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Abstract
We obtain multiplicity and uniqueness results in the weak sense for the following
nonhomogeneous quasilinear equation involving the p(x)-Laplacian operator with
Dirichlet boundary condition:

–�p(x)u + V(x)|u|q(x)–2u = f (x,u) in Ω ,u = 0 on ∂Ω ,

where Ω is a smooth bounded domain inR
N , V is a given function with an indefinite

sign in a suitable variable exponent Lebesgue space, f (x, t) is a Carathéodory function
satisfying some growth conditions. Depending on the assumptions, the solutions set
may consist of a bounded infinite sequence of solutions or a unique one. Our
technique is based on a symmetric version of the mountain pass theorem.
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1 Introduction
In this work, we study the existence of solutions for the following nonlinear Dirichlet prob-
lem involving the p(x)-Laplacian operator:

⎧
⎨

⎩

–�p(x)u + V (x)|u|q(x)–2u = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(1.1)

where Ω ⊂ R
N is a smooth bounded domain, p, q, s : Ω → R

+ are continuous functions,
V ∈ Ls(x)(Ω) has an indefinite sign, and f (x, t) is a Carathéodory function. Let us recall that
the p(x)-Laplacian operator �p(x) is defined by

�p(x)u = div
(|∇u|p(x)–2∇u

)
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and is an extension of the classical p-Laplacian operator obtained in the case where the
function p(x) is just a positive constant p. A growing interest in the study of the p(x)-
Laplacian operator has arisen during the last two decades, in regard to its involvement in
the modelings of a large number of phenomena. One can name for instance electrorheo-
logical fluids [30, 32, 36], elastic mechanics, flows in porous media and image processing
[11], curl systems emanating from electromagnetism [4, 7]. For more details, we refer to
Acerbi and Mingione [2] and Růžička [32] about electrorheological fluids, and to Antont-
sev and Shmarev [5] about nonlinear Darcy’s law in porous media. Because of its nonho-
mogeneous feature, the p(x)-Laplacian operator is reasonably expected to be appropriate
for modeling nonhomogeneous materials. Recently, several works devoted to existence
problems for p-Laplacian operator have been naturally generalized to the case of p(x)-
Laplacian operator. In relevance with the present work are the papers in [1, 8, 9, 16, 17,
20, 21, 25, 27, 29] and the references therein. To the best of our knowledge, the earliest
paper that deals with the variable exponent case with V ≡ 0 in (1.1) is the article by Fan
and Zhang (cf. [22]). Indeed, those authors studying the problem

⎧
⎨

⎩

–�p(x)u = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(1.2)

proved by the mountain pass theorem and by the fountain theorem that problem (1.2)
admits respectively at least one nontrivial weak solution and infinitely many pairs of weak
solutions. In an earlier work, Dinca et al. (cf. [17]), using variational and topological meth-
ods, proved the existence and multiplicity of weak solutions for problem (1.2) for the case
p(x) ≡ p (p is a constant). Their main tool was the mountain pass theorem of Ambrosetti
and Rabinowitz (cf. [3]). The approach for dealing with the case where V > 0 is technically
similar to that of V = 0. In [8, 9], the authors considered problem (1.1) with V bounded
and p(·) = q(·) and proved the existence of nonnegative solutions using a mountain pass
theorem. Most of the results are derived from a β(x)-growth assumption on the nonlinear-
ity f (x, t) with additional assumptions preventing the range of p(·) to interfere with that
of β(·). Motivated by the works in [8, 9, 17, 20, 22, 25, 27], we study here the nonlinear
Dirichlet problem (1.1) when the function V (·) has an indefinite sign and belongs to the
generalized Lebesgue space Ls(x)(Ω). We assume furthermore that p(·) �= q(·) and the non-
linearity f (x, t) satisfies a β(x)-growth assumption. The interest in this work is twofold: the
weight V is not bounded and may change sign, and besides the range of p(·) may interfere
with that of q(·) or β(·) as well. To the best of our knowledge, our setting is more general
than those of [8, 9, 22] and our method contrasts with other treatments of (1.1). The func-
tional framework is the generalized Lebesgue and Sobolev spaces with variable exponents
and our technique is based on a Z2 symmetric version of the mountain pass theorem.

The remainder of this paper is organized as follows. In Section 2, we introduce some
technical results and formulate the required hypotheses on (1.1). Sections 3 and 4 are
devoted to the statement of our main results along with some auxiliary results and to their
proofs. In the appendix we present the appropriate version of the mountain pass theorem
related to our problem.
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2 Preliminaries and hypotheses
In order to study problem (1.1), some of the properties on variable exponent Lebesgue
spaces and Sobolev spaces, Lp(x)(Ω) and W 1,p(x)(Ω) respectively, are required and listed
below. We refer to [15, 23, 26] for exhaustive details on properties of those spaces.

Suppose that Ω is a bounded domain of RN with a smooth boundary ∂Ω . Let us denote

L∞
+ (Ω) =

{
p ∈ L∞(Ω) : ess inf

Ω
p(x) ≥ 1

}
,

C+(Ω) =
{

p ∈ C(Ω) : p(x) > 1 for every x ∈ Ω
}

,

p– = min
x∈Ω

p(x), p+ = max
x∈Ω

p(x) for p ∈ C+(Ω),

M = {u : Ω →R : u is a measurable real-valued function}.

Definition 2.1 For any p ∈ L∞
+ (Ω), the variable exponent Lebesgue space Lp(x)(Ω) is de-

fined by

Lp(x)(Ω) =
{

u ∈ M :
∫

Ω

|u|p(x) dx < +∞
}

.

For any u ∈ Lp(x)(Ω), we define the so-called Luxemburg norm on Lp(x)(Ω) by

|u|p(·) = inf

{

λ > 0 :
∫

Ω

∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

Throughout this paper, Lp(x)(Ω) will be endowed with this norm.
The modular, which is the mapping �p(·) : Lp(x)(Ω) →R defined by

�p(·)(u) =
∫

Ω

|u|p(x) dx,

is at many aspects an important tool in studying generalized Lebesgue–Sobolev spaces.

Remark 2.2 Variable exponent Lebesgue spaces have many properties similar to those
of classical Lebesgue spaces, namely they are separable Banach spaces and the Hölder
inequality holds. The inclusions between Lebesgue spaces are also naturally generalized,
that is, if 0 < mes(Ω) < ∞ and p, q are variable exponents such that p(x) < q(x) a.e. in Ω ,
then there exists a continuous embedding Lq(x)(Ω) ↪→ Lp(x)(Ω).

