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Abstract
In this paper, we study a coupled systems of parabolic equations subject to large
initial data. By using comparison principle and Kaplan’s method, we get the upper
and lower bound for the life span of the solutions.
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1 Introduction
In this paper, we consider the following nonlinear parabolic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u + emu+pv, x ∈ Ω , t > 0,

vt = �v + equ+nv, x ∈ Ω , t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = λϕ(x), v(x, 0) = λψ(x), x ∈ Ω ,

(1.1)

where n > m > 1, p > q > 1, pm > qn; Ω is a bounded domain in RN with a smooth boundary
∂Ω ; λ > 0 is a parameter, ϕ and ψ are nonnegative continuous functions on Ω̄ .

The existence and the uniqueness of local classical solutions to problem of semilinear
parabolic systems are well known (see, e.g., [1]). We denote by T∗

λ the maximal existence
time of a classical solution (u, v) of problem (1.1), that is,

T∗
λ = sup

{
T > 0, sup

0≤t≤T

(∥
∥u(·, t)

∥
∥∞ +

∥
∥v(·, t)

∥
∥∞

)
< ∞

}
,

and we call T∗
λ the life span of (u, v). If T∗

λ < ∞, then we have

lim
t→T∗

λ

sup
∥
∥u(·, t)

∥
∥∞ = lim

t→T∗
λ

sup
∥
∥v(·, t)

∥
∥∞ = ∞.

We are interested in T∗
λ and aim to give some properties of the T∗

λ .
Since Fujita’s classic work [2], the single equation

ut = �u + up (1.2)
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has been studied extensively in various directions. Friedman and Lacey [3] gave a result
on the life span of solutions of (1.2) in the case of small diffusion. Subsequently, Gui and
Wang [4], Lee and Ni [5] obtained the leading term of the expansion of the life span Tλ of
the solution for (1.2) with the initial data λϕ(x), and later, Mizoguchi and Yanagida [6] ex-
tended the result and determined the second term of the expansion of Tλ, the proved that
ϕ attains the maximum at only one point as λ → ∞. Moreover, Mizoguchi and Yanagida
[7] extended the result on the life span of solutions of (1.2) in the case of small diffusion.
In [8], Sato extended the results to general nonlinearities f (u) in the case of large initial
data. Parabolic systems of the following form:

ut = �u + f (v), vt = �v + g(u) (1.3)

have also been studied in several directions. In [9], Sato investigated (1.3) with f (v) and
g(u) replaced by vp and uq, in this article the life span of (u, v) with large initial data was
obtained. The present author studied the case f (v) = epv, g(u) = equ in [10] and got some
properties of the life span of the solution when initial data is large enough. For other results
on system (1.3), we refer the reader to the survey [11], the monograph [12], as well as [13],
and the references therein.

On the other hand, much effort has been devoted to the study of coupled parabolic
systems, local and global existence, finite time blowup and blowup rate estimates, etc. We
recommend reading the latest results [14, 15]. In [16], Zheng and Zhao considered the
radially symmetric solutions for the parabolic system

ut = �u + λemu+pv, vt = �v + μequ+nv.

And Zhang and Zheng in [17] investigated the above system with nonlocal sources
λ

∫

Ω
emu+pv and μ

∫

Ω
equ+nv. Also the case with localized sources was studied by Li and

Wang in [18].
Parabolic equations (1.3) with the nonlinearities f (v) = umepv, g(u) = uqenv subject to null

Dirichlet boundary conditions were considered in [19] by Liu and Li.
However, to the best of our knowledge, there is little literature on the study of the life

span of solutions for problem (1.1). The aim of this paper is to obtain some properties of
the life span T∗

λ as λ is large enough. We give a quantitative characterization of life span
for the solutions. In the following, we denote by Mϕ and Mψ the maximum of ϕ and ψ

on Ω . Then our main results can be summarized as the following theorem.

