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Abstract
In this article, we investigate the effect of surface tension in the Rayleigh–Taylor (RT)
problem of stratified incompressible viscoelastic fluids. We prove that there exists an
unstable solution to the linearized stratified RT problem with a largest growth rate Λ
under the instability condition (i.e., the surface tension coefficient ϑ is less than a
threshold ϑc). Moreover, for this instability condition, the largest growth rate Λϑ

decreases from a positive constant to 0, when ϑ increases from 0 to ϑc , which
mathematically verifies that the internal surface tension can constrain the growth of
the RT instability during the linear stage.

Keywords: Rayleigh–Taylor instability; Surface tension; Incompressible viscoelastic
fluids; Stratified fluids

1 Introduction

It is well known that the equilibrium state of the heavier fluid on top of the lighter one
under the gravity is unstable to sustain a small disturbance. In this process, the unstable
disturbance will grow and lead to a release of potential energy. Since Rayleigh [40] and then
Taylor [43] first studied this phenomenon, we call it the Rayleigh–Taylor (RT) instability.
In the last decades, it has been also widely investigated how the RT instability evolves
under the effects of other physical factors, such as elasticity [4, 11, 27, 29, 42, 46], rotation
[3, 6, 45], internal surface tension [9, 16, 24, 48], magnetic fields [5, 17, 19–23, 25, 26], and
so on. We also refer to the other related mathematical problems [1, 12, 13, 30, 32–34, 36,
38, 41]. In this article, we consider the effect of surface tension on the linear RT instability
for stratified viscoelastic fluids defined on a horizontally periodic domain in the presence
of a uniform gravitational field. Before stating our main results, we shall introduce the
relevant mathematical progress in the stratified RT problem in detail.

To begin with, let us recall the RT problem of stratified viscoelastic incompressible fluids
in an infinity layer domain [27]:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ±∂tv± + ρ±v± · ∇v± + divS±(pg
±, v±, U±) = 0 in Ω±(t),

∂tU± + v± · ∇U± = ∇v±U± in Ω±(t),

div v± = 0 in Ω±(t),

dt + v1∂1d + v2∂2d = v3 on Σ(t),

�v±� = 0, �S±(pg
±, v±, U±)ν – gdρ±ν� = ϑCν on Σ(t),

v± = 0 on Σ±,

(v±, U±)|t=0 = (v0±, U0±) in Ω±(0),

d|t=0 = d0 on Σ(0).

(1.1)

Next we further explain some notations in the above (stratified) VRT problem (1.1).
The notations f+ and f– in (1.1) denote the values of the quantity f in the upper and

lower fluids, respectively. The superscript T denotes the transposition, and the notation
f 0 denotes the initial data of f . In this paper, we consider that the domain Ω occupied by
the two fluids is horizontal periodic, and thus we denote

Ω :=
{

(xh, x3) ∈R
3 | xh := (x1, x2) ∈ T, –h– < x3 < h+

}
with h–, h+ > 0, (1.2)

where T := T1 × T2, Ti = 2πLi(R/Z), and 2πLi (i = 1, 2) are the periodicity lengths. For
each given t > 0, d := d(xh, t) : T �→ (–h–, h+) is a height function of a point at the interface
of stratified viscoelastic fluids. Σ(t) is a set of interface, and it is defined as follows:

Σ(t) :=
{

(xh, x3) | xh ∈ T, x3 := d(xh, t)
}

. (1.3)

Moreover, we also have the following expressions:

Σ+ := T× {h+}, Σ– := T× {–h–},
Ω+(t) :=

{
(xh, x3) | xh ∈ T, d(xh, t) < x3 < h+

}
,

Ω–(t) :=
{

(xh, x3) | xh ∈ T, –h– < x3 < d(xh, t)
}

,

Ω(t) := Ω+(t) ∪ Ω–(t).

For given t > 0, v±(x, t) : Ω±(t) �→ R
3, p±(x, t) : Ω±(t) �→ R, and U±(x, t) : Ω±(t) �→ R

9

are the velocities, the pressures, and the deformation tensor (a 3 × 3 matrix-valued func-
tion) of fluids. Moreover, the stress tensors enjoy the following expression:

S±
(
pg

±, v±, U±
)

:= pg
±I – μ±Dv± – κ±ρ±

(
U±UT

± – I
)
, (1.4)

where pg
± := p± + gρ±x3, Dv± := ∇v± + ∇vT± and I denotes the 3 × 3 identity matrix. ρ±

are the density constants, U± are the deformation tensor (a 3×3 matrix-valued function),
and the constants μ± and κ± denote the shear viscosity coefficients and the elasticity coef-
ficients of the two fluids, resp. g and ϑ represent the gravitational constant and the surface
tension coefficient, resp. For a function f defined on Ω(t), we define �f±� := f+|Σ(t) – f–|Σ(t),
where f±|Σ(t) are the traces of the quantities f± on Σ(t). ν is the unit outer normal vector
at boundary Σ(t) of Ω–(t), and C is the twice of mean curvature of the internal surface
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Σ(t), i.e.,

C :=
�hd + (∂1d)2∂2

2 d + (∂2d)2∂2
1 d – 2∂1d∂2d∂1∂2d

(1 + (∂1d)2 + (∂2d)2)3/2 .

Finally, we briefly explain the physical meaning of each identity in (1.1). The equations
(1.1)1–(1.1)2 describe the motion of the upper heavier and lower lighter fluids driven
by the gravitational field along the negative x3-direction, which occupy the two time-
dependent disjoint open subsets Ω+(t) and Ω–(t) at time t, respectively. We call (1.1)1

the momentum equation and (1.1)2 the deformation equation. Since the fluids are incom-
pressible, we naturally pose the divergence-free condition (1.1)3. The two fluids interact
with each other by the motion equation of a free interface (1.1)4 and the interfacial jump
conditions in (1.1)5. The first jump condition in (1.1)5 represents that the velocity is con-
tinuous across the interface. The second jump condition in (1.1)5 represents that the jump
in the normal stress is proportional to the mean curvature of the surface multiplied by the
normal to the surface [31, 50]. The non-slip boundary condition of the velocities on both
upper and lower fixed flat boundaries are described by (1.1)6, and (1.1)7–(1.1)8 represent
the initial status of the two fluids.

Problem (1.1) enjoys an equilibrium state (or rest) solution: (v, d, U , pg) = (0, d̄, I, p̄g),
where d̄ ∈ (–h–, h+). We should point out that p̄g can be uniquely computed out by hy-
drostatics, which depends on the variable x3 and ρ±, and is continuous with respect to
x3 ∈ (–h–, h+). Without loss of generality, we assume that d̄ = 0 in this article. If d̄ is not
zero, we can adjust the x3 co-ordinate to make d̄ = 0. Thus d can be regarded as the dis-
placement away from the plane

Σ := T× {0}.

In order to simplify the representation of problem (1.1), we introduce the indicator func-
tion

χΩ±(t) :=

⎧
⎨

⎩

1, x ∈ Ω±(t),

0, x ∈ Ωc±(t),

and denote

ρ = ρ+χΩ+(t) + ρ–χΩ–(t), μ = μ+χΩ+(t) + μ–χΩ–(t), κ = κ+χΩ+(t) + κ–χΩ–(t),

v = v+χΩ+(t) + v–χΩ–(t), U = U+χΩ+(t) + U–χΩ–(t), p = p+χΩ+(t) + p–χΩ–(t),

v0 = v0
+χΩ+(0) + v0

–χΩ–(0), U0 = U0
+χΩ+(0) + U0

–χΩ–(0),

S
(
pg , v, U

)
:= pgI – μDv – κρ

(
UUT – I

)
.

Now, we denote the perturbation quantity around the equilibrium state (0, 0, I, p̄g) by

v = v – 0, d = d – 0, V = U – I, and σ = pg – p̄g .
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Then we have a VRT problem in a perturbation form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt + ρv · ∇v + divS(σ , v, V + I) = 0 in Ω(t),

Vt + v · ∇V = ∇v(V + I) in Ω(t),

div v = 0 in Ω(t),

dt + v1∂1d + v2∂2d = v3 on Σ(t),

�v� = 0, �S(σ , v, V + I) – gρdI �ν = ϑCν on Σ(t),

v = 0 on Σ+
– ,

(v, V )|t=0 = (v0, V 0) in Ω(0),

d|t=0 = d0 on Σ(0),

(1.5)

where Σ+
– := Σ– ∪ Σ+, and we omitted the subscript ± in the above problem for simplic-

ity. Thus a zero solution is an equilibrium-state solution of the above perturbation VRT
problem.