We recall below some statements whose details can be found in [18, 20, 23].
Let us denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), with 1

p(x) + 1
p′(x) = 1. There

is a counterpart of the Hölder inequality for variable exponent Lebesgue spaces when p ∈
L∞

+ (Ω) in the literature (cf. [18]). We give below a version relevant to the need of this work.

Proposition 2.3 (Hölder inequality)

∫

Ω

|uv|dx ≤
(

1
p– +

1
p′–

)

|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·)

for all u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω), and p, q ∈ C+(Ω).
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Proposition 2.4 For p ∈ C+(Ω), we have the following:

min
(|u|p–

p(·), |u|p+

p(·)
) ≤ �p(·)(u) ≤ max

(|u|p–

p(·), |u|p+

p(·)
)
.

It is worth noticing that this relation between the norm and the modular shows an equiv-
alence between the topology defined by the norm and that defined by the modular.

Proposition 2.5 Let p and q be measurable functions such that p ∈ C+(Ω) and pq ∈
L∞

+ (Ω). Let u ∈ Lq(x)(Ω), u �= 0. Then

|u|p(·)q(·) ≤ 1 ⇒ |u|p+

p(·)q(·) ≤ ∣
∣|u|p(·)∣∣

q(·) ≤ |u|p–

p(·)q(·),

|u|p(·)q(·) ≥ 1 ⇒ |u|p–

p(·)q(·) ≤ ∣
∣|u|p(·)∣∣

q(·) ≤ |u|p+

p(·)q(·).

In particular, if p(x) = p is a constant, then

∣
∣|u|p∣∣q(·) = |u|ppq(·).

Definition 2.6 The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,

with the norm

‖u‖1,p(·) = ‖∇u‖p(·) + |u|p(·),

where |∇u| =
√∑N

i=1( ∂u
∂xi

)2.

Proposition 2.7 Lp(x)(Ω) and W 1,p(x)(Ω) are separable Banach spaces when p ∈ L∞
+ (Ω),

reflexive and uniformly convex for p ∈ L∞(Ω) and ess infΩ p(x) > 1.

Definition 2.8 For p ∈ C+(Ω), let us define the so-called critical Sobolev exponent of p
by

p∗(x) =

⎧
⎨

⎩

Np(x)
N–p(x) if p(x) < N ,

+∞ if p(x) ≥ N ,

for every x ∈ Ω .

We also define the space W 1,p(x)
0 (Ω) as the closure of the space C∞

0 (Ω) (C∞-functions
with compact support in Ω) in the space W 1,p(x)(Ω) with respect to the norm ‖u‖1,p(x).

The dual space of W 1,p(x)
0 (Ω) is denoted by W –1,p′(x)(Ω), where 1

p(x) + 1
p′(x) = 1, for every

x ∈ Ω .
With respect to those spaces, we recall from [15, 23] the following.
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Proposition 2.9
(i) W 1,p(x)

0 (Ω) is a separable Banach space when p ∈ L∞
+ (Ω), reflexive and uniformly

convex when p ∈ L∞(Ω) and ess infΩ p(x) > 1.
Assume that p, q ∈ C+(Ω). Then

(ii) if p(x) < N and q(x) < p∗(x) = Np(x)
N–p(x) for every x ∈ Ω , then there is a compact and

continuous embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω);

(iii) if p(x) > N for every x ∈ Ω , then

W 1,p(x)(Ω)↪→L∞(Ω);

(iv) there is a constant C > 0 such that

|u|p() ≤ C‖∇u‖p(), for all u ∈ W 1,p(x)
0 (Ω).

Remark 2.10 Using estimate (iv) of Proposition 2.9, we derive that the norm ‖u‖1,p(·) =
‖∇u‖p(·) + |u|p(·) is equivalent to the norm ‖u‖ = ‖∇u‖p(·) in W 1,p(x)

0 (Ω). Here and hence-
forth, we will consider the space W 1,p(x)

0 (Ω) equipped with the norm ‖u‖ = ‖∇u‖p(·).
Moreover, one can prove (cf. [15]) that the norm ‖u‖ is weakly sequentially lower semi-

continuous.

Remark 2.11 If q ∈ C+(Ω) and q(x) < p∗(x) for every x ∈ Ω , then the embedding of
W 1,p(x)

0 (Ω) into Lq(x)(Ω) is compact.

As in the case p(x) ≡ p (a constant), we consider the p(x)-Laplacian operator

–�p(x) : W 1,p(x)
0 (Ω) → W –1,p′(x)(Ω)

defined by

〈–�p(x)u, v〉 =
∫

Ω

|∇u|p(x)–2∇u∇v dx for all u, v ∈ W 1,p(x)
0 (Ω),

where 〈 , 〉 denotes the duality pairing between W 1,p(x)
0 (Ω) and W –1,p′(x)(Ω).

We have the following properties (cf. [10, 22]).

Proposition 2.12
(i) –�p(x) : W 1,p(x)

0 (Ω) → W –1,p′(x)(Ω) is a homeomorphism.
(ii) –�p(x) : W 1,p(x)

0 (Ω) → W –1,p′(x)(Ω) is a strictly monotone operator, that is,

–〈�p(x)u – �p(x)v, u – v〉 > 0 for all u �= v ∈ W 1,p(x)
0 (Ω).

(iii) –�p(x) : W 1,p(x)
0 (Ω) → W –1,p′(x)(Ω) is a mapping of type (S+), that is,

if un ⇀ u in W 1,p(x)
0 (Ω) and lim sup

n→∞
〈–�p(x)un, un – u〉 ≤ 0,

then un → u in W 1,p(x)
0 (Ω).
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Proposition 2.13 The functional Ψ : W 1,p(x)
0 (Ω) →R defined by

Ψ (u) =
∫

Ω

1
p(x)

|∇u|p(x) dx

is continuously Fréchet differentiable, sequentially weakly lower semicontinuous, and
Ψ ′(u) = –�p(x)u for all u ∈ W 1,p(x)

0 (Ω).

Note that, if f : Ω × R → R is a Carathéodory function and u ∈ M, then the function
Nf u : Ω → R defined by (Nf u)(x) = f (x, u(x)) for x ∈ Ω is measurable in Ω . Thus, the
Carathéodory function f : Ω ×R→ R generates an operator Nf : M → M, which is called
the Nemytskii operator. The properties of Nf are recalled through the propositions below
(see [35] for details).