Theorem 1.1 Suppose ϕ,ψ ∈ C(Ω̄) satisfy ϕ,ψ ≥ 0 in Ω , ϕ = ψ = 0 on ∂Ω , ϕ + ψ �≡ 0.
(i) If p – n > q – m > 0 and (q – m)Mϕ > (p – n)Mψ , then we have

lim inf
λ→∞ T∗

λ e
(pq–mn)Mϕλ

p–n ≥
(

q – m
p – n

) p
p–n p – n

pq – mn
. (1.4)

(ii) If q – m > p – n > 0 and (p – n)Mψ > (q – m)Mϕ , then we have

lim inf
λ→∞ T∗

λ e
(pq–mn)Mψ λ

q–m ≥
(

p – n
q – m

) q
q–m p – n

pq – mn
. (1.5)
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Theorem 1.2 Suppose ϕ,ψ ∈ C(Ω̄) satisfy ϕ,ψ ≥ 0 in Ω , ϕ = ψ = 0 on ∂Ω , ϕ + ψ �≡ 0.
(i) If p – n > q – m > 0 and (q – m)Mϕ > (p – n)Mψ , then we have

lim sup
λ→∞

T∗
λ

eqMϕλ

λ
≤ qMϕ – pMψ

p
. (1.6)

(ii) If q – m > p – n > 0 and (p – n)Mψ > (q – m)Mϕ , then we have

lim sup
λ→∞

T∗
λ

epMψλ

λ
≤ pMψ – qMϕ

q
. (1.7)

2 Preliminaries
In this section we first consider the ODE system

⎧
⎨

⎩

zt = emz+pw, wt = eqz+nw, t > 0,

z(0) = α, w(0) = β ,
(2.1)

where α and β are nonnegative constants.
Here, for constants α and β with (α,β) �≡ (0, 0), we define by (z(t;α,β), w(t;α,β)) the

solution for problem (2.1). It is well known that (z(t;α,β), w(t;α,β)) exists and blows up
in finite time. We then give the following lemma.

Lemma 2.1 Suppose that α, β are nonnegative constants and (α,β) �≡ (0, 0). Then the life
span of the solution (z, w) for problem (2.1) is

T∗
α,β =

∫ ∞

α

dξ

emξ { p–n
q–m [e(q–m)ξ – e(q–m)α] + e(p–n)β} p

p–n

=
∫ ∞

β

dη

enη{ q–m
p–n [e(p–n)η – e(p–n)β ] + e(q–m)α} q

q–m
. (2.2)

Proof Multiplying the first equation in (2.1) by eqz+nw and the second equation by emz+pw,
we obtain the equality

e(q–m)zzt = e(p–n)wwt .

Integrating this equality over (0, t), we have

1
q – m

[
e(q–m)z – e(q–m)α]

=
1

p – n
[
e(p–n)w – e(p–n)β]

.

Hence we get

e(q–m)z =
q – m
p – n

[
e(p–n)w – e(p–n)β]

+ e(q–m)α ,

e(p–n)w =
p – n
q – m

[
e(q–m)z – e(q–m)α]

+ e(p–n)β .
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Substituting these equalities into the equations of (2.1), we see that (z, w) satisfies the
initial-value problem

zt = emz
{

p – n
q – m

[
e(q–m)z – e(q–m)α]

+ e(p–n)β
} p

p–n
, t > 0, z(0) = α, (2.3)

wt = enz
{

q – m
p – n

[
e(p–n)w – e(p–n)β]

+ e(q–m)α
} q

q–m
, t > 0, w(0) = β . (2.4)

Integrating equations in (2.3), (2.4) over (0, t) yields

∫ z(t)

α

dξ

emξ { p–n
q–m [e(q–m)ξ – e(q–m)α] + e(p–n)β} p

p–n
= t,

∫ w(t)

β

dη

enη{ q–m
p–n [e(p–n)η – e(p–n)β ] + e(q–m)α} q

q–m
= t.

