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Abstract
This paper is concerned with the existence of a sign-changing solution to a class of
quasilinear Schrödinger–Poisson systems. There are some technical difficulties in
applying variational methods directly to the problem because the quasilinear term
makes it impossible to find a suitable space in which the corresponding functional
possesses both smoothness and compactness properties. In order to overcome the
difficulties caused by nonlocal term and quasi-linear term, we shall apply the
perturbation method by adding a 4-Laplacian operator to consider the perturbation
problem. And then, by using the approximation technique, a sign-changing solution
with precisely two nodal domains is derived.
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1 Introduction and main results
In this paper, we consider the existence of a sign-changing solution for the following sys-
tem:

⎧
⎨

⎩

–�u + V (x)u + φu – 1
2 u�u2 = f (u), in R

3,

–�φ = u2, in R
3,

(1.1)

where V is a continuous potential function and f is an appropriate nonlinear function. On
the potential V , we make the following assumption:

(V ) V ∈ C(R3,R), lim|x|→∞ V (x) = ∞, and V (x) ≥ m > 0 for some constant m.
According to a classical model, the interaction of a charge particle with an electromag-

netic field can be described by coupling the nonlinear Schrödinger equations and Poisson
equations. In the recent years, there has been a lot of work dealing with the following
Schrödinger–Poisson systems:

⎧
⎨

⎩

–�u + V (x)u + φu = f (x, u), in R
3,

–�φ = u2, in R
3.

(1.2)
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For example, Ambrosetti and Ruiz in [4] obtained the multiplicity results of (1.2) by using
the variational methods and Pohožaev equality. By using fountain theorem for the sub-
critical case and the symmetric mountain pass theorem, Wang, Radulescu, and Zhang
[37] studied the existence of infinitely many solutions for a class of fractional Kirchhoff–
Schrödinger–Poisson system under certain assumptions. Goubet and Hamraoui in [19]
investigated both numerically and theoretically the influence of a defect on the blow-up
of radial solutions to a cubic nonlinear Schrödinger equation in dimension 2. In [36], Tra-
belsi showed the global well-posedness of a higher-order nonlinear Schrödinger equa-
tion. Specifically, the author considered a system of infinitely many coupled higher-order
Schrödinger–Poisson–Slater equations with a self-consistent Coulomb potential. By ap-
plying non-Nehari manifold method, Wen and Chen [40] established the existence of the
Nehari-type ground state solutions for asymptotically periodic Schrödinger–Poisson sys-
tems involving Hartree-type nonlinearities. Wang and Zhou [38] considered the existence
and nonexistence of solution to (1.2) under the assumption that f is asymptotically linear
at infinity. By using the constraint variational method and the Brouwer degree theory,
Wang and Zhou [39] proved that system (1.2) has a sign-changing solution under suit-
able assumptions. Zhao and Zhao in [46] studied the existence and multiplicity of solu-
tions to (1.2) with f (x, u) = |u|p–1u, 2 < p ≤ 3 via variational methods. When V is periodic
or asymptotically periodic and f does not satisfy the Ambrosetti–Rabinowitz condition,
Alves, Souto, and Soares [2] established the existence of positive ground state solutions by
using the mountain pass theorem. Zhao, Liu, and Zhao in [45] considered the existence of
nontrivial solution and concentration results for a class of Schrödinger–Poisson equations
via variational methods. Assumption (V ) was originally used by Rabinowitz in [30] for a
semi-linear problem and also used by Omana and Willem in [28] for Hamiltonian systems
and by Costa in [12] for elliptic systems. In particular, Bartsch and Wang [7] introduced
the assumption:

(V ′) V ∈ C(R3,R) and infx∈R3 V (x) ≥ β > 0. Moreover, for every M > 0, meas{x ∈ R
3 :

V (x) ≤ M} < ∞, where meas(·) denotes the Lebesgue measure in R
3,

which is also used to overcome the lack of compactness. It implies the coercive condition
V (x) → ∞ as |x| → ∞. Hence, assumption (V ) can be replaced by (V ′).

There are also many researchers dealing with the following quasilinear Schrödinger
equations:

–�u + V (x)u – κ�
(
l
(
u2))l′

(
u2)u = f (x, u), x ∈R

3, (1.3)

where V is a proper potential function, κ is a real constant, and f , l are real functions.
Solutions of (1.3) are related to the standing wave solutions for quasilinear Schrödinger
equations of the form

iψt + �ψ – V (x)ψ + κ�
(
l
(|ψ |2))l′

(|ψ |2) + f (x,ψ) = 0, x ∈R
3.

There are many different forms about (1.3) with different expressions for l. When l is a
constant, it converts to a semilinear problem. When l(s) = sα , α ≥ 1, and l(s) = (1 + s)1/2, it
changes into some special quasilinear problems. Moreover, it turns into a general quasi-
linear problem when l is a general function.
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In particular, when l(s) = s, (1.3) becomes quasilinear Schrödinger equation as follows:

–�u + V (x)u – κ�
(|u|2))u = f (x, u), x ∈R

3, (1.4)

which has been studied extensively in recent years. The influence of the signs of parameter
κ on the existence of solutions is important. For instance, Tang, Zhang, and Zhang in [44]
obtained the existence of infinitely many nontrivial solutions of (1.4) with κ = 1 by using
the dual approach and mountain pass theorem when the nonlinearity f (x, u) is superlinear
growth. By virtue of mountain pass theorem and Moser iteration method, Alves, Wang,
and Shen in [3] used another change of variable to deal with the nontrivial solution for
(1.4) when κ < 0.