Proposition 2.14 Suppose that f : Ω × R → R is a Carathéodory function satisfying the
following growth condition:

∣
∣f (x, t)

∣
∣ ≤ c|t| α(x)

β(x) + h(x) for every x ∈ Ω , t ∈R,

where α,β ∈ C+(Ω), c ≥ 0 is constant, and h ∈ Lβ(x)(Ω). Then Nf (Lα(x)(Ω)) ⊆ Lβ(x)(Ω).
Moreover, Nf is continuous from Lα(x)(Ω) into Lβ(x)(Ω) and maps a bounded set into a
bounded set.

Proposition 2.15 Suppose that f : Ω × R → R is a Carathéodory function satisfying the
following growth condition:

∣
∣f (x, t)

∣
∣ ≤ c|t|α(x)–1 + h(x) for every x ∈ Ω , t ∈R,

where c ≥ 0 is constant, α ∈ C+(Ω), h ∈ Lα′(x)(Ω) with α′ the conjugate exponent of α, i.e.,
α′(x) = α(x)

α(x)–1 . Let F : Ω ×R →R defined by

F(x, t) =
∫ t

0
f (x, s) ds.

Then
(i) F is a Carathéodory function and there exist a constant c1 ≥ 0 and σ ∈ L1(Ω) such

that

∣
∣F(x, t)

∣
∣ ≤ c1|t|α(x) + σ (x) for all x ∈ Ω , t ∈R.

(ii) The functional Φ : Lα(x)(Ω) →R defined by Φ(u) =
∫

Ω
F(x, u(x)) dx is continuously

Fréchet differentiable and Φ ′(u) = Nf (u) for all u ∈ Lα(x)(Ω).

Remark 2.16 Since the embedding W 1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) is compact for α ∈ C+(Ω) with

α(x) < p∗(x) for every x ∈ Ω , we derive from Proposition 2.15 the following diagram:

W 1,p(x)
0 (Ω)

I
↪→ Lα(x)(Ω)

Nf→ Lα′(x)(Ω)
I∗
↪→ W –1,p′(x)(Ω),
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which shows that Nf : W 1,p(x)
0 (Ω) → W –1,p′(x)(Ω) is strongly continuous on W 1,p(x)

0 (Ω).
Using the same argument, the functional Φ : W 1,p(x)

0 (Ω) → R defined by Φ(u) =
∫

Ω
F(x, u(x)) dx is also strongly continuous on W 1,p(x)

0 (Ω).

Throughout this work, f : Ω ×R → R is a Carathéodory function, V ∈ Ls(x)(Ω). Let us
denote

Ω– =
{

x ∈ Ω , V (x) < 0
}

.

We require the following assumptions on problem (1.1):
(A1) p, q, s and β ∈ C+(Ω) such that, for all x ∈ Ω ,

q(x) < p(x) ≤ N , β(x) < p(x) ≤ N , N < s(x) for V ∈ Ls(x)(Ω). (2.1)

(A1′) Moreover, we assume that

q+
Ω– = sup

Ω–
q(x) < p– and β+ < p–. (2.2)

(A2)

∣
∣f (x, t)

∣
∣ ≤ c|t|β(x)–1 + h(x) for all x ∈ Ω , t ∈R, (2.3)

where c ≥ 0 is constant, β ∈ C+(Ω) with β(x) < p∗(x) for every x ∈ Ω , and h ∈
L∞(Ω).

(A3) There exist γ ∈ L∞(Ω), γ > 0, and θ satisfying θ < p– such that

F(x, t) ≥ γ (x)|t|θ for all x ∈ Ω and any t ∈ [0, 1[, (2.4)

where F(x, s) =
∫ s

0 f (x, t) dt.
(A4) f (x, –t) = –f (x, t) for x ∈ Ω , t ∈R.

3 Main results
In this section, we give some auxiliary results prior to the establishment of our main
results. Here and henceforth, we denote by X the generalized Sobolev space W 1,p(x)

0 (Ω)
equipped with the norm ‖· ‖, X∗ its dual space, and we define the continuous function α

by

α(x) =
s(x)q(x)

s(x) – q(x)
. (3.1)

From assumptions (A1) on the functions p, q, s and from (3.1), a straightforward compu-
tation gives q(x) < p∗(x), β(x) < p∗(x), s′(x)q(x) < p∗(x), α(x) < p∗(x) for every x ∈ Ω . Hence,
we have the following remark.

Remark 3.1 From (ii) of Proposition 2.9, the embeddings X ↪→ Lq(x)(Ω), X ↪→ Lα(x)(Ω),
X ↪→ Ls′(x)q(x)(Ω), and X ↪→ Lβ(x)(Ω) are compact and continuous. Therefore, there exists
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a positive constant C such that

|u|q(·) ≤ C‖u‖, |u|α(·) ≤ C‖u‖, |u|s′(·)q(·) ≤ C‖u‖, |u|β(·) ≤ C‖u‖ (3.2)

for all u ∈ X. Without any loss of generality, we can suppose that C > 1.

We are interested in the investigation of weak solution of (1.1), say a function u ∈ X
satisfying

∫

Ω

|∇u|p(x)–2∇u∇v dx +
∫

Ω

V (x)|u|q(x)–2uv dx =
∫

Ω

f (x, u)v dx, ∀v ∈ X. (3.3)

Let us consider the Euler–Lagrange functional or the energy functional H : X → R asso-
ciated with problem (1.1) defined by

H(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

V (x)
q(x)

|u|q(x) dx –
∫

Ω

F(x, u) dx.

Let us denote J(u) =
∫

Ω

V (x)
q(x) |u|q(x) dx.

Then the energy functional H can be written as

H(u) = Ψ (u) + J(u) – Φ(u),

where we recall that

Ψ (u) =
∫

Ω

1
p(x)

|∇u|p(x) dx and Φ(u) =
∫

Ω

F(x, u) dx.

The functional H is obviously well defined and satisfies the following.

Proposition 3.2 The functional H is continuously Fréchet differentiable and is weakly
lower semicontinuous. Moreover, u ∈ X is a critical point of H if and only if u is a weak
solution of (1.1).