It is well known that the movement of the free interface Σ(t) and the subsequent change
of the domains Ω±(t) in Eulerian coordinates will result in severe mathematical difficul-
ties. In order to circumvent such difficulties, we shall adopt the transformation method of
Lagrangian coordinates so that the interface and the domains stay fixed in time. In addi-
tion, the VRT problem in Lagrangian coordinate has better mathematical structure.

To this end, we define the fixed Lagrangian domains Ω+ := T × (0, h+) and Ω– := T ×
(–h–, 0), and assume that there exist invertible mappings

ζ 0
± : Ω± → Ω±(0),

such that

Σ(0) = ζ 0
±(Σ), Σ+ = ζ 0

+ (Σ+), Σ– = ζ 0
– (Σ–) (1.6)

and

det
(∇ζ 0

±
)

= 1. (1.7)

The first condition in (1.6) means that the initial interface Σ(0) is parameterized by the
mapping ζ 0± restricted to Σ , while the latter two conditions in (1.6) mean that ζ 0± map
the fixed upper and lower boundaries into themselves. Define the flow maps ζ± as the
solutions to

⎧
⎨

⎩

∂tζ±(y, t) = v±(ζ±(y, t), t) in Ω±,

ζ±(y, 0) = ζ 0±(y) in Ω±.

We denote the Eulerian coordinates by (x, t) with x = ζ (y, t), whereas the fixed (y, t) ∈ Ω ×
R

+stand for the Lagrangian coordinates. Here we remark that Ω := Ω+ ∪ Ω–.
In order to switch back and forth from Lagrangian to Eulerian coordinates, we assume

that ζ±(·, t) are invertible and Ω±(t) = ζ±(Ω±, t), and since v± and ζ 0± are all continuous
across Σ , we have Σ(t) = ζ±(Σ , t). In other words, the Eulerian domains of upper and
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lower fluids are the image of Ω± under the mappings ζ±, and the free interface is the image
of Σ under the mappings ζ±(·, t). In view of the non-slip boundary condition v±|Σ± = 0,
we have

y = ζ±(y, t) on Σ±.

In addition, by the incompressible condition, we have

det(∇ζ±) = 1 in Ω± (1.8)

as well as initial condition (1.7), see [35, Proposition 1.4].
Now, setting ζ = ζ+χΩ+(t) + ζ–χΩ–(t), η = ζ – y, and the Lagrangian unknowns

(u, Ũ , q)(y, t) = (v, U ,σ )
(
ζ (y, t), t

)
for (y, t) ∈ Ω ×R

+,

and then we can see that in Lagrangian coordinates the evolution equations for u and q
read as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in Ω ,

ρut + divA SA(q, u,η) = 0 in Ω ,

divA u = 0 in Ω ,

�η� = �u� = 0, �SA(q, u,η) – gρη3I ��n = ϑH�n on Σ ,

(η, u) = 0 on Σ+
– ,

(η, u)|t=0 = (η0, u0) in Ω ,

(1.9)

where we have denoted

SA(q, u,η) := qI – μDAu – κρ
(
Dη + ∇η∇ηT)

, DAu := ∇Au + ∇AuT,

H :=
(|∂1ζ |2∂2

2 ζ – 2(∂1ζ · ∂2ζ )∂1∂2ζ + |∂2ζ |2∂2
1 ζ

) · �n/
(|∂1ζ |2|∂2ζ |2 – |∂1ζ∂2ζ |2),

�n := Ae3/|Ae3|, Ũ(y, t) := ∇ζ (y, t).

In what follows, we call problem (1.9) the transformed stratified VRT problem, and η the
displacement function of particle (labeled by y).

Next, we further introduce the notations involvingA. The matrixA := (Aij)3×3 is defined
via

AT = (∇ζ )–1 := (∂jζi)–1
3×3,

where the subscript T denotes the transposition, and ∂j denotes the partial derivative with
respect to the jth components of variables y. The differential operator ∇A is defined by

∇Aw := (∇Aw1,∇Aw2,∇Aw3)T and ∇Awi := (A1k∂kwi,A2k∂kwi,A3k∂kwi)T

for a vector function w := (w1, w2, w3), and the differential operator divA is defined by

divA
(
f 1, f 2, f 3) :=

(
divA f 1, divA f 2, divA f 3)T and divA f i := Alk∂kf i

l
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for a vector function f i := (f i
1 , f i

2 , f i
3)T. It should be noted that we have used the Einstein

convention of summation over repeated indices. In addition, we define �AX := divA ∇AX.
Finally, we introduce some properties of A. In view of the definition of A and (1.8), we

see that

A =
(
A∗

ij
)

3×3, (1.10)

where A∗
ij is the algebraic complement minor of (i, j)th entry (∂jζi)3×3. Moreover, it is easy

to check that Ae3 = ∂1ζ × ∂2ζ . In addition, we have

∂kA∗
ik = 0 or ∂kAik = 0, (1.11)

and

Aij∂jζl = Aji∂lζj = δil, (1.12)

where δil = 1 for i = l and δil = 0 for i 	= l.
We assume that (u,η) is very small, then the small terms of second order (i.e., the nonlin-

ear terms) in (1.9) could be neglected, and we thus obtain the following linearized stratified
VRT problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in Ω ,

ρut + ∇q – μ�u = κρ divDη in Ω ,

div u = 0 in Ω ,

�η� = �u� = 0 on Σ ,

�(q – gρη3)I – D(μu + κρη)�e3 = ϑ�hη3e3 on Σ ,

(η, u) = 0 on Σ+
– ,

(η, u)|t=0 = (η0, u0) in Ω ,

(1.13)

where �h := ∂2
1 + ∂2

2 . The linearized problem is convenient to analyze in order to have an
insight into the physical and mathematical mechanisms of the stratified VRT problem.

In 1953, Bellman–Pennington [2] first analyzed the inhibition of RT instability by surface
tension, where the study was based on a linearized two-dimensional (2D) motion equa-
tion of stratified incompressible inviscid fluids defined on the domain T1 × (–h–, h+) (i.e.,
μ = 0 in the corresponding 2D case of (1.13)). Moreover, they precisely proved that there
exists a threshold g�ρ�L2

1 of surface tension coefficient for linear stability and instability
of RT problem. In other words, the linear 2D stratified incompressible inviscid fluids are
stable when ϑ > g�ρ�L2

1, and vice versa. Similarly, in the case of three dimensions, Guo
and Tice proved that ϑc := g�ρ� max{L2

1, L2
2} is a critical value of surface tension coefficient

for stability and instability in the linearized stratified compressible viscous fluids defined
on Ω [9].

Next, we further introduce some mathematical progress for the nonlinear case. First,
by a Henry instability method [39], Prüess and Simonett first proved that the equilibria
solution of RT problem for stratified incompressible viscid fluids defined on the domain
R

3 is unstable. Later, Wang, Tice, and Kim proved that, under the case of ϑ > ϑT or ϑ ∈
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[0,ϑT) [47, 48], the equilibria solution of RT problem for stratified incompressible viscous
fluids defined on Ω is stable, resp. unstable. In addition, the same results of stability and
instability have been further obtained by Jang, Wang, and Tice under the corresponding
compressible case [15, 16]. More recently, under the cylindrical domain with finite height
[49], Wilke also proved that the value ϑc is a threshold for the stability and instability of
stratified viscous fluids (with heavier fluid over lighter fluid). Finally, as documented in [14,
18], the results of nonlinear RT instability in inhomogeneous fluid (without interface), by
the classical bootstrap instability method, were obtained for inviscid and viscous cases.

2 Preliminary
2.1 Simplified notations
Before stating our main results for the linearized stratified VRT problem in detail, we shall
introduce some simplified notations used throughout this paper.

(1) Basic notations: IT := (0, T). R+ := (0,∞), R+
0 := [0,∞), and Ω := R

2 × [–h–, h+]. ∇h :=
(∂1, ∂2)T and fh := (f1, f2). ∂α

h denote ∂
α1
1 ∂

α2
2 for some multiindex of order α := (α1,α2) and

∂
j
h denotes ∂α

h for any α satisfying |α| = α1 + α2 = j. The jth difference quotient of size h is
Dh

j w := (w(y + hej) – w(y))/h for j = 1 and 2, and Dh
hw := (Dh

1w1, Dh
2w2), where |h| ∈ (0, 1), and

w is defined on Ω and a locally summable function. �f , resp. �f , denotes the real, resp.
imaginary, part of the complex function f . a � b means that a ≤ cb for some constant
c > 0, where the positive constant c may depend on the domain Ω , and known parameters
such as g , ρ±, μ±, and ϑ may vary from line to line.