As is known to all, there are some technical difficulties in applying variational meth-
ods directly to the quasilinear equations because the quasilinear term makes it impossible
to find a suitable space in which the corresponding functional possesses both smooth-
ness and compactness properties. In order to overcome these difficulties, there are three
methods which were used before. The first one is the constrained minimization or the
Nehari method. By using this method, Poppenberg, Schmitt, and Wang in [29] obtained
the existence of standing wave solutions for a class of quasilinear Schrödinger equations
with strongly singular nonlinearities; Ruiz and Siciliano in [32] derived the existence of
ground states; Liu, Wang, and Wang in [23] established the positive solutions and sign-
changing solutions; and Liu, Wang, and Wang in [22] considered the existence of ground
states of soliton-type solutions. The second method is change of variables (see [9, 11, 13–
15, 21, 22, 42]). In [11] Colin and Jeanjean obtained the existence of nontrivial solution to
(1.5) under the nonautonomous cases and autonomous cases. Deng, Peng, and Wang in
[13] obtained a sign-changing minimizer of (1.4) by adopting the minimization argument.
Chen et al. in [9] proved the existence of sign-changing solutions with two nodal domains
for (1.4) with a Kirchhoff-type perturbation by using Miranda’s theorem and deformation
lemma. Deng, Peng, and Yan in [14, 15] investigated a generalized quasilinear Schrödinger
equation with critical exponents by using a change of variables and variational argument.
Wu and Wu in [42] considered the existence of radial solutions for a class of quasilinear
Schrödinger equations by using the variational argument and the Pohozaev-type identity.
The last one is the perturbation method which was introduced by Liu, Liu, and Wang
in [25]. Some existence results for positive solutions, negative solutions, and a sequence
of high energy solutions were obtained in [43] by using the variational method. Wu and
Wu in [41] studied a class of Schrödinger–Kirchhoff quasilinear problems and proved the
existence of infinitely many small energy solutions by applying Clark’s theorem to a per-
turbation functional. Jeanjean, Luo, and Wang in [20] considered the existence of two nor-
malized solutions by relying on the perturbation method.

When l is a constant, (1.3) can be written into the following form:

–�u + V (x)u = f (x, u), x ∈R
3. (1.5)

There are different ways to get the sign-changing solutions of equation (1.5). By using
the variational argument and a version of deformation lemma, Castro, Cossio, and Neu-
berger [8] proved that (1.5) has at least three nontrivial solutions. Noussair and Wei in
[27] established the existence of nodal solutions in a bounded domain based on Ekeland’s
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variational principle and implicit function theorem. Bartsch, Liu, and Weth in [6] came
up with infinitely many nodal solutions via construct invariant sets and descending flow.
Bartsch, Liu, and Weth in [5] proved the existence of sign-changing solutions of (1.5) with
superlinear and subcritical nonlinearity term by combining variational method with the
Brouwer degree theory.

It is worth emphasizing that these methods in finding sign-changing solutions rely on
the following decomposition. For u ∈ H1(R3),

〈
I ′

0(u), u+〉
=

〈
I ′

0
(
u+)

, u+〉
,

〈
I ′

0(u), u–〉
=

〈
I ′

0
(
u–)

, u–〉
, (1.6)

I0(u) = I0
(
u+)

+ I0
(
u–)

, (1.7)

where I0 is the energy functional associated to (1.5), and

u+(x) = max
{

u(x), 0
}

, u–(x) = min
{

u(x), 0
}

.

But, for the functional I corresponding to (1.2), we deduce by the nonlocal term φu(x) =
φu+ (x) + φu– that

I(u) = I
(
u+)

+ I
(
u–)

+
1
4

∫

R3
φu–

(
u+)2 dx +

1
4

∫

R3
φu+

(
u–)2 dx,

and

〈
I ′(u), u+〉

=
〈
I ′(u+)

, u+〉
+

∫

R3
φu–

(
u+)2 dx,

〈
I ′(u), u–〉

=
〈
I ′(u–)

, u–〉
+

∫

R3
φu+

(
u–)2 dx.

It is clear that the functional I does not satisfy decomposition (1.6) and (1.7) any more.
Hence the methods of obtaining sign-changing solutions of (1.5) cannot be applied to
system (1.1).

In fact, there are some essential differences in investigating the sign-changing solutions
between local and nonlocal equations. In particular, Wang and Zhou in [39] obtained a
sign-changing solution for system (1.2) by seeking minimizer of the energy functional I
over the following constraint:

M0 =
{

u ∈ H1(
R

3) : u± 	= 0,
〈
I ′(u), u+〉

=
〈
I ′(u), u–〉

= 0
}

.

This argument mainly shows that there is a minimizer of I constrained on M0 and then
verifies that the minimizer is a critical point of I via quantitative deformation lemma and
degree theory. By using the method, the sign-changing solution for some nonlocal equa-
tions is constructed (see [1, 9, 10, 17, 18, 21, 33–35]). The Choquard equation was stud-
ied by Ghimenti and Schaftingen in [18]. The nonlinear Schrödinger–Poisson systems in
bounded domains were considered by Alves and Souto in [1]. The Schrödinger–Poisson
type problems in R

3 were also researched by Chen and Tang in [10] and Shuai and Wang
in [34]. The Kirchhoff equation was investigated by Figueiredo and Nascimento in [17],
Tang and Chen in [35], and Shuai in [33]. The quasilinear Schrödinger equations with a
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Kirchhoff-type perturbation were discussed by Li, Zhu, and Liang in [21] and Chen et al.
in [9].

Motivated by the above papers, we consider the existence of the sign-changing solution
to system (1.1). Let H1

V (R3) := {u ∈ H1(R3)| ∫
R3 V (x)u2 dx < +∞}. For system (1.1), we want

to look for u ∈ H1
V ∩ L∞(R3) such that for all ϕ ∈ C∞(R3) satisfying

∫

R3

(∇u∇ϕ + V (x)uϕ
)

dx +
∫

R3
u2∇u∇ϕ dx +

∫

R3
|∇u|2uϕ dx

+
∫

R3
φuuϕ dx –

∫

R3
f (u)ϕ dx = 0,

which is formally associated to the energy functional given by

J(u) =
1
2

∫

R3

(|∇u|2 + V (x)u2 + u2|∇u|2)dx +
1
4

∫

R3
φuu2 dx

–
∫

R3
F(u) dx, u ∈ H1

V ∩ L∞(
R

3),

where F(u) =
∫ u

0 f (s) ds and φu is given in (2.1). We cannot apply variational methods di-
rectly to the problem because the quasilinear term makes it impossible to find a suitable
space in which the corresponding functional possesses both smoothness and compact-
ness properties. On the other hand, it is difficult to use the dual approach to consider the
sign-changing solution of (1.1) because of the nonlocal term. Thereby, we would employ
the method in [25] and [24]. In fact, we use the approximation’s method by adding a 4-
Laplacian operator and firstly consider the sign-changing critical point of the perturbed
functional:

Jλ(u) = J(u) +
λ

4

∫

R3

(|∇u|4 + u4)dx,

where λ ∈ (0, 1]. Then, by using the approximation technique and Moser’s iteration
method, the existence of sign-changing solution to system (1.1) is derived. Our result reads
as follows.