Proof By Proposition 2.13 and Proposition 2.15, we have that the functional H ∈ C1(X,R)
and its derivative function is given by

〈
dH(u), v

〉
=

∫

Ω

|∇u|p(x)–2∇u∇v dx +
∫

Ω

V (x)|u|q(x)–2uv dx –
∫

Ω

f (x, u)v dx

for all u, v ∈ X. Now, let u be a critical point of H , then we have dH(u) = 0X∗ , which implies
that

〈
dH(u), v

〉
= 0 for all v ∈ X.

Consequently,

∫

Ω

|∇u|p(x)–2∇u∇v dx +
∫

Ω

V (x)|u|q(x)–2uv dx =
∫

Ω

f (x, u)v dx, ∀v ∈ X.
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It follows that u is a weak solution of (1.1). On the other hand, if u is a weak solution of
(1.1), by definition, we have

∫

Ω

|∇u|p(x)–2∇u∇v dx +
∫

Ω

V (x)|u|q(x)–2uv dx =
∫

Ω

f (x, u)v dx, ∀v ∈ X,

which implies that

〈
dH(u), v

〉
= 0 for all v ∈ X.

So, dH(u) = 0X∗ and hence u is a critical point of H .
Let us show that H is sequentially weakly lower semicontinuous.
Consider a weakly convergent sequence (un) to u in X, we have Ψ (u) ≤

lim infn→+∞ Ψ (un). By using the Hölder inequality, Proposition 2.5, and inequality (3.2),
for any n ∈ N, we deduce that

∫

Ω

1
q(x)

∣
∣V (x)

∣
∣|un|q(x) dx ≤ 2

q– |V |s(x) max
{|un|q

–

s′(x)q(x), |un|q
+

s′(x)q(x)
}

≤ 2
q– |V |s(x) max

{
Cq–‖un‖q–

, Cq+‖un‖q+}
. (3.4)

Recalling assumption (A2) and integrating the growth condition with respect to t, we ob-
tain

∣
∣
∣
∣

∫

Ω

F(x, u) dx
∣
∣
∣
∣ ≤ a�β(·)(u) + |h|∞|u|, (3.5)

where a ≥ 0 is a constant depending on the real numbers c, β– provided by (A2). Re-
calling the compact embeddings X ↪→ Ls′(x)q(x)(Ω) and X ↪→ Lβ(x)(Ω), we deduce that
J(un) → J(u) and Φ(u) ≤ lim infn→+∞ Φ(un); and hence, H is sequentially weakly lower
semicontinuous. The proof is complete. �

Next, we have the following.

Proposition 3.3 Under assumptions (A1), (A1′), (A2), the energy functional (H) is coer-
cive.

Proof Suppose that ‖u‖ > 1, then

H(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

V (x)
q(x)

|u|q(x) dx –
∫

Ω

F(x, u) dx

≥ 1
p+

∫

Ω

|∇u|p(x) dx –
1

q–

∫

Ω–

V (x)|u|q(x) dx – aCβ+‖u‖β+
– b‖u‖

≥ 1
p+ ‖u‖p–

–
1

q– Kq+
Ω– ‖u‖q+

Ω– – aCβ+‖u‖β+
– b‖u‖, (3.6)

where K , C, and b are positive constants depending on the Sobolev embeddings V and F .
Since q+

Ω– < p– and β+ < p–, we get that H is coercive. �

We are now ready to state the first existence result of this work.
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Theorem 3.4 Under assumptions (A1), (A1′), and (A2), problem (1.1) has a weak solution.

Proof Since H is differentiable, coercive, weakly lower semicontinuous, H has a critical
minimum point u in X which is a weak solution of (1.1) and then the proof is complete. �

Remark 3.5 Notice that when V is positive, the first condition in (A1′) is not necessary
and the proof of the coercivity of H is of course trivial.

Corollary 3.6 Suppose that hypotheses of Theorem 3.4 are satisfied. If besides V ∈ Ls(x)(Ω)
is a nonnegative function and f (x, ·) : R → R defined by f (x, ·)(t) = f (x, t) is a decreasing
function for a.e. x ∈ Ω , then problem (1.1) has a unique weak solution in X.

Proof Let u1, u2 ∈ E such that

〈
dH(u1), v

〉
=

〈
dH(u2), v

〉
= 0 for all v ∈ X,

then we have

〈
dH(u1) – dH(u2), u1 – u2

〉
= 0. (3.7)

From the strict monotonicity of –�p(x), we have

0 ≤ –〈�p(x)u1 – �p(x)u2, u1 – u2〉

=
∫

Ω

(
f
(
x, u1(x)

)
– f

(
x, u2(x)

))(
u1(x) – u2(x)

)
dx

–
∫

Ω

V (x)
(∣
∣u1(x)

∣
∣q(x)–2u1(x) –

∣
∣u2(x)

∣
∣q(x)–2u2(x)

)(
u1(x) – u2(x)

)
dx. (3.8)

Since the potential V is nonnegative and the function f (x, · ) is decreasing for a.e. x ∈ Ω ,
the right-hand side of (3.8) is nonpositive, and then we get

–〈�p(x)u1 – �p(x)u2, u1 – u2〉 = 0.

Recalling again the strict monotonicity of –�p(x), we get u1 = u2. �

Remark 3.7 In addition to the assumptions in Corollary 3.6, if the Carathéodory function
f : Ω × R → R satisfies (A4), then u ≡ 0 is a trivial solution, and since the solution is
unique when it exists, then u ≡ 0 is the only one solution in X for Dirichlet problem (1.1).

In the next step, we will suppose that condition (A1′) is no longer satisfied and of course
the coercivity of the functional H fails since V is a sign-changing function. In this case,
we prove that H satisfies the Palais–Smale (PS) condition and show multiplicity results for
our problem.

Definition 3.8 The C1-functional H is said to satisfy the Palais–Smale condition, in short
the (PS) condition, if any sequence (un)n∈N ⊆ X, for which (H(un))n∈N ⊆R is bounded and
dH(un) → 0 as n → ∞, has a convergent subsequence.
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Proposition 3.9 Under assumptions (A1) and (A2), the functional H satisfies the (PS)
condition.

The following lemma plays a key role in the proof of Proposition (3.9). The constant
exponent version (p(x) ≡ p) of the lemma can be found in [14].