This implies that the life span of (z, w) is

T∗
α,β = min

{∫ ∞

α

dξ

emξ { p–n
q–m [e(q–m)ξ – e(q–m)α] + e(p–n)β} p

p–n
,

∫ ∞

β

dη

enη{ q–m
p–n [e(p–n)η – e(p–n)β ] + e(q–m)α} q

q–m
.

By using the change of variables

e(q–m)ξ =
q – m
p – n

(
e(p–n)η – e(p–n)β)

+ e(q–m)α ,

we see that

∫ ∞

α

dξ

emξ { p–n
q–m [e(q–m)ξ – e(q–m)α] + e(p–n)β} p

p–n

=
∫ ∞

β

dη

enη{ q–m
p–n [e(p–n)η – e(p–n)β ] + e(q–m)α} q

q–m
.

�

3 Proof of main results
We first give a lower bound of life span to the solutions and prove Theorem 1.1.

Proof We give the proof of (i). It is obvious that the solution (z(t;λMϕ ,λMψ ), w(t;
λMϕ ,λMψ )) is a supersolution of problem (1.1), so we have

u(x, t) ≤ z(t;λMϕ ,λMψ ), v(x, t) ≤ w(t;λMϕ ,λMψ )

for x ∈ Ω and 0 < t < min{T∗
λMϕ ,λMψ

, T∗
λ }. This implies

T∗
λ ≥ T∗

λMϕ ,λMψ
. (3.1)
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First we assume that ϕ �= 0. Then by (3.1) and Lemma 2.1, a routine computation shows

T∗
λ ≥

∫ ∞

λMϕ

dξ

emξ { p–n
q–m (e(q–m)ξ – e(q–m)λMϕ ) + e(p–n)λMψ } p

p–n

=
∫ ∞

1

λMϕ dξ

emλMϕξ { p–n
q–m [e(q–m)λMϕξ – e(q–m)λMϕ ] + e(p–n)λMψ } p

p–n

≥ λMϕ

( p–n
q–m )

p
p–n

∫ ∞

1

dξ

e[m+ p(q–m)
p–n ]λMϕξ

=
(

q – m
p – n

) p
p–n p – n

pq – mn
e– (pq–mn)Mϕλ

p–n ,

and this yields

T∗
λ ≥

(
q – m
p – n

) p
p–n p – n

pq – mn
e– (pq–mn)Mϕλ

p–n ,

so we get

lim inf
λ→∞ T∗

λ e
(pq–mn)Mϕλ

p–n ≥
(

q – m
p – n

) p
p–n p – n

pq – mn
.

One can prove (ii) by using similar arguments. �

Next, we give an upper estimate of T∗
λ and prove Theorem 1.2.

Proof We prove by using Kaplan’s method [20]. We only give the proof of (i); case (ii)
can be proved similarly. Without loss of generality, we may assume that ϕ(0) = Mϕ . We
define by μR the first eigenvalue of –� in the ball BR = BR(0), φR being the corresponding
eigenfunction which satisfies

∫

BR
φR(x) dx = 1. Thus, we have

⎧
⎨

⎩

–�φR = μRφR in BR,

φR = 0 on ∂BR.
(3.2)

It is easy to check that

μR =
μ1

R2 , φR(x) = R–Nφ1

(
x
R

)

.

Let R be small enough such that BR ⊂ Ω and set

z(t) =
∫

BR

u(x, t)φR(x) dx, w(t) =
∫

BR

v(x, t)φR(x) dx, (3.3)

α(R) =
∫

BR

ϕ(x)φR(x) dx, β(R) =
∫

BR

ψ(x)φR(x) dx. (3.4)
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For ϕ,ψ ∈ C(Ω̄),
∫

B1
φ1(x) dx = 1, we have

lim
R→0

α(R) = ϕ(0), lim
R→0

β(R) = ψ(0).