(2) Simplified notations of Sobolev spaces:

Lp := Lp(Ω) = W 0,p(Ω), W i,2 := W i,2(Ω), Hi := W i,2,

H∞ :=
∞⋂

j=1

Hj, Hi :=
{

w ∈ Hi
∣
∣
∣

∫

Ω

w dy = 0
}

,

H1
σ :=

{
w ∈ H1(Ω)|w|Σ+– = 0 in the sense of trace, div w = 0

}
,

H–1
σ is the dual space of H1

σ , Hi
σ := H1

σ ∩ Hi,

H1
σ ,Σ :=

{
w ∈ H1

σ | w3|Σ ∈ H1(T)
}

,

H1
σ ,3 :=

{
w ∈ H1

σ ,ϑ | w3 	= 0 on Σ
}

, H1
σ ,ϑ =

⎧
⎨

⎩

H1
σ ,Σ if ϑ 	= 0,

H1
σ if ϑ = 0,

A :=
{

w ∈ H1
σ ,ϑ | ‖√ρw‖2

L2 = 1
}

,

where 1 < p ≤ ∞, and i ≥ 0 is an integer. Sometimes, we denote A by Aϑ to emphasize
the dependence of ϑ . Moreover, to prove the existence of unstable classical solutions of a
linearized VRT problem, we shall introduce a function space

H1,k
σ ,ϑ :=

⎧
⎨

⎩

{w ∈ H1
σ ,ϑ | ∇ j

hw ∈ H1 and w3|Σ ∈ Hk+1(T) for j ≤ k} if ϑ 	= 0,

{w ∈ H1
σ | ∇ j

hw ∈ H1 for j ≤ k} if ϑ = 0,

where k ≥ 0 is an integer. Besides, it should be noted that H1,0
σ ,ϑ = H1

σ ,ϑ .
(3) Simplified norms: ‖ · ‖i := ‖ · ‖W i,2 , | · |s := ‖ · |Σ‖Hs(T), where s is a real number, and i

is a non-negative integer.
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(4) Functionals:

E(w) := ϑ |∇hw3|20 – g�ρ�|w3|20 + ‖√κρDw‖2
0/2

and

F (w, s) := –
(
E(w) + s‖√μDw‖2

0/2
)
.

2.2 Preliminary lemmas
In this subsection, we mainly introduce some preliminary lemmas, which will be used
later.

Lemma 2.1 Existence theory of a stratified (steady) Stokes problem (see [48, Theorem 3.1]):
Let k ≥ 0, f S,1 ∈ Hk and f S,2 ∈ Hk+1/2, then there exists a unique solution (u, q) ∈ Hk+2 ×
Hk+1 satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∇q – μ�u = f S,1 in Ω ,

�u� = 0, �(qI – Du)e3 � = f S,2 on Σ ,

u = 0 on Σ+
– .

(2.1)

Moreover,

‖u‖S,k �
∥
∥f S,1∥∥

k +
∣
∣f S,2∣∣

k+1/2. (2.2)

Lemma 2.2 Difference quotients and weak derivatives: Let D be Ω or T.
(1) Suppose 1 ≤ p < ∞ and w ∈ W 1,p(D). Then ‖Dh

hw‖Lp(D) � ‖∇hw‖Lp(D).
(2) Assume 1 < p < ∞, w ∈ Lp(D), and there exists a constant c such that ‖Dh

hw‖Lp(D) ≤ c.
Then ∇hw ∈ Lp(D) satisfies ‖∇hw‖Lp(D) ≤ c and D–hk

h w ⇀ ∇hw in Lp(D) for some
subsequence –hk → 0.

Proof Following the argument of [7, Theorem 3] and using the periodicity of w, we can
easily get the desired conclusions. �

Lemma 2.3 Friedrichs’s inequality (see [37, Lemma 1.42]): Let 1 ≤ p < ∞ and D be a
bounded Lipschitz domain. Let a set Γ ⊂ ∂D be measurable with respect to the (N – 1)-
dimensional measure μ := measN–1 defined on ∂D, and let measN–1(Γ ) > 0. Then

‖w‖W 1,p(D) � ‖∇w‖Lp(D)

for all w ∈ W 1,p(D) satisfying that the trace of w on Γ is equal to 0 a.e. with respect to the
(N – 1)-dimensional measure μ.

Remark 2.1 By Friedrichs’s inequality and the fact

‖∇w‖2
0 = ‖Dw‖2

0/2 for any w ∈ H1
σ , (2.3)
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we get Korn’s inequality

‖w‖2
1 � ‖Dw‖2

0 for any w ∈ H1
σ . (2.4)

Lemma 2.4 Trace estimates:

|w|0 ≤ ‖w‖1 for any w ∈ H1
σ , (2.5)

|w|0 ≤ √
h±/2‖Dw‖L2(Ω±)/2 for any w ∈ H1

σ . (2.6)

Proof See [28, Lemma 9.7] for (2.5). Since C∞
σ := C∞

0 (R2 × (–h–, h+)) ∩ H1
σ is dense in H1

σ ,
it suffices to prove that (2.6) holds for any w ∈ C∞

σ by (2.5).
First, let ŵ be the horizontal Fourier transformed function of w ∈ C∞

σ , and

ϕ(ξ , y3) = iŵ1(ξ , y3), θ (ξ , y3) = iŵ2(ξ , y3), ψ(ξ , y3) = ŵ3(ξ , y3).

Then

ξ1ϕ + ξ2θ + ψ ′ = 0 (2.7)

and ψ(·, y3) ∈ H2
0 (–h–, h+), because of div w = 0 and w|Σ+– = 0. In addition,

∇̂w = (∂̂iwj) =

⎛

⎜
⎝

ξ1ϕ ξ2ϕ –iϕ′

ξ1θ ξ2θ –iθ ′

iξ1ψ iξ2ψ ψ ′

⎞

⎟
⎠ .

Next, we can deduce from (2.7) that

ψ(0, y3) = 0 for ξ = 0. (2.8)

By (2.8) and the Fubini and Parseval theorems, one has

|w3|20 =
1

4π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}

∣
∣ψ(ξ , 0)

∣
∣2 (2.9)

and

1
2
‖Dw‖2

L2(Ω–) =
1

8π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}

∑

1≤i,j≤3

∫ 0

–h–

|∂̂iwj + ∂̂jwi|2 dy3

=
1

4π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}
Mξ

1(ϕ, θ ,ψ)

+
1

4π2L1L2

∫ 0

–h–

(∣
∣ϕ′(0, y3)

∣
∣2 +

∣
∣θ ′(0, y3)

∣
∣2)dy3, (2.10)
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where

Mξ
1(ϕ, θ ,ψ) :=

∫ 0

–h–

(|ξ |2(|ϕ|2 + |θ |2 + |ψ |2)

+ 2�ψ ′′�ψ + 2�ψ ′′�ψ +
∣
∣ϕ′∣∣2 +

∣
∣θ ′∣∣2 + 3

∣
∣ψ ′∣∣2)dy3.

Using (2.7), we have

∣
∣ψ ′∣∣2 = ξ 2

1 |ϕ|2 + ξ 2
2 |θ |2 + 2ξ1ξ2(�ϕ�θ + �ϕ�θ ) ≤ |ξ |2(|ϕ|2 + |θ |2),

∣
∣ψ ′′∣∣2 ≤ |ξ |2(∣∣ϕ′∣∣2 +

∣
∣θ ′∣∣2),

which imply that

∫ 0

–h–

(
4
∣
∣ψ ′∣∣2+

∣
∣
∣
∣ξ

∣
∣ψ + ψ ′′/|ξ |∣∣2)dy3 ≤ Mξ

1(ϕ, θ ,ψ) (2.11)

for given ξ ∈ (L–1
1 Z× L–1

2 Z)\{0}. Employing (2.9)–(2.11) and the relation

φ2(0) ≤ h–
∥
∥φ′∥∥2

L2(–h–,0) for any φ ∈ H1
0 (–h–, h+),

we can obtain

|w3|20 =
1

4π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}

∣
∣ψ(ξ , 0)

∣
∣2

≤ h–

16π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}

∫ 0

–h–

(
4
∣
∣ψ ′∣∣2 +

(|ξ |ψ + ψ ′′/|ξ |)2)dy3

≤ h–

16π2L1L2

∑

ξ∈(L–1
1 Z×L–1

2 Z)\{0}
Mξ

1(ϕ, θ ,ψ) ≤ h–‖Dw‖2
L2(Ω–)/8. (2.12)

Similarly, we also get

|w3|20 ≤ h+‖Dw‖2
L2(Ω+)/8,

which, together with (2.12), yields the desired conclusion. This completes the proof. �

Remark 2.2 From the derivation of (2.6), we easily see that

‖∂3w3‖2
L2(Ω±) ≤ ‖Dw‖2

L2(Ω±)/8 for any w ∈ H1
σ . (2.13)

Lemma 2.5 Negative trace estimate:

|u3|–1/2 � ‖u‖0 + ‖div u‖0 for any u := (u1, u2, u3) ∈ H1
0 . (2.14)

Proof Estimate (2.14) can be derived by integration by parts and an inverse trace theorem
[37, Lemma 1.47]. �
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Lemma 2.6 Let X be a given Banach space with dual X∗, and let u and w be two functions
belonging to L1((a, b), X). Then the following two conditions are equivalent:

(1) For each test function φ ∈ C∞
0 (a, b),

∫ b

a
u(t)φ′(t) dt = –

∫ b

a
w(t)φ(t) dt.