Lemma 3.10 Let ω be positive on Ω and satisfy ω ∈ Lr(x)(Ω) with r(x) > N
q(x) if 1 < q(x) ≤ N

or r(x) = 1 if q(x) > N , x ∈ Ω , and let T > 0 be a constant. Then there are three positive
constants C1, C2, C3 depending only on ω and T such that

�p(·)(∇u) ≤ C1H(u) + C2 min
(|u|q+

ω,q(·), |u|q–

ω,q(·)
)

+ C3 min
(|u|β+

β(·), |u|β–

β(·)
)

(3.9)

for every V ∈ Ls(x)(Ω) such that |V |s(·) ≤ T , r ∈ L∞
+ (Ω), p, q,β ∈ C+(Ω), and for u ∈ X,

where |u|ω,q(·) = inf{λ > 0 :
∫

Ω
ω| u

λ
|q(x) dx ≤ 1}.

Remark 3.11 Clearly, in Lemma (3.10),
∫

Ω
ω|u|q(x) dx < ∞ for any u ∈ X. The case r(x) = 1

with q(x) > N is obvious since p(x) > N and then X ↪→ L∞(Ω).
For the case r(x) > N

q(x) and 1 < q(x) ≤ N , Propositions 2.3 and 2.5 yield

∫

Ω

ω|u|q(x) dx ≤ 2|ω|r(·)
∣
∣|u|q(·)∣∣

r′(·) ≤ max
(|ω|r(·)|u|q+

q(·)r′(·), |ω|r(·)|u|q–

q(·)r′(·)
)
.

And since q(x)r′(x) < p∗(x) for any x ∈ Ω ,
∫

Ω
ω|u|q(x) dx < ∞ for any u ∈ X. Accordingly,

|u|ω,q(·) = inf{λ > 0 :
∫

Ω
ω| u

λ
|q(x) dx ≤ 1} stands for the Luxembourg norm on the Orlicz–

Musielak space LM where M(x, t) = ω(x)tq(x). Endowed with this norm, LM is separable
and reflexive (see [19, 24]).

Proof of Lemma 3.10 Recalling (3.4) and (3.5), we have

∣
∣
∣
∣

∫

Ω

V
q(x)

|u|q(x) dx
∣
∣
∣
∣ ≤ 2

q– |V |s(·) max
(|u|q+

q(·)s′(·), |u|q–

q(·)s′(·)
)
, (3.10)

∣
∣
∣
∣

∫

Ω

F(x, u) dx
∣
∣
∣
∣ ≤ a�β(·)(u) + |h|∞|u| ≤ M max

(|u|β+

β(·), |u|β–

β(·)
)
, (3.11)

where M ≥ 0 is a constant depending on the real numbers |h|∞, c, β– provided by (A2),
and on Ω .

Let us claim that, for any ε > 0, there are Mε and M′
ε such that

max
(|u|q+

q(·)s′(·), |u|q–

q(·)s′(·)
) ≤ ε�p(·)(∇u) + Mε min

(|u|q+

ω,q(·), |u|q–

ω,q(·)
)
, (3.12)

max
(|u|β+

β(·), |u|β–

β(·)
) ≤ ε�p(·)(∇u) + M′

ε min
(|u|β+

β(·), |u|β–

β(·)
)
. (3.13)

Let us deal first with (3.12) by assuming to the contrary that there exist ε0 > 0 and a se-
quence un in X such that |un|q(·)s′(·) = 1 and

ε0�p(·)(∇un) + n min
(|un|q+

ω,q(·), |un|q–

ω,q(·)
)

< 1.
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Then (un) is a bounded sequence in X and up to a subsequence, (un) converges weakly
to some u0 ∈ X and strongly in Lq(·)s′(·)(Ω). Consequently, |u0|q(·)s′(·) = 1, and then
min(|u0|q

+

ω,q(·), |u0|q
–

ω,q(·)) < 0. Contradiction.
A similar approach enables us to get (3.13).
Let T > 0 be such that max( 2

q– |Vs(·)|, M) < T , and let ε satisfy 0 < ε < T–1. By combining
(3.10), (3.11), (3.12), we get

(1 – εT)�p(·)(∇u) ≤ H(u) + TMε min
(|u|q+

ω,q(·), |u|q–

ω,q(·)
)

+ TM′
ε min

(|u|β+

β(·), |u|β–

β(·)
)
, (3.14)

and the proof of the lemma is complete. �

Proof of Proposition 3.9 Let (un)n∈N ⊂ X be a (PS) sequence for the functional H , i.e., there
exists a positive constant k > 0 such that

∣
∣H(un)

∣
∣ ≤ k for all n ∈N, and

∣
∣
〈
dH(un), v

〉∣
∣ ≤ εn‖v‖ for v ∈ X, (3.15)

and εn → 0 as n → ∞.
Let us show that the sequence (un)n∈N is bounded in X. By contradiction, assume that

‖un‖ → ∞ as n → ∞. Up to a subsequence, we have ‖un‖ > 1 for any n ∈N, and by choos-
ing ω = 1 in Lemma 3.10 and replacing u by un in (3.9), we obtain

�p(·)(∇un) ≤ C1H(un) + C2 min
(|un|q–

q(), |un|q+

q()
)

+ C3 min
(|un|β–

β(), |un|β+

β()
)
,

and consequently

‖un‖p– ≤ C1k + C′
2‖un‖q–

+ C′
3‖un‖β–

, (3.16)

where C′
2, C′

3 are constants depending on C2, C3 and the Sobolev embedding constants.
Dividing (3.16) by ‖un‖p– , we have

1 ≤ C1k
‖un‖p– + C′

2‖un‖q––p–
+ C′

3‖un‖β––p–
,

and passing to the limit leads to a contradiction since p– > q– and p– > β–. So (un) is
bounded in X and up to a subsequence converges weakly in X and strongly in Lr(x) with
1 < r(x) < p∗(x) to u0.

Let us show now that (un)n∈N converges strongly to u0 in X. Indeed, since the functional
H satisfies the Palais–Smale condition, we have

〈–�p(x)un, un – u0〉

=
〈
dH(un), un – u0

〉
–

∫

Ω

V (x)|un|q(x)–2un(un – u0) dx +
∫

Ω

f (x, un)(un – u0) dx

≤ εn‖un – u0‖ + M0|V |s(·)|un|kq(·)|un – u0|α(·) + M1
∣
∣|un|β(·)–1∣∣

β(·)
β(·)–1

|un – u0|β(·)

+ M2|h|∞|un – u0|β(·),
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where εn → 0 and M0, M1, M2, and k ∈ {q– – 1, q+ – 1} are positive constants. Next, using
the Sobolev compact embeddings, we obtain

lim sup
n→∞

〈–�p(x)un, un – u0〉 ≤ 0 (3.17)

and then, by the (S+) property of –�p(x), we get that un → u0 strongly in X, and the proof
is complete. �

We are now ready to state the following existence result for multiple solutions.