Multiplying the equations in (1.1) by φR, integrating by parts and using Jensen’s inequal-
ity, we obtain

zt ≥ –μRz + emz+pw, t > 0, (3.5)

wt ≥ –μRw + eqz+nw, t > 0, (3.6)

z(0) = λα(R), w(0) = λβ(R). (3.7)

Hence, we have

(
eμRtz

)

t ≥ eμRt+mz+pw,
(
eμRtw

)

t ≥ eμRt+qz+nw.

Integrating these inequalities over (0, t), we see that

eμRtz – λα ≥
∫ t

0
eμRs+mz(s)+pw(s) ds,

eμRtw – λβ ≥
∫ t

0
eμRs+qz(s)+nw(s) ds.

Substituting the second inequality into the first, it follows that

eμRtz – λα ≥
∫ t

0
exp

{

μRs + mz(s) + λpβe–μRs

+ pe–μRs
∫ s

0
eμRy+qz(y) dy

}

ds,

thus we have

z(t) ≥ λαe–μRt + e–μRt
∫ t

0
exp

{

μRs + mz(s) + λpβe–μRs

+ pe–μRs
∫ s

0
eμRy+qz(y) dy

}

ds.

We fix 0 < ε < 1 and take TR > 0 such that e–μRTR > 1 – ε. Then we have

z(t) ≥ (1 – ε)λα + (1 – ε)
∫ t

0
exp

{

(1 – ε)λpβ + p(1 – ε)
∫ s

0
eqz(y) dy

}

ds.

We set

h(t) = (1 – ε)λα + (1 – ε)
∫ t

0
exp

{

(1 – ε)λpβ + p(1 – ε)
∫ s

0
eqz(y) dy

}

ds,
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then we have

h′(t) = (1 – ε) exp

{

(1 – ε)λpβ + p(1 – ε)
∫ t

0
eqz(s) ds

}

,

h′′(t) = (1 – ε) exp

{

(1 – ε)λpβ + p(1 – ε)
∫ t

0
eqz(s) ds

}

· p(1 – ε)eqz.

After a careful computation, we see that

h′′(t) ≥ h′(t)p(1 – ε)eqh(t).

Integrating this inequality over (0, t), it follows that

h′(t) ≥ p
q

(1 – ε)eqh(t) + (1 – ε)e(1–ε)λpβ –
p
q

(1 – ε)e(1–ε)λqα .

Dividing the left-hand side by the right-hand side and integrating over (0, t), we obtain

∫ h(t)

(1–ε)λα

ds
p
q (1 – ε)eqs + (1 – ε)e(1–ε)λpβ – p

q (1 – ε)e(1–ε)λqα
≥ t,

we then take λ large enough such that

Tε,R =
∫ ∞

(1–ε)λα

ds
p
q (1 – ε)eqs + (1 – ε)e(1–ε)λpβ – p

q (1 – ε)e(1–ε)λqα
≤ TR.

Then z blows up at some T ≤ Tε,R, and a careful computation yields

Tε,R =
ln p – ln q + λ(1 – ε)(qα – pβ)

p(1 – ε)e(1–ε)λqα – q(1 – ε)e(1–ε)λpβ
,

hence we get

T∗
λ ≤ ln p – ln q + λ(1 – ε)(qα – pβ)

p(1 – ε)e(1–ε)λqα – q(1 – ε)e(1–ε)λpβ
.

Therefore, taking R → 0 and then ε → 0, paying attention to (q – m)Mϕ > (p – n)Mψ and
pm > qn, it follows that

T∗
λ ≤ ln p – ln q + λ(qMϕ – pMψ )

peqMϕλ – qepMψλ
,

so we get

lim sup
λ→∞

T∗
λ

eqMϕλ

λ
≤ qMϕ – pMψ

p
,

which is the inequality in (1.6). By a similar argument, we can prove (1.7), and thus The-
orem 1.2 is proved. �
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