(2) For each η ∈ X∗,

d
dt

〈u,η〉X×X∗ = 〈w,η〉X×X∗ ,

in the scalar distribution sense, on (a, b), where 〈·, ·〉X×X∗ denotes the dual pair
between X and X∗.

Proof See Lemma 1.1 in Chap. 3 in [44]. �

3 Main results
In this paper, we investigate the effect of surface tension on the linear RT instability by
the linearized motion (1.13). First of all, we exploit the modified variational method of
PDEs and existence theory of stratified (steady) Stokes problem to prove the existence of
solutions with a largest growth rate Λϑ for (1.13) under the instability condition ϑ ∈ [0,ϑc).
And then, we find a new upper bound for Λϑ :

Λϑ ≤ m := min{m1, m2}, (3.1)

where

m1 :=
(ϑc – ϑ)

4ϑc

(

g�ρ� min

{
h+

μ+
,

h–

μ–

}

– 4 max

{
κ+ρ+

μ+
,
κ–ρ–

μ–

})

,

m2 :=
(

(g�ρ�(ϑc – ϑ))2

4ϑ2
c max{ρ+μ+,ρ–μ–}

) 1
3

.

In addition, we see from (3.1) that

Λϑ → 0 as ϑ → ϑc. (3.2)

In classical Rayleigh–Taylor (RT) experiments [8, 10], it has been shown that the phe-
nomenon of that surface tension during the linear stage can restrain the instability growth,
and the growth is exponential in time. Obviously, this phenomenon can be verified mathe-
matically by the convergence behavior (3.2). Next, we shall give the definition of the largest
growth rate of RT instability in the linearized stratified VRT problem.

Definition 3.1 We call Λ > 0 the largest growth rate of RT instability in the linearized
stratified VRT problem (1.13) if it satisfies the following two conditions:

(1) For any strong solution (η, u) ∈ C0([0, T), H3 ∩ H2
σ ) ∩ L2(IT , H3 ∩ H3

σ ) of the
linearized stratified VRT problem with q enjoying the regularity
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q ∈ C0([0, T), H1) ∩ L2(IT , H2), then we have, for any t ∈ [0, T),

∥
∥(η, u)

∥
∥2

1 + ‖ut‖2
0 +

∫ t

0

∥
∥u(s)

∥
∥2

1 ds � e2Λt(∥∥η0∥∥2
3 +

∥
∥u0∥∥2

2

)
. (3.3)

(2) There exists a strong solution (η, u) of the linearized stratified VRT problem in the
form

(η, u) := eΛt(η̃, ũ),

where (η̃, ũ) ∈ H2.

Now, let us state the first main result on the existence of largest growth rate in the lin-
earized stratified VRT problem.

Theorem 3.1 Let g > 0, ρ > 0, κ > 0, and μ > 0 be given. Then, for any given

ϑ ∈ [0,ϑc), (3.4)

there exists an unstable solution

(η, u, q) := eΛt(w/Λ, w,β)

to the linearized stratified VRT problem (1.13), where (w,β) ∈ H∞ solves the boundary
value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ2ρw + Λ(∇β – μ�w) = κρ divDw in Ω ,

div w = 0 in Ω ,

�w� = 0 on Σ ,

�(Λβ – gρw3)I – D((Λμ + κρ)w)�e3 = ϑ�hw3e3 on Σ ,

w = 0 on Σ+
–

(3.5)

with a largest growth rate Λ > 0 satisfying

Λ2 = sup
�∈A

F (� ,Λ) = F (w,Λ). (3.6)

Moreover,

w3 	= 0, ∂3w3 	= 0, divh wh 	= 0 in Ω , |w3| 	= 0 on Σ . (3.7)

Next we briefly introduce how to prove Theorem 3.1 by the modified variational method
of PDEs and regularity theory of stratified (steady) Stokes problem. The detailed proof will
be given in Sect. 4.1.

First, we assume a growing mode ansatz to the linearized problem:

η(x, t) = η̃(x)eΛt , u(x, t) = w(x)eΛt , q(x, t) = β(x)eΛt
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for some Λ > 0. Substituting this ansatz into the linearized stratified VRT problem (1.13),
we can get a spectrum problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λη̃ = w in Ω ,

Λρw + ∇β – μ�w = κρ divDη̃ in Ω ,

div w = 0 in Ω ,

�η̃� = �w� = 0 on Σ ,

�(β – gρη̃3)I – D(μw + κρη̃)�e3 = ϑ�hη̃3e3 on Σ ,

(η̃, w) = 0 on Σ+
– ,

and then eliminating η̃ by using the first equation, we arrive at boundary value problem
(3.5) for w and β . Multiplying (3.5)1 by w in L2, and using the formula of integral by parts
and conditions (3.5)2–(3.5)5, we have

Λ2‖√ρw‖2
0 = –E(w) – ‖√ΛμDw‖2

0/2,

where we have defined that

E(w) := ϑ |∇hw3|20 – g�ρ�|w3|20 + ‖√κρDw‖2
0/2.

From the view point of energy, if

E(w) < 0 for some w ∈ H1
σ , (3.8)

the linearized stratified VRT problem may be unstable, otherwise stable. Obviously, the
above instability condition (3.8) is equivalent to

Cϑ := sup
w∈H1

σ ,3

g�ρ�|w3|20 – ‖√κρDw‖2
0/2

ϑ |∇hw3|20
> 1. (3.9)

In this article, we assume that ϑ is a constant, then we derive from (3.9) that

ϑ < ϑc := sup
ω∈H1

σ ,3

g�ρ�|w3|20 – ‖√κρDw‖2
0/2

|∇hw3|20
. (3.10)

Under (3.10), the linearized stratified VRT problem is obviously unstable, if there exists a
solution (w,β) to boundary value problem (3.5) with Λ > 0.

To look for the unstable solution, we use a modified variational method of PDEs, and
thus modify (3.5) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αρw + s(∇β – μ�w) = κρ divDw in Ω ,

div w = 0 in Ω ,

�w� = 0 on Σ ,

�(sβ – gρw3)I – D((sμ + κρ)w)�e3 = ϑ�hw3e3 on Σ ,

w = 0 on Σ+
– ,

(3.11)
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where s > 0 is a parameter. In order to emphasize the dependence of s upon α and ϑ , we
will write α(s,ϑ) = α.

By modified problem (3.11), we can find that it enjoys the following variational identity:

α(s,ϑ)‖√ρw‖2
0 = F (w, s).

Thus, by a standard variational approach, there is a maximizer w ∈ A of the functional
F defined on A; furthermore, w is just a weak solution to (3.11) with α defined by the
relation

α(s,ϑ) = sup
w∈A

F (w, s) ∈ R, (3.12)

see Proposition 4.1. Next we further use the method of difference quotients and the ex-
istence theory of the stratified (steady) Stokes problem to improve the regularity of the
weak solution, and thus we can prove that (w,β) ∈ H∞ is a classical solution to boundary
value problem (3.11), see Proposition 4.2.

In view of instability condition (3.4) and the definition of α(s,ϑ), we can infer that, for
given ϑ , the function α(s, ·) on the variable s enjoys some good properties (see Proposi-
tion 4.3), which imply that there exists Λ satisfying the fixed-point relation

Λ =
√

α(Λ, ·) ∈ (0,Mϑ ). (3.13)

After that we obtain a nontrivial solution (w,β) ∈ H∞ to (3.5) with Λ defined by (3.13),
and therefore the linear instability follows. Furthermore, Λ is the largest growth rate of
RT instability in the linearized stratified VRT problem (see Proposition 4.4), and thus we
get Theorem 3.1.

Next, we turn to introducing the second main result on the properties of largest growth
rate constructed by (3.13).

Theorem 3.2 The largest growth rate Λϑ := Λ in Theorem 3.1 enjoys the estimate (3.1).
Moreover,

Λϑ strictly decreases and is continuous with respect to ϑ ∈ [0,ϑc). (3.14)

In particular, we have Λϑ → 0 as ϑ → ϑc.