Theorem 3.12 Under assumptions (A1), (A2), (A3), and (A4), problem (1.1) has a
bounded sequence of weak solutions (un)n∈N ⊆ X such that H(un) = cn < 0. Moreover, the
sequence of the critical values (cn)n tends to c = infX H .

Theorem 3.12 is derived by searching solutions as critical values of the functional H by
means of a symmetric version of the mountain pass theorem.

Many versions of the mountain pass theorem stated according to the geometry of the
problem under consideration exist in the literature (see [3, 31, 33, 34]). We state below an
appropriate version to our situation.

Theorem 3.13 (A symmetric mountain pass theorem ) Suppose that X is an infinite di-
mensional real Banach space. Let H ∈ C1(X,R) be even and satisfy the (PS) condition and
H(0) = 0. Assume that

(i) there are some constants ρ,α > 0 such that H(u) ≥ α for all u ∈ X with ‖u‖ ≥ ρ ;
(ii) for each finite dimensional subspace F of X , there is a constant R > 0 such that

H(u) < 0 for all u ∈ F with ‖u‖ ≤ R.
Then H has a bounded sequence of negative critical values (cn) tending to infX H .

The proof of Theorem 3.13 can be adapted from some works in the literature. We give
it as an appendix to this work for the sake of completeness.

4 Proof of Theorem 3.12 and auxiliary results
The proof will consist in showing that H satisfies the geometry required to apply the sym-
metric mountain pass theorem.

Lemma 4.1 Under assumptions (A1), (A2), and (A3), there exist some constants ρ,α > 0
such that H|{u∈X:‖u‖≥ρ} ≥ α.

Proof Suppose on the contrary that, for any n ∈N
∗, there exists a sequence (un) ∈ X such

that H(un) ≤ 1
n for ‖un‖ ≥ n. Recalling (3.9), we have

1 ≤ C1
1
n

+ C′
2‖un‖q––p–

+ C′
3‖un‖β––p–

with q– – p– < 0, β– – p– < 0 and passing to the limit yields a contradiction. Then
Lemma 4.1 holds. �
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Lemma 4.2 Suppose that assumptions (A1) and (A3) are satisfied. Then, for each finite
dimensional subspace F , there is a constant R > 0 such that H(u) ≤ 0 for all u ∈ F with
‖u‖ ≤ R.

Proof By assumption (A3),

F(x, t) ≥ γ (x)|t|θ for all x ∈ Ω and for any t ∈ [0, 1[. (4.1)

On the other hand, it is easy to see that the functional ‖· ‖θ : X →R defined by

‖u‖θ =
(∫

Ω

γ (x)
∣
∣u(x)

∣
∣θ dx

) 1
θ

(4.2)

is a norm on the space X. Then on the finite dimensional subspace F the norms ‖· ‖ and
‖· ‖θ are equivalent, so there exists a constant ν > 0 such that

ν‖u‖ ≤ ‖u‖θ for all u ∈ F . (4.3)

Now, let v ∈ F and write v = su with ‖u‖ = 1, and 0 < s < 1,

H(v) =
∫

Ω

1
p(x)

sp(x)|∇u|p(x) dx +
∫

Ω

V (x)
q(x)

sq(x)|u|q(x) dx –
∫

Ω

F(x, v) dx

≤ sp–

p– ‖u‖p+
+

2Cq+

q– |V |s(x)sq–‖u‖q+
– sθ‖u‖θ

θ , (4.4)

where C is a constant deriving from the Sobolev embedding.
Using the fact that ‖u‖ = 1 and (4.3), we obtain

H(v) ≤ sp–

p– +
2Cq+

q– |V |s(x)sq–
– νθ sθ

≤ sp–
[

1
p– +

1
sp––q–

(
2Cq+

q– |V |s(x) – νθ 1
sp––θ

)]

. (4.5)

Since p– > q– and p– > θ , we have for s < 1 small enough that H is nonpositive, that is,
there is η such that

H(v) < 0 for 0 < s ≤ η < 1.

Take R = η and then Lemma 4.2 is proved. �

To conclude with the proof of Theorem 3.12, we notice from (A4) that H(0) = 0 and H
is even, and from Lemmas 4.1, 4.2, H satisfies the conditions required in Theorem 3.12,
and then the result is achieved.

An auxiliary result in terms of multiple solutions in the same spirit of the works in [1, 6],
and [22] can be obtained in our context by means of the fountain theorem. However, the
sequence of solutions obtained either by the mountain pass theorem or the fountain theo-
rem are quite different. Of course, in our context, the sequence of critical values obtained
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via the mountain pass theorem converges to a nonzero limit, while the use of the fountain
theorem gives rise to critical values sequence converging to 0 as stated in Theorem 4.3
below.

Theorem 4.3 (Dual fountain theorem) Suppose that X is an infinite dimensional reflex-
ive separable Banach space. Let H ∈ C1(X,R) be even and satisfy the (PS) condition and
H(0) = 0.

Write X = span{en, en ∈ X ∀n ≥ 1}, X∗ = span{e∗
n, e∗

n ∈ X∗ ∀n ≥ 1} with e∗
n(em) = 1 if m = n

and e∗
n(em) = 0 if m �= n, and define the subspaces

Xk = span{ek , k ≥ 1}, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k

Xj.

Assume that there are some constants ρk > rk > 0 such that
(i) H(u) ≥ 0 for all u ∈ Zk with ‖u‖ = ρk ,

(ii) H(u) < 0 for all u ∈ Yk with ‖u‖ = rk ,
(iii) dk = inf{u∈Zk ,‖u‖≤ρk} H(u) → 0 as k → +∞.

Then H has a sequence of negative critical values (cn) tending to 0.

Sketch of the proof H satisfies of course (PS), and by means of Lemmas 4.1 and 4.2, (i), (ii)
are also satisfied. Thus, to prove Theorem 4.3, we need only to show that (iii) is satisfied.
Accordingly, we need the following lemma whose proof can be pointed out similarly as in
[1, 6], and [22].

Lemma 4.4

βk = sup
{u∈Zk ,‖u‖=1}

∫

Ω

|V |
q(x)

|uk|p dx → 0

and

β ′
k = sup

{u∈Zk ,‖u‖=1}

∫

Ω

∣
∣F(x, uk)

∣
∣dx → 0 as k → +∞.