Theorem 1.1 Assume that (V ) and the following conditions hold:
(f1) f ∈ C1(R,R);
(f2) lims→0

f (s)
s = lim|s|→∞ f (s)

s11 = 0;
(f3) there exists μ > 4 such that

0 < μF(s) = μ

∫ s

0
f (t) dt ≤ sf (s), s ∈R \ {0};

(f4) f (t)
|t|3 is increasing on (–∞, 0) and (0,∞), respectively.

Then problem (1.1) possesses at least a sign-changing solution which has precisely two nodal
domains.

Remark 1.2 Throughout the paper, we denote by C > 0 various positive constants which
may vary from line to line and are not essential to the problem.
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The paper is organized as follows: in Sect. 2, some preliminary results are presented.
Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminary
In this section, we give some notations which will be used throughout this paper. Let
Lp(R3) be the usual Lebesgue space with the norm ‖u‖p = (

∫

R3 |u|p dx)1/p and H1(R3) be
the completion of C∞

0 (R3) with respect to the norm

‖u‖2
H =

∫

R3

(|∇u|2 + u2)dx.

Moreover, we denote the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1,2 =

∫

R3
|∇u|2 dx

by D1,2 = D1,2(R3). In order to deal with the perturbation functional Jλ, we need the space

X = W 1,4(
R

3) ∩ H1
V
(
R

3),

where

H1
V
(
R

3) :=
{

u ∈ H1(
R

3)|
∫

R3
V (x)u2 dx < +∞

}

,

which is a Hilbert space endowed with the norm

‖u‖H1
V

=
(∫

R3

(|∇u|2 + V (x)u2)dx
)1/2

,

and W 1,4(R3) endowed with the norm

‖u‖W =
(∫

R3

(|∇u|4 + u4)dx
)1/4

.

The norm of X is denoted by

‖u‖ =
(‖u‖2

W + ‖u‖2
H1

V

)1/2.

From (f1) and (f2), it is normal to verify that Jλ ∈ C1(X,R) for all ϕ ∈ X, and

〈
J ′
λ(u),ϕ

〉
= λ

∫

R3

(|∇u|2∇u∇ϕ + u3ϕ
)

dx +
∫

R3

(∇u∇ϕ + V (x)uϕ
)

dx +
∫

R3
φuuϕ dx

+
∫

R3
|∇u|2uϕ dx +

∫

R3
u2∇u∇ϕ dx –

∫

R3
f (u)ϕ dx.

In the proof of Theorem 1.1, we first prove that, for fixing λ ∈ (0, 1], the nodal set

Mλ =
{

u ∈ X : u± 	= 0,
〈
J ′
λ(u), u+〉

=
〈
J ′
λ(u), u–〉

= 0
}
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is nonempty and

mλ = inf
u∈Mλ

Jλ(u) > 0.

Then, we show that there is uλ ∈Mλ such that

Jλ(uλ) = inf
u∈Mλ

Jλ(u).

Furthermore, we prove that uλ is a critical point of Jλ via quantitative deformation lemma
and degree theory. Finally, we obtain the convergence property of uλ as λ → 0, and thus
the sign-changing solution of (1.1) is derived.

We observe that by the Lax–Milgram theorem, for given u ∈ H1(R3), there exists a
unique solution φ = φu ∈ D1,2 satisfying –�φu = u2 in a weak sense. The function φu is
represented by

φu(x) =
1

4π

∫

R3

u2(y)
|x – y| dy, (2.1)

and it has the following properties.

Lemma 2.1 ([31]) The following properties hold:
(i) There exists C > 0 such that, for any u ∈ H1(R3),

‖φu‖D1,2 ≤ C‖u‖2
12/5,

∫

R3
|∇φu|2 dx =

∫

R3
φuu2 dx ≤ C‖u‖4

H ;

(ii) φu ≥ 0 for all u ∈ H1(R3);
(iii) If u is radially symmetric, then φu is radial;
(iv) φtu = t2φu for all t > 0 and u ∈ H1(R3);
(v) If uj ⇀ u weakly in H1

V (R3), then, up to a subsequence, φuj → φu in D1,2 and

∫

R3
φuj u

2
j dx →

∫

R3
φuu2 dx.

3 Proofs of the main result
In this section, we first apply the methods of [10] to show the following lemma which will
play the fundamental role in our proof.

Lemma 3.1 Assume that (V ), (f1), (f2), and (f4) hold. Then, for any u = u+ + u– ∈ X, there
holds

Jλ(u) – Jλ
(
su+ + tu–)

≥ 1 – s4

4
〈
J ′
λ(u), u+〉

+
1 – t4

4
〈
J ′
λ(u), u–〉

+
(1 – s2)2

4
∥
∥u+∥

∥2
H1

V
+

(1 – t2)2

4
∥
∥u–∥

∥2
H1

V
+

(s2 – t2)2

4

∫

R3
φu+

(
u–)2 dx, s, t ≥ 0.
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Proof We deduce from (f4) that, for any t ≥ 0, τ ∈R,

1 – t4

4
τ f (τ ) + F(tτ ) – F(τ ) =

∫ 1

t

(
f (τ )
τ 3 –

f (sτ )
(sτ )3

)

s3τ 4 ds ≥ 0.