Here we briefly introduce the idea of its proof. We can find that, for fixed s, α(·,ϑ) de-
fined by (3.12) is continuous with respect to ϑ and strictly decreases (see Proposition 4.5).
Therefore, by some analysis based on the definition of continuity and the fixed-point re-
lation (3.13), we can show that Λϑ := Λ also inherits the continuity and monotonicity of
α(·,ϑ). Finally, we derive (3.1) from (3.6) naturally by some estimate techniques. A more
detailed proof of Theorem 3.2 will be presented in Sect. 4.2.

4 Proof of main theorems
4.1 The result of linear instability
This subsection is devoted to the proof of Theorem 3.1. First of all, we will use modified
variational method to construct unstable solutions for the linearized stratified VRT prob-
lem. Guo and Tice firstly use this method for constructing unstable solutions to a class



Ma and Xiong Boundary Value Problems        (2019) 2019:156 Page 15 of 29

of ordinary differential equations arising from a linearized RT instability problem [9]. In
this paper, we will directly apply Guo and Tice’s modified variational method to the partial
differential equations (3.5), and thus obtain a linear instability result of the VRT problem
by further using an existence theory of stratified Stokes problem. Next, we begin to prove
Theorem 3.1 by four steps.

(1) Existence of weak solutions to the modified problem
We investigate the existence of weak solutions to the following modified problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(s,ϑ)ρw + s(∇β – μ�w) = κρ divDw in Ω ,

div w = 0 in Ω ,

�w� = 0 on Σ ,

�(sβ – gρw3)I – D((sμ + κρ)w)�e3 = ϑ�hw3e3 on Σ ,

w = 0 on Σ+
– ,

(4.1)

where s > 0 is any given. In order to prove the existence of weak solutions of the above
problem, we first consider the variational problem of the functional F (� , s):

α(s,ϑ) := sup
�∈A

F (� , s) (4.2)

for given s > 0, where we have defined that

F (� , s) := –
(
E(� ) + s‖√μD�‖2

0/2
)
.

And we sometimes denote α(s,ϑ) and F (� , s) by α (or α(s)) and F (� ) for simplicity, resp.
Then we have the following conclusions.

Proposition 4.1 Let s > 0 be any given.
(1) In variational problem (4.2), F (� ) achieves its supremum on A.
(2) Let w be a maximizer and α := sup�∈AF (� ), then w is a weak solution of boundary

problem (4.1) with given α.

Proof Noting that

|v|20 � ‖v‖0‖∂3v‖0 for any v ∈ H1
0 , (4.3)

thus, by Young’s inequality and Korn’s inequality (2.4), we know that {F (� )}�∈A has an
upper bound for any � ∈ A. Hence there is a maximizing sequence {wn}∞n=1 ⊂ A, which
satisfies α = limn→∞ F (wn). In addition, making use of (4.3), the fact ‖√ρwn‖0 = 1, trace
estimate (2.6) and Young’s and Korn’s inequalities, we get ‖wn‖1 + ϑ |∇hwn

3|0 ≤ c1 for some
constant c1, which is independent of n. Therefore, by (4.3) and the well-known Rellich–
Kondrachov compactness theorem, there exist a subsequence, still labeled by wn, and a
function w ∈A such that

wn ⇀ w in H1
σ , wn → w in L2, wn∣∣

y3=0 → w|y3=0 in L2(T),

wn
3
∣
∣
y3=0 ⇀ w3|y3=0 in H1(T) if ϑ 	= 0.
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Using the above convergence results and the lower semicontinuity of weak convergence,
we obtain

–α = lim inf
n→∞

(
–F

(
wn)) ≥ –F (w) ≥ –α.

Hence, w is a maximum point of the functional F (� ) with respect to � ∈A.
Obviously, w constructed above is also a maximum point of the functional F (� )/

‖√ρ�‖2
0 with respect to � ∈ H1

σ ,ϑ . Furthermore α = F (w)/‖√ρw‖2
0. Therefore, for any

given ϕ ∈ H1
σ ,ϑ , the point t = 0 is the maximum point of the function

I(t) := F (w + tϕ) –
∫

αρ|w + tϕ|2 dy ∈ C1(R).

Then, by computing out I ′(0) = 0, we have the following weak form:

1
2

∫

(sμ + κρ)Dw : Dϕ dy + ϑ

∫

Σ

∇hw3 · ∇hϕ3 dyh

= g�ρ�

∫

Σ

w3ϕ3 dyh – α

∫

ρw · ϕ dy. (4.4)

Notice the fact, for any f 1, f 2 ∈ H1, and any matrices A, B ∈R
3×3,

1
2

∫

DAf 1 : DBf 2 dy =
∫

DAf 1 : ∇Bf 2 dy, (4.5)

thus (4.4) is equivalent to

∫

(sμ + κρ)Dw : ∇ϕ dy + ϑ

∫

Σ

∇hw3 · ∇hϕ3 dyh = g�ρ�

∫

Σ

w3ϕ3 dyh – α

∫

ρw · ϕ dy.

This shows that w is a weak solution of modified problem (4.1). �

(2) Improving the regularity of weak solution
By Proposition 4.1, we know that boundary value problem (4.1) admits a weak solution

w ∈ H1
σ ,ϑ . Next, we will further improve the regularity of w.

Proposition 4.2 Let w be a weak solution of boundary value problem (4.1), then w ∈ H∞.

Proof First of all, we shall establish the following preliminary conclusion:
For any i ≥ 0, we have

w ∈ H1,i
σ ,ϑ (4.6)

and

1
2

∫

(sμ + κρ)D∂ i
hw : Dϕ dy + ϑ

∫

Σ

∇h∂
i
hw3 · ∇hϕ3 dyh

= g�ρ�

∫

Σ

∂ i
hw3ϕ3 dyh – α

∫

ρ∂ i
hw · ϕ dy. (4.7)
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By induction, it is obvious to see that the above assertion can reduce to verifying the
following recurrence relation:

For given i ≥ 0 and any ϕ ∈ H1
σ ,ϑ , if w ∈ H1,i

σ ,ϑ satisfies (4.7), then

w ∈ H1,i+1
σ ,ϑ (4.8)

and w satisfies

1
2

∫

(sμ + κρ)D∂ i+1
h w : Dϕ dy + ϑ

∫

Σ

∇h∂
i+1
h w3 · ∇hϕ3 dyh

= g�ρ�

∫

Σ

∂ i+1
h w3ϕ3 dyh – α

∫

ρ∂ i+1
h w · ϕ dy. (4.9)

Next, we use the method of difference quotients to verify the above recurrence relation.
Now, for any ϕ ∈ H1

σ ,ϑ , we assume that w ∈ H1,i
σ ,ϑ satisfies (4.7). Noting that ∂ i

hw ∈ H1
σ ,ϑ ,

we can deduce from (4.7) that, for j = 1 and 2,

1
2

∫

(sμ + κρ)D∂ i
hw : DDh

j ϕ dy + ϑ

∫

Σ

∇h∂
i
hw3 · ∇hDh

j ϕ3 dyh

= g�ρ�

∫

Σ

∂ i
hw3Dh

j ϕ3 dyh – α

∫

ρ∂ i
hw · Dh

j ϕ dy

and

1
2

∫

(sμ + κρ)D∂ i
hw : DD–h

j Dh
j ∂

i
hw dy + ϑ

∫

Σ

∇h∂
i
hw3 · ∇hD–h

j Dh
j ∂

i
hw3 dyh

= g�ρ�

∫

Σ

∂ i
hw3D–h

j Dh
j ∂

i
hw3 dyh – α

∫

ρ∂ i
hw · D–h

j Dh
j ∂

i
hw dy,

which yield that

1
2

∫

(sμ + κρ)DD–h
j ∂ i

hw : Dϕ dy + ϑ

∫

Σ

∇hD–h
j ∂ i

hw3 · ∇hϕ3 dyh

= g�ρ�

∫

Σ

D–h
j ∂ i

hw3ϕ3 dyh – α

∫

ρD–h
j ∂ i

hw · ϕ dy (4.10)

and

∥
∥√

sμ + κρDDh
j ∂

i
hw

∥
∥2

0/2 + ϑ
∣
∣Dh

j ∇h∂
i
hw3

∣
∣2
0

� g�ρ�
∣
∣Dh

j ∂
i
hw3

∣
∣2
0 + |α|∥∥√

ρDh
j ∂

i
hw

∥
∥2

0, (4.11)

resp.
By Korn’s inequality, it is easy to get that

∥
∥Dh

j ∂
i
hw

∥
∥2

1 �
∥
∥√

sμ + κρDDh
j ∂

i
hw

∥
∥2

0,

therefore, using (4.3), Young’s inequality, and the first conclusion in Lemma 2.2, we further
deduce from (4.11) that

∥
∥Dh

h∂
i
hw

∥
∥2

1 + ϑ
∣
∣Dh

h∇h∂
i
hw3

∣
∣2
0 �

∥
∥Dh

h∂
i
hw

∥
∥2

0 �
∥
∥∇h∂

i
hw

∥
∥2

0 � 1.
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Thus, using (4.3), trace estimate (2.6), and the second conclusion in Lemma 2.2, we can
find that there exists a subsequence of {–h}h∈R (still denoted by –h) such that

⎧
⎪⎪⎨

⎪⎪⎩

D–h
h ∂ i

hw ⇀ ∇h∂
i
hw in H1

σ , D–h
h ∂ i

hw → ∇h∂
i
hw in L2,

D–h
h ∂ i

hw|y3=0 → ∇h∂
i
hw|y3=0 in L2(T),

D–h
h ∂ i

hw3|Σ ⇀ ∇h∂
i
hw3|Σ in H1(T) if ϑ 	= 0.