To conclude the proof of Theorem 4.3, we notice that

H(u) ≥
∫

Ω

1
p(x)

|∇u|p(x) dx –
∫

Ω

|V (x)|
q(x)

|u|q(x) dx –
∫

Ω

∣
∣F(x, u)

∣
∣dx.

≥ –
∫

Ω

|V (x)|
q(x)

|u|q(x) dx –
∫

Ω

∣
∣F(x, u)

∣
∣dx.

Choosing u = tv with 0 < t ≤ ρk and ‖v‖ = 1, we have

0 = H(0) ≥ dk = inf{u∈Zk ,‖u‖≤ρk} H(u) ≥ –βk – β ′
k for k large enough.

Consequently,

inf{u∈Zk ,‖u‖≤ρk } H(u) → 0 as k → +∞. �
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Appendix: A symmetric mountain pass theorem version
Theorem A.1 (A symmetric mountain pass theorem) Suppose that X is an infinite di-
mensional real Banach space. Let H ∈ C1(X,R) be even, satisfy the (PS) condition, and
H(0) = 0. Assume that

(i) there are constants ρ,α > 0 such that H(u) ≥ α for all u ∈ X with ‖u‖ ≥ ρ ;
(ii) for each finite dimensional subspace F of X , there is a constant R > 0 such that

H(u) < 0 for all u ∈ F with ‖u‖ ≤ R.
Then H has a bounded sequence of negative critical values (cn) tending to infX H .

The proof of Theorem A.1 is based on the notions of genus and an appropriate defor-
mation lemma [3, 33]. We state them below. Let us denote respectively by C(X, Y ) and
Σ(X) the space of continuous maps from X into Y and the family of closed in X subsets
of X \ {0}, symmetric with respect to the origin.

Definition A.2 A in Σ(X) has the genus n (denoted by γ (A) = n) if n is the smallest integer
for which there exists a map φ ∈ C(A,Rn \ {0})

γ (A) = ∞ if there exists no finite such n and γ (∅) = 0.

Let us denote

Nδ(A) =
{

u ∈ X, d(u, A) ≤ δ
}

.

Below, we state some useful properties in the sequel for γ and the deformation lemma.

Proposition A.3 Let A, B ∈ Σ(X) and U ⊂ R
k be an open, bounded, symmetric neighbor-

hood of the origin.
1. If there is odd φ ∈ C(A, B), then γ (A) ≤ γ (B).
2. If A ⊂ B, then γ (A) ≤ γ (B).
3. γ (A ∪ B) ≤ γ (A) + γ (B).
4. If γ (B) < ∞, then γ (A \ B) ≥ γ (A) – γ (B).
5. If A is compact, then γ (A) < ∞ and γ (Nδ(A)) = γ (A) for all sufficiently small δ.
6. γ (∂U) = k and in particular γ (Sk–1) = k.
7. If A is homeomorphic to ∂U by an odd homeomorphism, then γ (A) = k.

In order to state the deformation lemma, let us define for H ∈ C1(X,R) and c ∈ R, the
sets

Kc =
{

u ∈ X, H(u) = c and H ′(u) = 0
}

and H̃c =
{

u ∈ X, H(u) ≥ c
}

.

Clearly Kc is a compact set because of the (PS) condition. Then we have the following
variant of the deformation lemma.

Proposition A.4 (Deformation lemma) Suppose that X is a real Banach space and H ∈
C1(X,R) satisfies the (PS) condition. If c ∈ R, ε̄ > 0, and U is a neighborhood of KC , then
there exist ε ∈ (0, ε̄) and η : [0, 1] × X → X such that

1. η(0, u) = u ∀u ∈ X .
2. η(t, u) = u ∀t ∈ [0, 1] and u ∈ X with |H(u) – c| ≥ ε̄ .
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3. H(η(t, u)) ≥ H(u) ∀t ∈ [0, 1], u ∈ X .
4. η(1, H̃c–ε \ U ) ⊂ H̃c+ε .
5. If H is even, η(t, u) is odd in u.

Remark A.5 The proof of Proposition A.4 here is a slight modification of the proof en-
countered in many works in the literature for the standard deformation lemma (cf. [3, 12,
13, 28, 31, 33]). The method is technical and is based on the construction of a positive
modified gradient flow for H rather than the negative gradient flow one in the standard
deformation lemma.

Proof of Theorem A.1 Let us choose ρ as in Theorem 3.13 and call Bρ the ball centered at
the origin O. Let Fm be a finite dimensional subspace of X with dim Fm = m, Fm is spanned
by {e1, e2, . . . , em} such that Bρ ∩ Fm �= ∅. Denote Dm

ρ = Bρ ∩ Fm and

Gm =
{

h ∈ C
(
Dm

ρ , X
)
, h is odd, and h = id on ∂B̄ρ ∩ Fm

}
.

Since id ∈ Gm, Gm �= ∅: Next, we set

Γj =
{

h
(
Dm

ρ \ Y
)
, h ∈ Gm, Y ⊂ Σ(X),γ (Y ) ≤ m – j, j ≤ m

}
,

where γ (Y ) is the genus of Y . h(Dm
ρ \ Y ) = h(Dm

ρ \ Y ) and is compact and the family of the
sets (Γj)j satisfies the following properties:

(i) (Γj) �= ∅ for all j.
(ii) Γj+1 ⊂ Γj. (Monotonicity).

(iii) If B ∈ Γj and Y ∈ Σ(X) with γ (Y ) ≤ s < j, then (B \ Y ) ∈ Γj–s for each j. (Excision)
(iv) If φ ∈ C(X, X) is odd and φ = id on ∂B̄ρ ∩ Fm, then φ : Γj → Γj for each j ∈N.

(Invariance)
Indeed, (i) is satisfied since the set {Y ∈ Σ(X)/γ (Y ) ≤ m – j} is not empty as a consequence
of (7) of Proposition A.3. (ii) is a trivial consequence of the construction of Γj. (iii) is de-
rived from (4), Proposition A.3. For (iv), we just have to notice that φ ◦ h ∈ Gm.

Note

cj = sup
B∈Γj

min
u∈B

H(u).