Thus, for any t, s ≥ 0, it follows

Jλ(u) – Jλ
(
su+ + tu–)

=
λ

4
(‖u‖4

W –
∥
∥su+ + tu–∥

∥4
W

)
+

1
4

∫

R3

[
φuu2 – φsu++tu–

(
su+ + tu–)2]dx

+
1
2
(‖u‖2

H1
V

–
∥
∥su+ + tu–∥

∥2
H1

V

)

+
1
2

∫

R3

[
u2|∇u|2 –

(
su+ + tu–)2∣∣∇(

su+ + tu–)∣
∣2]dx

+
∫

R3

[
F
(
su+ + tu–)

– F(u)
]

dx

=
λ

4
(∥
∥u+∥

∥4
W +

∥
∥u–∥

∥4
W – s4∥∥u+∥

∥4
W – t4∥∥u–∥

∥4
W

)

+
1
4

∫

R3

[
φu+

(
u+)2 + φu–

(
u–)2 + 2φu+

(
u–)2 – s4φu+

(
u+)2

– t4φu–
(
u–)2 – 2s2t2φu+

(
u–)2]dx

+
1
2
(∥
∥u+∥

∥2
H1

V
+

∥
∥u–∥

∥2
H1

V
– s2∥∥u+∥

∥2
H1

V
– t2∥∥u–∥

∥2
H1

V

)

+
1
2

∫

R3

[(
u+)2∣∣∇u+∣

∣2 +
(
u–)2∣∣∇u–∣

∣2 – s4(u+)2∣∣∇u+∣
∣2 – t4(u–)2∣∣∇u–∣

∣2]dx

+
∫

R3

[
F
(
su+)

+ F
(
tu–)

– F
(
u+)

– F
(
u–)]

dx

=
1 – s4

4
〈
J ′
λ(u), u+〉

+
1 – t4

4
〈
J ′
λ(u), u–〉

+
(1 – s2)2

4
∥
∥u+∥

∥2
H1

V
+

(1 – t2)2

4
∥
∥u–∥

∥2
H1

V
+

(s2 – t2)2

4

∫

R3
φu+

(
u–)2 dx

+
∫

R3

[
1 – s4

4
f
(
u+)

u+ + F
(
su+)

– F
(
u+)

]

dx

+
∫

R3

[
1 – t4

4
f
(
u–)

u– + F
(
tu–)

– F
(
u–)

]

dx

≥ 1 – s4

4
〈
J ′
λ(u), u+〉

+
1 – t4

4
〈
J ′
λ(u), u–〉

+
(1 – s2)2

4
∥
∥u+∥

∥2
H1

V
+

(1 – t2)2

4
∥
∥u–∥

∥2
H1

V
+

(s2 – t2)2

4

∫

R3
φu+

(
u–)2 dx.

The proof is completed. �

Corollary 3.2 Suppose that (V ), (f1), (f2), and (f4) are satisfied. If u = u+ + u– ∈Mλ, then

Jλ
(
u+ + u–)

= max
s,t≥0

Jλ
(
su+ + tu–)

.
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Lemma 3.3 Assume that (V ) and (f1)–(f4) are satisfied. If u ∈ X with u± 	= 0, then there
exists a unique pair (su, tu) of positive numbers such that suu+ + tuu– ∈Mλ.

Proof For each u ∈ X with u± 	= 0, we first prove the existence by using the idea in [1].
Define the functions g1, g2 : R2

+ →R by

g1(s, t) = λs4∥∥u+∥
∥4

W + 2s4
∫

R3

∣
∣∇u+∣

∣2(u+)2 dx + s2∥∥u+∥
∥2

H1
V

+ s4
∫

R3
φu+

(
u+)2 dx

+ s2t2
∫

R3
φu–

(
u+)2 dx –

∫

R3
f
(
su+)

su+ dx, (3.1)

and

g2(s, t) = λt4∥∥u–∥
∥4

W + 2t4
∫

R3

∣
∣∇u–∣

∣2(u–)2 dx + t2∥∥u–∥
∥2

H1
V

+ t4
∫

R3
φu–

(
u–)2 dx

+ s2t2
∫

R3
φu+

(
u–)2 dx –

∫

R3
f
(
tu–)

tu– dx. (3.2)

It is easy to see, by using (f1)–(f3), that g1(s, s) > 0 and g2(s, s) > 0 for s > 0 small enough and
g1(t, t) < 0, g2(t, t) < 0 for t > 0 large. Hence, there exist 0 < a1 < a2 such that

g1(a1, a1) > 0, g2(a1, a1) > 0; g1(a2, a2) < 0, g2(a2, a2) < 0. (3.3)

Notice that, for any fixed s > 0, g1(s, t) is nondecreasing on t ∈ [0,∞) and, for any fixed
t > 0, g2(s, t) is nondecreasing on s ∈ [0,∞). Thereby, combining (3.1), (3.2) with (3.3), we
have

g1(a1, t) > 0, g1(a2, t) < 0, ∀t ∈ [a1, a2],

and

g2(s, a1) > 0, g2(s, a2) < 0, ∀s ∈ [a1, a2].

By Miranda’s theorem [26], there exists a pair (su, tu) with a1 < su, tu < a2 such that
g1(su, tu) = g2(su, tu) = 0. Hence, suu+ + tuu– ∈Mλ.

Next, we prove the uniqueness. Let (s1, t1) and (s2, t2) be such that siu+ + tiu– ∈ Mλ,
i = 1, 2. Invoking Lemma 3.1, it yields

Jλ
(
s1u+ + t1u–) ≥ Jλ

(
s2u+ + t2u–)

+
(s2

1 – s2
2)2

4s2
1

∥
∥u+∥

∥2
H1

V

+
(t2

1 – t2
2)2

4t2
1

∥
∥u–∥

∥2
H1

V
,

and

Jλ
(
s2u+ + t2u–) ≥ Jλ

(
s1u+ + t1u–)

+
(s2

1 – s2
2)2

4s2
2

∥
∥u+∥

∥2
H1

V
+

(t2
1 – t2

2)2

4t2
2

∥
∥u–∥

∥2
H1

V
.

This implies (s1, t1) = (s2, t2). Thus we complete the proof. �
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Lemma 3.4 Suppose that (V ) and (f3) hold. For fixed λ ∈ (0, 1], let mλ = infu∈Mλ
Jλ(u), then

mλ > 0.

