊗ √

ρU
)

: ∇w dx dt
∣
∣
∣
∣, (5.116)

for any positive integer n. By virtue of (5.5) and Proposition 5.5, one has

∫ T

0

∫

B 1
n

∣
∣
√

ρ jUj∣∣2 dx dt ≤
(∫ T

0

∫

B 1
n

ρ j dx dt
) η

2+η
(∫ T

0

∫

B 1
n

ρ j∣∣Uj∣∣2+η dx dt
) 2

2+η

≤ C
(∫ T

0

∫

B 1
n

ρ j dx dt
) η

2+η

≤ C
{(∫ T

0

∫

B 1
n

(
ρ j)3 dx dt

) 1
3 |B 1

n
| 2

3

} η
2+η

≤ C|B 1
n
| 2

3 · η
2+η → 0 as n → ∞, (5.117)

i.e.,

∫ T

0

∫

B 1
n

∣
∣
√

ρ jUj∣∣2 dx dt → 0, (5.118)

uniformly in j as n → ∞. Also,

∫ T

0

∫

B 1
n

|√ρU|2 dx dt ≤ lim inf
j→∞

∫ T

0

∫

B 1
n

∣
∣
√

ρ jUj∣∣2 dx dt → 0, (5.119)

as n → ∞. It follows from (5.119) and Proposition 5.7 that

∫ T

0

∫

Ω

√
ρ jUj ⊗

√
ρ jUj : ∇w dx dt →

∫ T

0

∫

Ω

√
ρU ⊗ √

ρU : ∇w dx dt (5.120)

as j → ∞.
For the pressure term, Proposition 5.3 implies that

∫ T

0

∫

Ω

(
ρ j)γ

div w dx dt →
∫ T

0

∫

Ω

ργ div w dx dt, j → ∞. (5.121)

Concerning the diffusion terms on the left-hand side of (5.113), it follows from (5.5) and
integration by parts that

∫ T

0

∫

Ω

ρ j∇Uj : ∇w dx dt

= –
∫ T

0

∫

Ω

√
ρ j

(√
ρ jUj) · �w dx dt

– 2
∫ T

0

∫

Ω

(√
ρ jUj) · (∇

√
ρ j · ∇)

w dx dt. (5.122)
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Similar to the proof of (5.115), one can prove the convergence for the first term on the
right-hand side of (5.122) as follows:

∫ T

0

∫

Ω

√
ρ j

(√
ρ jUj) · �w dx dt →

∫ T

0

∫

Ω

√
ρ(

√
ρU) · �w dx dt, j → ∞. (5.123)

Due to Lemma 5.1, it holds that

∥
∥∇

√
ρ j

∥
∥

L∞(L2(Ω)) ≤ C, (5.124)

and hence there exists a function g ∈ L∞(L2(Ω)) such that

∇
√

ρ j → g weakly in L2(L2(Ω)
)
. (5.125)

Lemma 5.1 and Proposition 5.2 imply that
√

ρ j → √
ρ weakly in L2(L2(Ω)), hence, g =

∇√
ρ . Consequently, this yields that

∇
√

ρ j → ∇√
ρ weakly in L2(L2(Ω)

)
. (5.126)

By Propositions 5.5 and 5.7, we obtain

– 2
∫ T

0

∫

Ω

(√
ρ jUj) · (∇

√
ρ j · ∇)

w dx dt

→ –2
∫ T

0

∫

Ω

(
√

ρU) · (∇√
ρ · ∇)w dx dt. (5.127)

Substituting (5.123) and (5.127) into (5.122) yields

∫ T

0

∫

Ω

ρ j∇Uj : ∇w dx dt → 〈ρ∇U ,∇ψ〉

= –
∫ T

0

∫

Ω

√
ρ(

√
ρU) · �ψ dx dt – 2

∫ T

0

∫

Ω

(
√

ρU) · (∇√
ρ · ∇)ψ dx dt. (5.128)

Now, thanks to (5.5), (5.45) and Proposition 5.2, we have

∫ T

0

∫

Ω

ρ j∇Φ j · w dx dt →
∫ T

0

∫

Ω

ρ∇Φ · w dx dt. (5.129)

Up to now, we have proved that the terms on the left-hand side of (5.113) converge to
corresponding ones in (3.28) as j → ∞. In the following, we prove that each term on the
right-hand side of (5.113) vanishes as j → ∞.

Applying (5.5), (5.45) and Lemma 5.1, one can get

∫ T

0

∫

Ω

∣
∣ρ j∇Φ j∣∣2 dx dt ≤

{∫ T

0

∫

Ω

(
ρ j)3 dx dt

} 2
3
{∫ T

0

∫

Ω

∣
∣∇Φ j∣∣6 dx dt

} 1
3 ≤ C, (5.130)
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thus,

∫ T

0

∫

Bεj

ρ j∇Φ j · w dx dt ≤ C(T)
(∫ T

0

∫

Ω

∣
∣ρ j∇Φ j∣∣2 dx dt

) 1
2 |Bεj |

1
2

≤ C(T)|Bεj |
1
2 → 0 as j → ∞, (5.131)

∣
∣
∣
∣

∫ T

0

∫

Bεj

(
ρ j)γ

div w dx dt
∣
∣
∣
∣ ≤ C

(∫ T

0

∫

Bεj

(
ρ j)3 dx dt

) γ
3 |Bεj |

3–γ
3

≤ C|Bεj |
3–γ

3 → 0, (5.132)

as j → ∞, for 1 < γ < 3.
Next, with the help of Lemma 5.1 again, one has

∣
∣
∣
∣

∫ T

0

∫

Ωεj

3
4
εj

(
ρ j) 3

4 div Uj div wj dx dt
∣
∣
∣
∣

≤ C√
εj

{

εj

∫ T

0

∫

Ωεj

(
ρ j) 3

4
∣
∣∇Uj∣∣2 dx dt

} 1
2
{∫ T

0

∫

Ωεj

(
ρ j) 3

4 dx dt
} 1

2

≤ C√
εj → 0 as j → ∞. (5.133)

Similarly, the integral εj
∫ T

0
∫

Ωεj
(ρ j) 3

4 ∇Uj : ∇w dx dt admits the same bound as in (5.133).
It follows from the above arguments that each term on the right-hand side of (5.113)

converges to zero as j → ∞. Equation (3.28) can be easily obtained by taking the limit
j → ∞ in (5.113). Furthermore, (3.30) can be easily obtained by using (5.5), (5.45) and
Proposition 5.2. The proof of this proposition is completed. �

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4 The weak forms of the mass and momentum equations follow from
Propositions 5.9 and 5.10, and Proposition 5.10 also shows that Poisson equation (3.1)3

holds almost everywhere. The first part in Definition 3.3 follows from Lemmas 4.2, 5.1
and Proposition 5.9. Moreover, (3.33)–(3.36) are obtained from Lemma 5.1 and Propo-
sitions 5.2, 5.9. Finally, the radial symmetry of the weak solutions is a consequence of
Lemma 5.8. The proof of Theorem 3.4 is thus finished. �
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