Since B is compact cj < ∞ for any j and, moreover, cj+1 ≤ cj because Γj+1 ⊂ Γj.
Next, we claim that c1 < 0.
Indeed, let B ∈ Γ1, then B = h(Dm

ρ \ Y ) with Y ∈ Σ(X) and γ (Y ) ≤ m – 1.
We have that H(u) ≥ α on ∂Bρ and H(u) < 0 for u ∈ BR, where R is provided by (ii) of

Theorem 3.13. Clearly, ρ is chosen such that ρ > R.
Let Ω̃ = {u ∈ Dm

ρ /h(u) ∈ BR} and denote by Ω the component of Ω̃ containing the ori-
gin O. Since h is odd and h = id on ∂Bρ ∩ Fm, Ω is a symmetric bounded open neighbor-
hood of O in Fm, and hence γ (∂Ω) = m.

Moreover, h(u) ∈ ∂BR ∩ Fm if u ∈ ∂Ω . Indeed, suppose h(u) ∈ BR ∩ Fm if u ∈ ∂Ω . If
u ∈ Dm

ρ , then one can find a neighborhoodV(u) of u such that h(u) ∈ BR, and hence u /∈ ∂Ω .
If, on the other hand, u ∈ ∂Dm

ρ , one has h(u) = u and then ‖h(u)‖ = ‖u‖ = ρ > R. This is a
contradiction, so h(u) ∈ ∂BR ∩ Fm if u ∈ ∂Ω must hold.
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Let

W =
{

u ∈ Dm
ρ /h(u) ∈ ∂BR ∩ Fm

}
.

Since ∂Ω ⊂ W , γ (W ) ≥ γ (∂Ω) = m. Thus γ (W \ Y ) ≥ m – (m – 1) = 1. Consequently,
W \ Y �= ∅ and then there exists ū ∈ W \ Y such that h(ū) ∈ B ∩ ∂BR. Hence

min
B

H(u) ≤ H
(
h(ū)

) ≤ inf
∂BR

H(u) < 0. (A.1)

Since A.1 is valid for any B ∈ Γ1, we have c1 < 0.
Given j, it may happen that the multiplicity of cj occurs, that is,

cj = · · · = cj+k = c for some k ≥ 0. (A.2)

We shall prove in this case that γ (Kc) ≥ k + 1 in order to conclude that Kc contains no less
than k + 1 points. 0 /∈ Kc since H(0) = 0; moreover, H is even and accordingly Kc ∈ Σ(X)
and γ (Kc) < ∞.

If γ (Kc) < k + 1, then there exists δ > 0 such that γ (Nδ(Kc)) < k + 1. Denote U = Nδ(Kc).
For any ε̄ > 0, by Proposition A.4 (the deformation lemma) and Remark A.5, there are
ε ∈ (0, ε̄) and η ∈ C([0, 1] × X, X) such that

η(1, H̃c–ε \ U ) ⊂ H̃c+ε . (A.3)

Choose any B ∈ Γj+k such that minB H(u) ≥ c – ε.
By A.3 we get

min
η(1,B\U )

H(u) ≥ c + ε. (A.4)

Recalling the excision property (iii) above, we have B \ U ∈ Γj, and by choosing ε̄ = –c/2
in Proposition A.4, points (2) and (5) of the proposition enable us to conclude that η(1, ·)
is odd and H|∂Bρ

≥ α > c – c/2 = c/2, and hence η(1, ·) ∈ Gm for all m ∈ N. Consequently,
η(1, B \ U ) ∈ Γj and the definition of cj gives

min
η(1,B\U )

H(u) ≤ c,

which is in contradiction with (A.4). Thus γ (Kc) ≥ k + 1 and hence KC contains no less
than k + 1 points.

Let us show that each cj is a critical value of H for any j. In order to prove it, assume that cj

(for fixed j) is not a critical value, that is, Kcj = ∅. Then, choosingU = ∅, by Proposition A.4
(the deformation lemma) and Remark A.5, there are ε ∈ (0, ε̄) and η ∈ C([0, 1]×X, X) such
that

η(1, H̃c–ε) ⊂ H̃c+ε for c – ε > 0. (A.5)

Choosing any B ∈ Γj such that minB H(u) ≥ c – ε.
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By (A.5) we get

min
η(1,B)

H(u) ≥ c + ε. (A.6)

Choosing ε̄ = –c/2 in Proposition A.4 and arguing around points (2) and (5) of the propo-
sition as above, we have that η(1, ·) ∈ Gm for all m ∈ N. Consequently, η(1, B) ∈ Γj and the
definition of cj gives

min
η(1,B)

H(u) ≤ c.

Contradiction with (A.6), so cj is a critical value.
Let us show that cj tends to infX H = c as j → +∞. Obviously, c = infX H < ∞ since H

is bounded below on X. The critical values sequence (cj)j is monotone nonincreasing, so
there is ᾱ ≥ c such that cj → ᾱ as j → +∞. ᾱ < cj for all j, otherwise γ (Kᾱ) = ∞ according
to (A.2); but Kᾱ ∈ Σ(X) and is compact, so γ (Kᾱ) < ∞, contradiction. So ᾱ < cj for all j.
Suppose that cj does not tend to c, that is, ᾱ > c, and denote

H =
{

u ∈ X, c ≤ H(u) ≤ ᾱ, and H ′(u) = 0
}

.

H is compact by the (PS). Besides, H ∈ Σ(X) and there exists δ > 0 such that γ (Nδ(H)) =
γ (H) < ∞. Suppose γ (H) = n. Recalling Proposition A.4 and Remark A.5, with ε̄ = ᾱ – c
and O = Nδ(H), there are ε ∈ (0, ε̄) and η ∈ C([0, 1] × X, X) with η(1, ·) odd such that

η(1, H̃c̄–ε \O) ⊂ H̃c̄+ε . (A.7)

Choose the smallest value m̄ of the dimensions of the finite dimensional subspaces of X
such that cm̄ < ᾱ + ε and choose B ∈ Γm̄+n such that

min
B

H(u) ≥ ᾱ – ε.

By (A.7) we get

min
η(1,B\O)

H(u) ≥ ᾱ + ε. (A.8)

Since H|∂Bρ
≥ α > 0, we have |H(u) – c| ≥ α – c > ᾱ – c = ε for u ∈ ∂Bρ ∩ Fm̄, and recalling

points (2) and (5) of Proposition A.4, we have η(1, ·) ∈ Gm̄ and then B \O and η(1, B \O) ∈
Γm̄. Consequently,

ᾱ + ε > cm̄ ≥ min
η(1,B\O)

H(u) ≥ ᾱ + ε.

Contradiction. So cj → c and the proof is complete. �
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