Proof For each v ∈Mλ, 〈J ′
λ(v), v〉 = 0, then we claim that there exists a constant a > 0 such

that ‖v‖2 > a for each v ∈ Mλ. In fact, we use an argument of contradiction and suppose
that there exists a sequence {vn} ⊂ Mλ such that ‖vn‖ → 0. Thus an = ‖vn‖W → 0 and
bn = ‖vn‖H1

V
→ 0. According to conditions (f1) and (f2), we observe that, for any given

ε > 0, there exists Cε > 0 such that

∣
∣f (s)

∣
∣ ≤ ε|s| + Cε|s|11, s ∈R.

Then, by virtue of the Sobolev embedding theorem, we have

λ

∫

R3

(|∇vn|4 + v4
n
)

dx +
∫

R3

(|∇vn|2 + V (x)v2
n
)

dx

+
∫

R3
φvn v2

n dx + 2
∫

R3
|∇vn|2v2

n dx

=
∫

R3
f (vn)vn dx ≤ ε‖vn‖2

2 + C‖vn‖12.

Hence, for bn < 1, it follows

a4
n + b4

n ≤ a4
n + b2

n ≤ C
(
a2

n + b2
n
)6

≤ C1
(
a12

n + b12
n

) ≤ C1
(
a4

n + b4
n
)3,

which is a contradiction. For each v ∈ Mλ, 〈J ′
λ(v), v〉 = 0. Thus, we deduce, by (f3), that

there exists a constant η > 0 such that

Jλ(v) = Jλ(v) –
1
μ

〈
J ′
λ(v), v

〉

=
(

1
4

–
1
μ

)

λ‖v‖4
W +

(
1
2

–
1
μ

)

‖v‖2
H1

V
+

(
1
2

–
2
μ

)∫

R3
v2|∇v|2 dx

+
(

1
4

–
1
μ

)∫

R3
φvv2 dx +

∫

R3

(
1
μ

f (v)v – F(v)
)

≥
(

1
4

–
1
μ

)

λ‖v‖4
W +

(
1
2

–
1
μ

)

‖v‖2
H1

V
≥ η,

which implies that mλ ≥ η > 0. The proof is completed. �

Lemma 3.5 Suppose that (V ) and (f1)–(f4) are satisfied. Then

inf
u∈Mλ

Jλ(u) = mλ = inf
u∈H,u±	=0

max
s,t≥0

Jλ
(
su+ + tu–)

.

Proof It follows from Corollary 3.2 that

inf
u∈X,u±	=0

max
s,t≥0

Jλ
(
su+ + tu–) ≤ inf

u∈Mλ

max
s,t≥0

Jλ
(
su+ + tu–)

= inf
u∈Mλ

Jλ(u) = mλ.
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On the other hand, for any u ∈ X with u± 	= 0, we deduce from Lemma 3.1 that

max
s,t≥0

Jλ
(
su+ + tu–) ≥ Jλ

(
suu+ + tuu–) ≥ inf

u∈Mλ

Jλ(u) = mλ,

which ensures

inf
u∈X,u±	=0

max
s,t≥0

Jλ
(
su+ + tu–) ≥ inf

u∈Mλ

Jλ(u) = mλ.

Thus, the conclusion holds. The proof is completed. �

Lemma 3.6 Suppose that (V ) and (f1)–(f4) are satisfied. For fixed λ ∈ (0, 1], the mλ can be
achieved.

Proof Let {un} ⊂Mλ be such that Jλ(un) → mλ. Then, for n ∈ N large enough, we obtain

mλ + 1 ≥ Jλ(un) –
1
μ

〈
J ′
λ(un), un

〉

=
(

1
4

–
1
μ

)

λ‖un‖4
W +

(
1
2

–
1
μ

)

‖un‖2
H1

V
+

(
1
2

–
2
μ

)∫

R3
u2

n|∇un|2 dx

+
(

1
4

–
1
μ

)∫

R3
φun u2

n dx +
∫

R3

(
1
μ

f (un)un – F(un)
)

.

This shows that {un} is bounded in X. Then, up to a subsequence, we assume that there
exists uλ ∈ X such that u±

n ⇀ u±
λ in X. Recall that the embedding from H1

V (R3) into L2(R3)
is compact. Thus, by applying the interpolation inequality, it is easy to see that un → u in
Lq(R3) for 2 ≤ q < 12. Since un ∈Mλ, there holds 〈J ′

λ(un), u±
n 〉 = 0, that is,

λ

∫

R3

(∣
∣∇u±

n
∣
∣4 +

(
u±

n
)4)dx +

∫

R3

(∣
∣∇u±

n
∣
∣2 + V (x)

(
u±

n
)2)dx

+
∫

R3
φun

(
u±

n
)2 dx + 2

∫

R3

∣
∣∇u±

n
∣
∣2(u±

n
)2 dx =

∫

R3
f
(
u±

n
)
u±

n dx. (3.4)

Repeating the above arguments once more, there exists a constant μ > 0 such that
‖u±

n ‖2 > μ. It is easy to verify from (f1) and (f2) that, for any ε > 0 and p ∈ (2, 12), there
exists Cε > 0 such that

∣
∣f (s)

∣
∣ ≤ ε

(|s| + |s|11) + Cε|s|p–1, s ∈R. (3.5)

Hence, we derive that, for some constant μ1 > 0,

0 < μ1 ≤ lim inf
n→∞

[

λ

∫

R3

(∣
∣∇u±

n
∣
∣4 +

(
u±

n
)4)dx +

∫

R3

(∣
∣∇u±

n
∣
∣2 + V (x)

(
u±

n
)2)dx

+
∫

R3
φun

(
u±

n
)2 dx + 2

∫

R3

∣
∣∇u±

n
∣
∣2(u±

n
)2 dx

]

= lim inf
n→∞

∫

R3
f
(
u±

n
)
u±

n dx

=
∫

R3
f
(
u±

λ

)
u±

λ dx,
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which implies that u±
λ 	= 0. It follows from Lemma 3.2 that there exists a unique pair of

positive numbers (s1, t1) such that s1u+
λ + t1u–

λ ∈Mλ. Thus, we have

λs4
1
∥
∥u+

λ

∥
∥4

W + 2s4
1

∫

R3

∣
∣∇u+

λ

∣
∣2(u+

λ

)2 dx + s2
1
∥
∥u+

λ

∥
∥2

H1
V

+ s4
1

∫

R3
φu+

λ

(
u+

λ

)2 dx

+ s2
1t2

1

∫

R3
φu–

λ

(
u+

λ

)2 dx =
∫

R3
f
(
s1u+

λ

)
s1u+

λ dx.