(4.12)

Exploiting the regularity of w in (4.12) and the fact w ∈ H1,i
σ ,ϑ , we get (4.8). Moreover, us-

ing the limit results in (4.12), we can deduce (4.9) from (4.10). This means that we have
completed the proof of the recurrence relation, and thus (4.6) holds.

Now, with (4.6) in hand, we consider a stratified Stokes problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s∇βk – (sμ + κρ)�ωk = –αρ∂k
h w in Ω ,

divωk = 0 in Ω ,

�ωk � = 0, �(sβkI – (sμ + κρ)Dωk)e3 � = ∂k
hL1 on Σ ,

ωk = 0 on Σ+
– ,

(4.13)

where k ≥ 0 is a given integer, and we have defined that

L1 := g�ρ�w3e3 + ϑ�hw3e3.

Because of regularity (4.6) of w, we see that ∂k
h w ∈ L2 and ∂k

hL1 ∈ H1(T). Using the exis-
tence theory of stratified Stokes problem (see Lemma 2.1), there is a unique strong solution
(ωk ,βk) ∈ H2 × H1 of the above problem (4.13).

Multiplying (4.13)1 by ϕ ∈ H1
σ ,ϑ in L2 (i.e., taking the inner product in L2), and using

(4.13)2–(4.13)4 and the integration by parts, we arrive at

1
2

∫

(sμ + κρ)Dωk : Dϕ dy

= g�ρ�

∫

Σ

∂k
h w3ϕ3 dyh –

∫

Σ

ϑ∂k
h∇hw3 · ∇hϕ3 dyh –

∫

αρ∂k
h wϕ dy. (4.14)

And then, subtracting the two identities (4.7) and (4.14) yields that

∫

(sμ + κρ)D
(
∂k

h w – ωk) : Dϕ dy = 0.

Taking ϕ := ∂k
h w – ωk ∈ H1

σ ,ϑ in the above identity, and using Korn’s inequality, we see that
ωk = ∂k

h w. Thus we immediately find that

∂k
h w ∈ H2 for any k ≥ 0, (4.15)

which implies ∂k
h w ∈ H1, and ∂k

hL1 ∈ H2(T) for any k ≥ 0. Therefore, applying the stratified
Stokes estimate (2.2) to (4.13), we obtain

∂k
h w ∈ H3 for any k ≥ 0. (4.16)



Ma and Xiong Boundary Value Problems        (2019) 2019:156 Page 19 of 29

By induction, it is obvious to see that we can easily follow the improving regularity method
from (4.15) to (4.16) to deduce that w ∈ H∞. Moreover, we have β := β0 ∈ H∞; further-
more, βk in (4.13) is equal to ∂k

hβ .
Finally, recalling the embedding Hk+2 ↪→ C0(Ω) for any k ≥ 0, it is easy to see that (w,β)

constructed above is indeed a classical solution to modified problem (4.1). �

(3) Some properties of the function α(s)
Now we devote to the derivation of some properties of the function α(s), which can make

sure the existence of fixed point of
√

α(s) in R
+.

Proposition 4.3 For given ϑ ∈R
+
0 , we have

α(s2) < α(s1) for any s2 > s1 > 0, (4.17)

α(s) ∈ C0,1
loc

(
R

+)
, (4.18)

α(s) > 0 on some interval (0, c2) for ϑ ∈ [0,ϑc), (4.19)

α(s) < 0 on some interval (c3,∞). (4.20)

Proof First, we verify (4.17). For given s2 > s1, there is vs2 ∈ A such that α(s2) = F (vs2 , s2).
Hence, by the fact ‖√ρvs2‖0 = 1 and Korn’s inequality,

α(s1) ≥F
(
vs2 , s1

)
= α(s2) + (s2 – s1)

∥
∥√

μDvs2
∥
∥2

0/2 > α(s2),

which yields (4.17).
Then we turn to proving (4.18). Choosing a bounded interval [c4, c5] ⊂ (0,∞), then, for

any s ∈ [c4, c5], there is a function vs satisfying α(s) = F (vs, s). Hence, by monotonicity
(4.17), we arrive at

α(c5) + c4
∥
∥√

μDvs∥∥2
0/4 ≤F

(
vs, s/2

) ≤ α(s/2) ≤ α(c4/2),

which yields

∥
∥√

μDvs∥∥2
0/2 ≤ 2

(
α(c4/2) – α(c5)

)
/c4 =: ξ for any s ∈ [c4, c5].

Therefore, for any s1, s2 ∈ [c4, c5],

α(s1) – α(s2) ≤F
(
vs1 , s1

)
– F

(
vs1 , s2

) ≤ ξ |s2 – s1|

and

α(s2) – α(s1) ≤ ξ |s2 – s1|,

which immediately imply |α(s1) – α(s2)| ≤ ξ |s2 – s1|. Hence (4.18) holds.
Finally, we can infer (4.19) from the definition of α by using Korn’s inequality and (4.3),

while (4.20) can obviously get from the definition of α and (3.8). �
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(4) Construction of an interval for fixed point
To begin with, let I := sup{all the real constant s, which satisfy that α(τ ) > 0 for any τ ∈

(0, s)}. By (4.19) and (4.20), it is clear that I ∈ R
+. In addition, α(s) > 0 for any s ∈ (0,I),

and, by the continuity of α(s), we have

α(I) = 0. (4.21)

Applying the upper boundedness and the monotonicity of α(s), we see that

lim
s→0

α(s) = ς for some positive constant ς . (4.22)

Then, using (4.21), (4.22), and the continuity of α(s) on (0,I), we immediately find by a
fixed-point argument on (0,I) that there exists a unique Λ ∈ (0,I) satisfying

Λ =
√

α(Λ) =
√

sup
�∈A

F (� ,Λ) ∈ (0,I). (4.23)

Hence, we get a classical solution (w,β) ∈ H∞ to boundary problem (3.5) with Λ con-
structed by (4.23). Furthermore, it is easy to see that

Λ =
√
F (w,Λ) > 0, (4.24)

and (3.7) directly follows (4.24) and the fact w ∈ H1
σ .

Next, we shall prove that Λ constructed in the above is the largest growth rate of RT
instability in the linearized stratified VRT problem, and thus complete the proof of Theo-
rem 3.1.

Proposition 4.4 Under the assumptions of Theorem 3.1, Λ > 0 constructed by (4.23) is the
largest growth rate of RT instability in the linearized stratified VRT problem.

Proof According to the definition of largest growth rate, it suffices to prove that Λ enjoys
the first condition in Definition 3.1.

First, let u be a strong solution to the linearized stratified VRT problem. Then we can
get that, for a.e. t ∈ IT and all w ∈ H1

σ ,

∫

ρut · w dy =
∫

(μ�u – ∇q) · w dy +
∫

κρ divDη · w dy

=
∫

Σ

(
g�ρ�η3w3 + ϑ�hη3w3

)
dyh –

∫

D(μu + κρη) : ∇w dy. (4.25)

Thus,

d
dt

∫

ρut · w dy =
∫

Σ

(
g�ρ�u3w3 + ϑ�hu3w3

)
dyh –

∫

D(μut + κρu) : ∇w dy. (4.26)

Exploiting regularity of (η, u), we can see that the right-hand side of (4.26) is bounded
above by A(t)(‖w‖1 + |w|1) for some positive function A(t) ∈ L2(IT ). Then there exists f ∈
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L2(IT , H–1
σ ) such that, for a.e. t ∈ IT ,

〈f , w〉H–1
σ ×H1

σ
:=

∫

Σ

(
g�ρ�u3w3 + ϑ�hu3w3

)
dyh –

∫

D(μut + κρu) : ∇w dy. (4.27)

Therefore, it follows from Lemma 2.6 that

(ρut)t = f ∈ L2(IT , H–1
σ

)
.