Without loss of the generality, we assume that t1 ≤ s1. Then, by using (3.1) again, we have

1
s2

1

∥
∥u+

λ

∥
∥2

H1
V

+ λ
∥
∥u+

λ

∥
∥4

W + 2
∫

R3

∣
∣∇u+

λ

∣
∣2(u+

λ

)2 dx +
∫

R3
φu+

λ

(
u+

λ

)2 dx

+
∫

R3
φu–

λ

(
u+

λ

)2 dx ≥
∫

R3

f (s1u+
λ)

(s1u+
λ)3

(
u+

λ

)4 dx. (3.6)

According to the weak semicontinuity of norm, Fatou’s lemma, and (3.4), we see that

λ

∫

R3

(∣
∣∇u±

λ

∣
∣4 +

(
u±

λ

)4)dx +
∫

R3

(∣
∣∇u±

λ

∣
∣2 + V (x)

(
u±

λ

)2)dx

+
∫

R3
φuλ

(
u±

λ

)2 dx + 2
∫

R3

∣
∣∇u±

λ

∣
∣2(u±

λ

)2 dx

≤ lim inf
n→∞

[

λ

∫

R3

(∣
∣∇u±

n
∣
∣4 +

(
u±

n
)4)dx +

∫

R3

(∣
∣∇u±

n
∣
∣2 + V (x)

(
u±

n
)2)dx

+
∫

R3
φun

(
u±

n
)2 dx + 2

∫

R3

∣
∣∇u±

n
∣
∣2(u±

n
)2 dx

]

= lim inf
n→∞

∫

R3
f
(
u±

n
)
u±

n dx =
∫

R3
f
(
u±

λ

)
u±

λ dx,

which shows that

〈
J ′
λ(uλ), u±

λ

〉 ≤ 0.

If s1 > 1, in view of (3.6) and (f4), we derive

∥
∥u+

λ

∥
∥2

H1
V

+ λ
∥
∥u+

λ

∥
∥4

W + 2
∫

R3

∣
∣∇u+

λ

∣
∣2(u+

λ

)2 dx +
∫

R3
φu+

λ

(
u+

λ

)2 dx

+
∫

R3
φu–

λ

(
u+

λ

)2 dx >
∫

R3
f
(
u+

λ

)
u±

λ dx,

which contradicts that 〈J ′
λ(uλ), u+

λ〉 ≤ 0. Thus we conclude that s1 ≤ 1. It follows from (f4)
that f (s)s/4 – F(s) is nondecreasing on (0,∞) and nonincreasing on (–∞, 0). Hence, by the
definition of mλ, we have

mλ = lim
n→∞

[

Jλ(un) –
1
4
〈
J ′
λ(un), un

〉
]

≥ 1
4

lim inf
n→∞ ‖un‖2

H1
V

+ lim inf
n→∞

∫

R3

(
1
4

f (un)un – F(un)
)

≥ 1
4
‖uλ‖2

H1
V

+
∫

R3

(
1
4

f (uλ)uλ – F(uλ)
)
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= Jλ(uλ) –
1
4
〈
J ′
λ(uλ), uλ

〉

≥ 1
4
[
s2

1
∥
∥u+

λ

∥
∥2

H1
V

+ t2
1
∥
∥u–

λ

∥
∥2

H1
V

]

+
∫

R3

(
1
4

f
(
s1u+

λ

)
s1u+

λ – F
(
s1u+

λ

)
)

+
∫

R3

(
1
4

f
(
t1u–

λ

)
t1u–

λ – F
(
t1u–

λ

)
)

= Jλ
(
s1u+

λ + t1u–
λ

)
–

1
4
〈
J ′
λ

(
s1u+

λ + t1u–
λ

)
, s1u+

λ + t1u–
λ

〉 ≥ mλ.

Therefore, we observe that s1 = t1 = 1, uλ ∈ Mλ, and Jλ(uλ) = mλ. The proof is com-
pleted. �

Lemma 3.7 Assume that (V ) and (f1)–(f4) are satisfied. If vλ ∈ Mλ and Jλ(vλ) = mλ for
fixing λ ∈ (0, 1], then vλ is a critical point of Jλ.

Proof It is sufficient to prove that J ′
λ(vλ) = 0. Otherwise, there exist δ,μ > 0 such that

‖J ′
λ(w)‖ ≥ μ for all w ∈ B̄3δ(vλ) = {w ∈ X : ‖w – vλ‖ ≤ 3δ}. Let D = (0.5, 1.5) × (0.5, 1.5)

and define γ (s, t) = sv+
λ + tv–

λ on D̄. From Corollary 3.2, we can derive that

κ = max
(s,t)∈∂D

Jλ
(
γ (s, t)

)
< mλ.

For ε ∈ (0, min{(mλ – κ)/2,μδ/8}) and S = Bδ(vλ) = {w ∈ X : ‖w – vλ‖ < δ}, there exists a
deformation η ∈ C([0, 1] × X, X) such that

(a) η(1, w) = w, w /∈ J–1
λ ([mλ – 2ε, mλ + 2ε]) ∩ S2δ ;

(b) η(1, Jmλ+ε

λ ∩ S) ⊂ Jmλ–ε

λ ;
(c) Jλ(η(1, w) ≤ Jλ(w), w ∈ X ;
(d) ‖η(1, w) – w‖ ≤ δ, w ∈ X .

It follows from Corollary 3.2 that Jλ(sv+
λ + tv–

λ) ≤ Jλ(vλ) = mλ for s, t ≥ 0. By (b), it is easy to
see that

Jλ
(
η
(
1, sv+

λ + tv–
λ

)) ≤ mλ – ε, ∀s, t ≥ 0, |s – 1|2 + |t – 1|2 < δ2/‖vλ‖2. (3.7)

On the other hand, for s, t ≥ 0, |s – 1|2 + |t – 1|2 ≥ δ2/‖vλ‖2, we deduce, by (c) and
Lemma 3.1, that

Jλ
(
η
(
1, sv+

λ + tv–
λ

)) ≤ Jλ
(
sv+

λ + tv–
λ

)

≤ Jλ(vλ) –
(1 – s2)2

4
∥
∥v+

λ

∥
∥2

H1
V

–
(1 – t2)2

4
∥
∥v–

λ

∥
∥2

H1
V

≤ mλ –
δ2

8‖vλ‖2 min
{∥
∥v+

λ

∥
∥2

H1
V

,
∥
∥v–

λ

∥
∥2

H1
V

}
. (3.8)

Hence, combining (3.7) with (3.8), we have

max
(s,t)∈D̄

Jλ
(
η
(
1, sv+

λ + tv–
λ

))
< mλ. (3.9)



Chen et al. Boundary Value Problems        (2019) 2019:159 Page 14 of 19

In what follows, we prove that η(1,γ (D)) ∩Mλ 	= ∅. Let us define functions on D̄ by

γ1(s, t) = η
(
1,γ (s, t)

)
,

Ψ0(s, t) =
(〈

J ′
λ

(
γ (s, t)

)
, v+

λ

〉
,
〈
J ′
λ

(
γ (s, t)

)
, v–

λ

〉)
,

and

Ψ1(s, t) =
(

1
s
〈
J ′
λ

(
γ1(s, t)

)
,
(
γ1(s, t)

)+〉
,

1
t
〈
J ′
λ

(
γ1(s, t)

)
,
(
γ1(s, t)

)–〉
)

.

By direct calculation, we derive that the Jacobi matrix of Ψ0 at (1, 1) is

JΨ0 (1, 1) =

(
A 2

∫

R3 φv–
λ
(v+

λ)2 dx
2
∫

R3 φv+
λ
(v–

λ)2 dx B

)

,

where

A = 3λ
∥
∥v+

λ

∥
∥4

W + 6
∫

R3

∣
∣∇v+

λ

∣
∣2(v+

λ

)2 dx +
∥
∥v+

λ

∥
∥2

H1
V

+ 3
∫

R3
φv+

λ

(
v+
λ

)2 dx

+
∫

R3
φv–

λ

(
v+
λ

)2 dx –
∫

R3
f ′(v+

λ

)(
v+
λ

)2 dx,

and

B = 3λ
∥
∥v–

λ

∥
∥4

W + 6
∫

R3

∣
∣∇v–

λ

∣
∣2(v–

λ

)2 dx +
∥
∥v–

λ

∥
∥2

H1
V

+ 3
∫

R3
φv–

λ

(
v–
λ

)2 dx

+
∫

R3
φv+

λ

(
v–
λ

)2 dx –
∫

R3
f ′(v–

λ

)(
v–
λ

)2 dx.

We deduce from (f4), by simple calculation, that

3f (s)s ≤ f ′(s)s2, s ∈R.

Hence, recalling that vλ ∈Mλ, we derive that

A = –2
(

∥
∥v+

λ

∥
∥2

H1
V

+
∫

R3
φv–

λ

(
v+
λ

)2 dx
)

+
∫

R3

[
3f

(
v+
λ

)
v+
λ – f ′(v+

λ

)(
v+
λ

)2]dx

≤ –2
(

∥
∥v+

λ

∥
∥2

H1
V

+
∫

R3
φv–

λ

(
v+
λ

)2 dx
)

.

Similarly,

B ≤ –2
(

∥
∥v–

λ

∥
∥2

H1
V

+
∫

R3
φv+

λ

(
v–
λ

)2 dx
)

.

Hence, we can conclude that

det JΨ0 (1, 1) ≥ 4
∥
∥v+

λ

∥
∥2

H1
V

∥
∥v–

λ

∥
∥2

H1
V

> 0.
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By using the fact that (1, 1) is the unique zero point of Ψ0 in D̄, we see that

deg(Ψ0, D, 0) = sign det JΨ0 (1, 1) = 1.

Moreover, it follows from (a) that γ1 = γ on ∂D. Thus, we derive that deg(Ψ1, D, 0) =
deg(Ψ0, D, 0) = 1. Therefore, there exists some (s0, t0) ∈ D such that Ψ1(s0, t0) = 0. Then
it follows from the Sobolev embedding theorem and (d) that γ1(s0, t0) ∈ Mλ and hence
η(1,γ (D)) ∩Mλ /∈ ∅, which is in contradiction with (3.9). Thereby, uλ is a sign-changing
critical point of Jλ.

To the end, we will show that uλ has exactly two nodal domains, we assume by contra-
diction that

uλ = u1 + u2 + u3,

where

ui 	= 0, u1 ≥ 0, u2 ≤ 0 and supp(ui) ∩ supp(uj) = ∅, for i 	= j, i, j = 1, 2, 3.

It is obvious that

〈
J ′
λ(uλ), ui

〉
= 0 for i = 1, 2, 3.

Let v = u1 + u2, we see that v+ = u1 and v– = u2, and thus v± 	= 0. Then, it follows from (f4)
and Lemma 3.1 that

mλ = Jλ(uλ) = Jλ(uλ) –
1
4
〈
J ′
λ(uλ), uλ

〉

= Jλ(v) + Jλ(u3) +
1
4

∫
(
φu3 v2 + φvu2

3
)

dx

–
1
4

[
〈
J ′
λ(v), v

〉
+

〈
J ′
λ(u3), u3

〉
+

∫

R3

(
φu3 v2 + φvu2

3
)

dx
]

≥ sup
s,t≥0

[

Jλ
(
sv+ + tv–)

+
1 – s4

4
〈
J ′
λ(v), v+〉

+
1 – t4

4
〈
J ′
λ(v), v–〉

]

–
1
4
〈
J ′
λ(v), v

〉
+ Jλ(u3) –

1
4
〈
J ′
λ(u3), u3

〉

≥ sup
s,t≥0

[

Jλ
(
sv+ + tv–)

+
s4

4

∫

φu3

(
v+)2 dx +

t4

4

∫

R3
φu3

(
v–)2 dx

]

+
1
4
‖u3‖2

H1
V

+
∫

R3

[
1
4

f (u3)u3 – F(u3)
]

dx

≥ sup
s,t≥0

Jλ
(
sv+ + tv–)

+
1
4
‖u3‖2

H1
V

≥ mλ +
1
4
‖u3‖2

H1
V

,

which implies that u3 = 0, and uλ has exactly two nodal domains. The proof is com-
pleted. �
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Lemma 3.8 ([16]) Let λn → 0 as n → ∞ and {un} ⊂ X be a sequence of critical points
of Jλn satisfying J ′

λn (un) = 0 and Jλn (un) ≤ C for some C independent of n. Then up to a
subsequence un ⇀ u in H1

V (R3) as n → ∞ and u is a critical point of J .