Moreover, using the classical regularization method (referring to Theorem 3 in Chap. 5.9
in [7] and Lemma 6.5 in [37]), we get

1
2

d
dt

∫

ρ|ut|2 dy =
〈
∂t(ρut), ut

〉

H–1
σ ×H1

σ
,

∫

Σ

�hu3∂tu3 dyh = –
1
2

d
dt

∫

Σ

|∇hu3|2 dyh.

Thus, we can derive from the above two identities and (4.27) that

d
dt

(‖√ρut‖2
0 + E(u)

)
+ ‖√μDut‖2

0 = 0.

Next, integrating the above identity in time from 0 to t yields that

‖√ρut‖2
0 + E(u) +

∫ t

0
‖√μDus‖2

0 ds = I0 := E(u|t=0) + ‖√ρut|t=0‖2
0. (4.28)

Applying Newton–Leibniz’s formula and Young’s inequality, we can find that

Λ
∥
∥√

μDu(t)
∥
∥2

0 = Λ
∥
∥√

μDu0∥∥2
0 + 2Λ

∫ t

0

∫

μDu(s) : Dus dy ds

≤ Λ
∥
∥√

μDu0∥∥2
0 +

∫ t

0
‖√μDus‖2

0 ds + Λ2
∫ t

0

∥
∥√

μDu(s)
∥
∥2

0 ds. (4.29)

In addition, by (3.6), we arrive at

–E(u) ≤ Λ2‖√ρu‖2
0 +

Λ

2
‖√μDu‖2

0. (4.30)

Therefore, we deduce from (4.28)–(4.30) that

1
Λ

‖√ρut‖2
0 +

1
2
∥
∥√

μDu(t)
∥
∥2

0

≤ Λ
∥
∥√

ρu(t)
∥
∥2

0 + Λ

∫ t

0

∥
∥√

μDu(s)
∥
∥2

0 ds +
I0 + Λ‖√μDu0‖2

0

Λ
. (4.31)

According to

Λ
d
dt

‖√ρu‖2
0 = 2Λ

∫

ρu(t) · ut dy ≤ ‖√ρut‖2
0 + Λ2∥∥√

ρu(t)
∥
∥2

0,
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we further derive the differential inequality from (4.31) as follows:

d
dt

‖√ρu‖2
0 +

1
2
∥
∥√

μDu(t)
∥
∥2

0

≤ 2Λ

(
∥
∥√

ρu(t)
∥
∥2

0 +
1
2

∫ t

0

∥
∥√

μDu(s)
∥
∥2

0 ds
)

+
I0 + Λ‖√μDu0‖2

0

Λ
.

Applying Gronwall’s inequality [37, Lemma 1.2] to the above inequality, we obtain

∥
∥√

ρu(t)
∥
∥2

0 +
1
2

∫ t

0

∥
∥√

μDu(s)
∥
∥2

0 ds ≤
(

∥
∥√

ρu0∥∥2
0 +

I0 + Λ‖√μDu0‖2
0

2Λ2

)

e2Λt , (4.32)

which, together with (4.31), yields

1
Λ

∥
∥√

ρut(t)
∥
∥2

0 +
1
2
∥
∥√

μDu(t)
∥
∥2

0 ≤ 2
(

Λ
∥
∥√

ρu0∥∥2
0 +

I0 + Λ‖√μDu0‖2
0

2Λ

)

e2Λt

+
I0 + Λ‖√μDu0‖2

0

Λ
. (4.33)

And then, multiplying (1.13)2 by ut in L2 and using integration by parts, we have
∫

ρ|ut|2 dy =
∫

Σ

�q�∂tu3 dyh +
∫

μ�u · ut dy +
∫

κρ divDη · ut dy. (4.34)

Using (2.14), we can estimate that
∫

Σ

�q�∂tu3 dyh �
∣
∣�q�

∣
∣
1/2|∂tu3|–1/2 �

∣
∣�q�

∣
∣
1/2‖ut‖0.

Moreover, exploiting (1.13)5 and trace estimate (2.6), we obtain

∣
∣�q�

∣
∣
1/2 � ‖η‖3 + ‖u‖2.

Applying the above two estimates, we can infer from (4.34) that

‖ut‖2
0 � ‖η‖2

3 + ‖u‖2
2,

which implies that

‖√ρut|t=0‖2
0 �

∥
∥
(
η0, u0)∥∥2

3.

By Korn’s inequality and the above estimate, we deduce from (4.32) and (4.33) that

‖u‖2
1 + ‖ut‖2

0 +
∫ t

0

∥
∥u(s)

∥
∥2

1 ds � e2Λt(∥∥η0∥∥2
3 +

∥
∥u0∥∥2

2

)
.

Finally, from (1.13)1 we arrive at

∥
∥η(t)

∥
∥

1 �
∥
∥η0∥∥

1 +
∫ t

0
‖ηs‖1 ds �

∥
∥η0∥∥

1 +
∫ t

0

∥
∥u(s)

∥
∥

1 ds

� eΛt(∥∥η0∥∥
3 +

∥
∥u0∥∥

2

)
.
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From the two estimates above, we immediately see that Λ satisfies the first condition in
Definition 3.1. The proof is completed. �

4.2 The effect of surface tension
In this subsection, to prove Theorem 3.2, we shall further derive relations (3.1) and (3.14)
of surface tension coefficient and the largest growth rate. And in order to emphasize the
dependence of Λ and M upon ϑ , we will denote them by Λϑ and Mϑ , respectively. To
this end, we need the following auxiliary conclusions (i.e., the properties of α(s,ϑ) with
respect to ϑ ).

Proposition 4.5 Let g > 0, ρ > 0, and μ > 0 be given.
(1) Strict monotonicity: if ϑ1 and ϑ2 are constants satisfying 0 ≤ ϑ1 < ϑ2, then

α(s,ϑ2) < α(s,ϑ1) (4.35)

for any given s > 0. Moreover, if ϑ2 further satisfies ϑ2 < ϑc,

Mϑ1 > Mϑ2 , (4.36)

where

Mϑi := sup
{

s ∈R | α(τ ,ϑi) > 0 for any τ ∈ (0, s)
}

and α(Mϑi ,ϑi) = 0. (4.37)

(2) Continuity: for given s > 0, α(s,ϑ) ∈ C0,1
loc(R+) with respect to the variable ϑ .

Proof (1) To begin with, let s > 0 be fixed, and 0 ≤ ϑ1 < ϑ2. Then there exist functions
wϑi ∈ H∞ ∩Aϑi , i = 1, 2, such that

α(s,ϑi) = E
(
wϑi

)
– ϑi

∣
∣∇hwϑi

3
∣
∣2
0,

where E(wϑi ) := g�ρ�|wϑi
3 |20 – s‖√μDwϑi‖2

0/2 – ‖√κρDwϑi‖2
0/2. Since wϑi ∈ Aϑi , due to

(3.7), we get

0 <
∣
∣wϑ2

∣
∣
0 �

∣
∣∇hwϑ2

∣
∣
0,

and thus we have

α(s,ϑ2) ≤ α(s,ϑ1) + (ϑ1 – ϑ2)
∣
∣∇hwϑ2

3
∣
∣2
0 < α(s,ϑ1).

Therefore, we immediately get the desired conclusion (4.35).
Next, we begin to prove (4.36) by contradiction. If Mϑ1 < Mϑ2 , then we can get from

the strict monotonicity of α(s, ·) with respect to s and (4.35) that

0 = α(Mϑ2 ,ϑ2) < α(Mϑ2 ,ϑ1) < α(Mϑ1 ,ϑ1) = 0,

which is a paradox. If Mϑ1 = Mϑ2 , using (4.35), we arrive at

0 = α(Mϑ2 ,ϑ2) < α(Mϑ2 ,ϑ1) = α(Mϑ1 ,ϑ1) = 0,
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which is also a paradox. This yields the desired conclusion.
(2) Let s > 0 be fixed. We first choose a bounded interval [b1, b2] ⊂ R

+. Then, for any
given θ ∈ [b1, b2], there exists a function wθ ∈ Aϑ satisfying α(s, θ ) = E(wθ ) – θ |∇hwθ

3|20.
Thus, considering the monotonicity of α(·, θ ), we easily know that

α(s, b2) + b1
∣
∣∇hwθ

3
∣
∣2
0/2 ≤ α(s, θ ) + θ

∣
∣∇hwθ

3
∣
∣2
0/2

≤ α(s, θ/2) ≤ α(s, b1/2), (4.38)

which yields

∣
∣∇hwϑ

3
∣
∣2
0 ≤ 2

(
α(s, b1/2) – α(s, b2)

)
/b1 := K(s) for any ϑ ∈ [b1, b2].

Therefore, for any ϑ1, ϑ2 ∈ [b1, b2],

α(s,ϑ1) – α(s,ϑ2) ≤ E
(
wϑ1

)
– ϑ1

∣
∣∇hwϑ1

3
∣
∣2
0 –

(
E
(
wϑ1

)
– ϑ2

∣
∣∇hwϑ1

3
∣
∣2
0

)
)

≤ K(s)|ϑ2 – ϑ1|.