Proof of Theorem 1.1 Let us choose a sequence λn → 0. By Lemma 3.6, there exists {un} ⊂
X satisfying Jλn (un) = mλn and J ′

λn (un) = 0. Assume ϕ ∈ C∞
0 (R3) with ϕ± 	= 0, we can find a

pair of positive numbers (s0, t0) independent of n such that

〈
J ′
λn

(
s0ϕ

+ + t0ϕ
–)

, s0ϕ
+〉 ≤ 〈

J ′
1
(
s0ϕ

+ + t0ϕ
–)

, s0ϕ
+〉

< 0

and

〈
J ′
λn

(
s0ϕ

+ + t0ϕ
–)

, t0ϕ
–〉 ≤ 〈

J ′
1
(
s0ϕ

+ + t0ϕ
–)

, t0ϕ
–〉

< 0.

Let ϕ1 = s0ϕ
+ + t0ϕ

–. Then similarly to the proof of Lemma 3.5, it follows from Lemma 3.1
that there exists a unique pair of positive numbers (sn, tn) ⊂ (0, 1] × (0, 1] such that snϕ

+
1 +

tnϕ
–
1 ∈Mλn . Hence, by using (f4) again, we derive that

mλn ≤ Jλn

(
snϕ

+
1 + tnϕ

–
1
)

–
1
4
〈
J ′
λn

(
snϕ

+
1 + tnϕ

–
1
)
, snϕ

+
1 + tnϕ

–
1
〉

=
1
4
[
s2

n
∥
∥ϕ+

1
∥
∥2

H1
V

+ t2
n
∥
∥ϕ–

1
∥
∥2

H1
V

]

+
∫

R3

(
1
4

f
(
snϕ

+
1
)
snϕ

+
1 – F

(
snϕ

+
1
)
)

+
∫

R3

(
1
4

f
(
tnϕ

–
1
)
tnϕ

–
1 – F

(
tnϕ

–
1
)
)

≤ 1
4
[∥
∥ϕ+

1
∥
∥2

H1
V

+
∥
∥ϕ–

1
∥
∥2

H1
V

]
+

∫

R3

(
1
4

f
(
ϕ+

1
)
ϕ+

1 – F
(
ϕ+

1
)
)

+
∫

R3

(
1
4

f
(
ϕ–

1
)
ϕ–

1 – F
(
ϕ–

1
)
)

= J1(ϕ1) –
1
4
〈
J ′
1(ϕ1),ϕ1

〉
,

which implies that {mλn} is bounded. Hence, according to Lemma 3.7, there exists a critical
point u of J such that un ⇀ u in H1

V (R3), and hence u±
n → u± in L2(R3). Next, we will

show that u± 	= 0. In fact, if ‖u±‖2 ≥ 1, the result holds. On the other hand, suppose that
‖u±‖2 < 1, it follows that ‖u±

n ‖2 < 1 for n large enough. By using (f1) and (f2) again, there
holds, for any ε > 0 and q ∈ (4, 12), that there exists Cε > 0 such that

∣
∣f (s)

∣
∣ ≤ ε

(|s| + |s|11) + Cε|s|q–1, s ∈R.

Hence by Sobolev’s inequality, interpolation inequality, and Young’s inequality, we obtain
that there exist C1, C2 > 0 such that

0 = λn

∫

R3

(∣
∣∇u±

n
∣
∣4 +

(
u±

n
)4)dx +

∫

R3

(∣
∣∇u±

n
∣
∣2 + V (x)

(
u±

n
)2)dx

+ 2
∫

R3

∣
∣∇u±

n
∣
∣2(u±

n
)2 dx

+
∫

R3
φun

(
u±

n
)2 dx –

∫

R3
f
(
u±

n
)
u±

n dx
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≥
∫

R3

(∣
∣∇u±

n
∣
∣2 + V (x)

(
u±

n
)2)dx +

∫

R3

∣
∣∇u±

n
∣
∣2(u±

n
)2 dx – ε

∥
∥u±

n
∥
∥2

2

– ε
∥
∥u±

n
∥
∥12

12 – Cε

∥
∥u±

n
∥
∥q

q

≥ C1
∥
∥u±

n
∥
∥4

q – C2
∥
∥u±

n
∥
∥q

q,

which implies ‖u±
n ‖q ≥ ( C1

C2
)1/(q–4). Note that the embedding from H1

V (R3) into L2(R3) is
compact. Thus, by applying the interpolation inequality, we know that un → u in Lq(R3)
for 2 ≤ q < 12. Thereby, we see that u± 	= 0 and u is a sign-changing critical of J .

In the sequel, we claim that u has also exactly two nodal domains. In fact, recalling that
u is a critical point of J , there holds

∫

R3

(|∇u|2 + V (x)u2)dx + 2
∫

R3
u2|∇u|2 dx +

∫

R3
φuu2 dx =

∫

R3
f (u)u dx. (3.10)

On the other hand, 〈J ′(un), un〉 = 0 implies that

λn

∫

R3

(|∇un|4 + u4
n
)

dx +
∫

R3

(|∇un|2 + V (x)u2
n
)

dx + 2
∫

R3
u2

n|∇un|2 dx

+
∫

R3
φun u2

n dx =
∫

R3
f (un)un dx. (3.11)

By using (3.5) again and the compact embedding, we can prove

lim
n→∞

∫

R3
f (un)un dx =

∫

R3
f (u)u dx.

Then, combining (3.10) with (3.11) and using Fatou’s lemma and weak semicontinuity of
norm, up to a subsequence, we get that un → u strongly in H1

V (R3). The proof is com-
pleted. �
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