Reversing the role of indices 1 and 2 in the derivation of the above inequality, we can obtain
the same boundedness with the indices switched. Thus, we derive that

∣
∣α(s,ϑ1) – α(s,ϑ2)

∣
∣ ≤ K(s)|ϑ1 – ϑ2|,

which yields α(s,ϑ) ∈ C0,1
loc(R+). The proof is completed. �

By Proposition 4.5, we have finished the proof of properties of α(s,ϑ) with respect to ϑ .
Next, we will complete the proof of Theorem 3.2 in three steps.

(1) The monotonicity of Λϑ with respect to the variable ϑ ∈ [0,ϑc).
First, for given two constants ϑ1 and ϑ2 satisfying 0 ≤ ϑ1 < ϑ2 < ϑc, there exist two asso-

ciated curve functions α(s,ϑ1) and α(s,ϑ2) defined in (0,ϑc). Then, from the first assertion
in Proposition 4.5, we know that

α(s,ϑ1) > α(s,ϑ2).

Through the analysis, we can see that the fixed point Λϑi satisfying Λϑi =
√

α(Λϑi ) can be
obtained from the intersection point of the two curves y =

√
α(s,ϑi) and y = s on (0,Mϑi )

for i = 1 and 2. Therefore, we can immediately obtain the monotonicity

Λϑ1 > Λϑ2 for 0 ≤ ϑ1 < ϑ2 < ϑc. (4.39)

(2) The continuity of Λϑ .
In order to prove the continuity of Λϑ , we first need to choose a constant ϑ0 > 0 and an

associated function α(s,ϑ0). Noting that α(Λϑ0 ,ϑ0) = Λ2
ϑ0

> 0 and α(·,ϑ) ∈ C0,1
loc[0,ϑc) are

continuous and strictly decreasing with respect to ϑ , thus, for any given ε > 0, there is a
constant δ > 0 such that

(ϑ0 – δ,ϑ0 + δ) ⊂ (0,ϑc),α(Λϑ0 ,ϑ0 + δ) > 0,
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and

0 <
√

α(Λϑ0 ,ϑ0) –
√

α(Λϑ0 ,ϑ0 + δ) < ε, 0 <
√

α(Λϑ0 ,ϑ0 – δ) –
√

α(Λϑ0 ,ϑ0) < ε.

Therefore, from the above two inequalities, we have

Λϑ0 – ε <
√

α(Λϑ0 ,ϑ0 + δ) and
√

α(Λϑ0 ,ϑ0 – δ) < Λϑ0 + ε.

According to the monotonicity of Λϑ with respect to ϑ , we arrive at

Λϑ0–δ > Λϑ0 > Λϑ0+δ .

Thus, by the monotonicity of α(s, ·) with respect to s, we get

√

α(Λϑ0 ,ϑ0 + δ) <
√

α(Λϑ0+δ ,ϑ0 + δ) = Λϑ0+δ

and

√

α(Λϑ0 ,ϑ0 – δ) >
√

α(Λϑ0–δ ,ϑ0 – δ) = Λϑ0–δ .

Chaining the five inequalities above, we immediately obtain

Λϑ0 – ε < Λϑ0+δ < Λϑ0–δ < Λϑ0 + ε.

Then, for any ϑ ∈ (ϑ0 – δ,ϑ0 + δ), we have Λϑ0 – ε < Λϑ < Λϑ0 + ε. Therefore,

Λϑ is a continuous function of ϑ ∈ (0,ϑc). (4.40)

Now, we consider the limit of Λϑ as ϑ → 0. For any ε > 0, there is w ∈A0 such that

w3 	= 0 on Σ and

Λ0 – ε <
√

g�ρ�|w3|20 – Λ0‖√μDw‖2
0/2 – ‖√κρDw‖2

0/2 = Λ0.
(4.41)

Moreover,

Λϑ < Λ0. (4.42)

Therefore, using (3.6), (4.41), and (4.42), there is a sufficiently small constant ϑ1 ∈ (0,ϑc)
such that, for any ϑ ∈ (0,ϑ1),

Λ0 – ε <
√

g�ρ�|w3|20 – Λϑ‖√μDw‖2
0/2 – ‖√κρDw‖2

0/2 – ϑ |∇hw3|20
≤ Λϑ < Λ0. (4.43)

Hence, we have

lim
ϑ→0

Λϑ = Λ0,
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which, together with (4.40), yields that

Λϑ is a continuous function of ϑ ∈ [0,ϑc). (4.44)

(3) The upper bound (3.1) of Λϑ .
According to the definition of ϑc, we can deduce from (3.10) that

g�ρ�|w3|20 – ‖√κρDw‖2
0/2 ≤ ϑc|∇hw3|20 for any w ∈ H1

σ ,3.

Thus, by (3.6), for any given ϑ ∈ [0,ϑc), there is wϑ ∈Aϑ such that

0 ≤ Λ2
ϑ = F

(
wϑ ,Λϑ

)

≤ (ϑc – ϑ)
ϑc

(
g�ρ�

∣
∣wϑ

3
∣
∣2
0 –

∥
∥√

κρDwϑ
∥
∥2

0/2
)

–
Λϑ

2
∥
∥√

μDwϑ
∥
∥2

0,

which yields that

Λ2
ϑ +

Λϑ

2
∥
∥√

μDwϑ
∥
∥2

0 ≤ (ϑc – ϑ)
ϑc

(
g�ρ�

∣
∣wϑ

3
∣
∣2
0 –

∥
∥√

κρDwϑ
∥
∥2

0/2
)
. (4.45)

Making use of (2.3) and trace estimate (2.6), we can easily estimate that

∣
∣wϑ

3
∣
∣2
0 ≤ h+

8μ+

∥
∥√

μDwϑ
∥
∥2

0.

Similarly, we also have

∣
∣wϑ

3
∣
∣2
0 ≤ h–

8μ–

∥
∥√

μDwϑ
∥
∥2

0.

By the above two estimates, we deduce from (4.45) that

Λϑ

∥
∥√

μDwϑ
∥
∥2

0 ≤ g�ρ�(ϑc – ϑ)
4ϑc

min

{
h+

μ+
,

h–

μ–

}
∥
∥√

μDwϑ
∥
∥2

0 –
(ϑc – ϑ)

ϑc

∥
∥√

κρDwϑ
∥
∥2

0,

which yields that

Λϑ ≤ (ϑc – ϑ)
4ϑc

(

g�ρ� min

{
h+

μ+
,

h–

μ–

}

– 4 max

{
κ+ρ+

μ+
,
κ–ρ–

μ–

})

. (4.46)

Noting that ‖√ρwϑ‖0 = 1, then, by (2.13),

∣
∣wϑ

3
∣
∣2
0 ≤ 2√

ρ–

∥
∥√

ρ–wϑ
3
∥
∥

L2(Ω–)

∥
∥∂3wϑ

3
∥
∥

L2(Ω–) ≤ ‖√μDwϑ‖0√
2ρ–μ–

.

Putting the above estimate into (4.45), and then applying Young’s inequality, we obtain

Λ2
ϑ ≤ (g�ρ�(ϑc – ϑ))2

4ϑ2
c ρ–μ–Λϑ

–
(ϑc – ϑ)

2ϑc

∥
∥√

κρDwϑ
∥
∥2

0,
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which yields that

Λ3
ϑ ≤ (g�ρ�(ϑc – ϑ))2

4ϑ2
c ρ–μ–

. (4.47)

Similarly, we also have

Λ3
ϑ ≤ (g�ρ�(ϑc – ϑ))2

4ϑ2
c ρ+μ+

. (4.48)

Summing up the above two estimates, we can immediately get that

Λϑ ≤
(

(g�ρ�(ϑc – ϑ))2

4ϑ2
c max{ρ+μ+,ρ–μ–}

) 1
3

, (4.49)

which, together with (4.46), yields that

Λϑ ≤ m. (4.50)

Hence, we complete the proof of Theorem 3.2 from (4.39), (4.44), and (4.50).

5 Conclusion
In this paper, we investigate the effect of surface tension in the Rayleigh–Taylor (RT) prob-
lem of stratified incompressible viscoelastic fluids. We prove that there exists an unstable
solution to the linearized stratified RT problem with a largest growth rate Λ under the
instability condition (i.e., the surface tension coefficient ϑ is less than a threshold ϑc).
Moreover, for this instability condition, the largest growth rate Λϑ decreases from a pos-
itive constant to 0, when ϑ increases from 0 to ϑc, which mathematically verifies that the
internal surface tension can constrain the growth of the RT instability during the linear
stage.
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