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Abstract
In this paper, we consider the blow-up result of solution for a quasilinear von Karman
equation of memory type with nonpositive initial energy as well as positive initial
energy. For nonincreasing function g > 0 and nondecreasing function f , we prove a
finite time blow-up result under suitable condition on the initial data.
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1 Introduction
Let ρ > 0,α > 0, and p > 2. Moreover, let us denote by Ω an open bounded set of R2 with
sufficiently smooth boundary Γ . We assume that Γ0 ∪ Γ1 = Γ , Γ0 ∩ Γ1 = ∅, Γ0 �= ∅, and
Γ0 and Γ1 have positive measure. In this paper we investigate a blow-up result for the
following quasilinear von Karman equation of memory type:

|yt|ρytt – α�ytt + �2y –
∫ t

0
g(t – s)�2y(s) ds = [y, z] in Ω × (0,∞), (1.1)

�2z = –[y, y] in Ω × (0,∞), (1.2)

z =
∂z
∂ν

= 0 on Γ × (0,∞), (1.3)

y =
∂y
∂ν

= 0 on Γ0 × (0,∞), (1.4)

B1y – B1

(∫ t

0
g(t – s)y(s) ds

)
= 0 on Γ1 × (0,∞), (1.5)

α
∂ytt

∂ν
– B2y + B2

(∫ t

0
g(t – s)y(s) ds

)
+ f (yt) = |y|p–2y on Γ1 × (0,∞), (1.6)

y(x, 0) = y0(x), yt(x, 0) = y1(x) in Ω , (1.7)

where ν = (ν1,ν2) is the outward unit normal vector on Γ . The relaxation function g is a
positive nonincreasing function and f is a nondecreasing function. Here

B1	 = �	 + (1 – μ)B1	 , B2	 =
∂�	

∂ν
+ (1 – μ)

∂B2	

∂τ
,
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where

B1	 = 2ν1ν2
∂2	

∂x1∂x2
– ν2

1
∂2	

∂x2
2

– ν2
2
∂2	

∂x2
1

,

B2	 =
(
ν2

1 – ν2
2
) ∂2	

∂x1∂x2
+ ν1ν2

(
∂2	

∂x2
2

–
∂2	

∂x2
1

)

and the constant μ ∈ (0, 1
2 ) represents Poisson’s ratio. The von Karman bracket [	 ,φ] is

given by

[	 ,φ] =
∂2	

∂x2
1

∂2φ

∂x2
2

+
∂2	

∂x2
2

∂2φ

∂x2
1

– 2
∂2	

∂x1∂x2

∂2φ

∂x1∂x2
.

The authors in [1–5] studied the asymptotic behavior of the solutions to a von Karman
system with dissipative effects. The uniform decay rate for the von Karman system with
frictional dissipative effect in the boundary has been proved by several authors [6–8]. For
a von Karman equation with rotational inertia and memory of the form

ytt – α�ytt + �2y –
∫ t

0
g(t – s)�2y(s) ds = [y, z] in Ω × (0,∞),

�2z = –[y, y] in Ω × (0,∞),

many authors [9–12] showed the existence and stability of solutions. Several authors [13–
15] investigated the general stability for a von Karman system with memory boundary
conditions. The stability for a von Karman system with acoustic boundary conditions was
treated by [16, 17]. Some authors discussed the energy decay for a von Karman equation
with time-varying delay (see [18, 19] and the reference therein).

On the other hand, many authors have considered the global existence, uniform decay
rates, and blow-up of solutions for the wave equation with nonlinear damping and source
terms:

ytt – �y + a|yt|m–2yt = b|y|p–2y in Ω × (0,∞),

where a, b > 0 and p, m > 2. When a = 0, Ball [20] showed that the source term |u|p–2u
causes blow-up of solutions with negative initial energy in finite time. For m = 2, Levine
[21, 22] proved that solutions with negative initial energy blow up in finite time. Georgiev
and Todorova [23] extended Levin’s result to the nonlinear damping case. Messaoudi [24]
improved the blow-up result of [23] to the solutions with negative initial energy. Mes-
saoudi [25] studied the blow-up property of solutions with negative initial energy for the
following viscoelastic wave equation with p > m:

ytt – �y +
∫ t

0
g(t – s)�y(s) ds + |yt|m–2yt = |y|p–2y in Ω × (0,∞). (1.8)

Messaoudi [26] extended the blow-up result of [25] to the solution with positive initial
energy. Song [27] proved the finite time blow-up of some solutions whose initial data have
arbitrarily positive initial energy for (1.8). Recently, Park et al. [28] showed the blow-up
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of the solutions for a viscoelastic wave equation with weak damping. Liu and Yu [29] in-
vestigated the blow-up of the solutions for the following viscoelastic wave equation with
boundary damping and source terms:

ytt – �y +
∫ t

0
g(t – s)�y(s) ds = 0 in Ω × (0,∞),

y = 0 in Γ0 × [0,∞),

∂y
∂ν

–
∫ t

0
g(t – s)

∂y
∂ν

(s) ds + |yt|m–2yt = |y|p–2y in Γ1 × [0,∞).

For more related works, we refer to [30–38] and the references therein.
To our best knowledge, there are no blow-up results of solution for the von Karman

equation with memory. Motivated by the previous results, we consider the quasilinear
von Karman equation with memory and boundary weak damping. We study a finite time
blow-up result under suitable condition on the initial data.

The outline of the paper is the following. In Sect. 2, we give some notations and hy-
potheses for our work. In Sect. 3, we prove our main result.

2 Preliminary
In this section, we present some material needed in the proof of our result. Throughout
this paper we denote

V =
{

y ∈ H1(Ω) : y = 0 on Γ0
}

,

W =
{

y ∈ H2(Ω) : y =
∂y
∂ν

= 0 on Γ0

}
,

(y, z) =
∫

Ω

y(x)z(x) dx, (y, z)Γ1 =
∫

Γ1

y(x)z(x) dΓ .

For a Banach space X, ‖ · ‖X denotes the norm of X. For simplicity, we denote ‖ · ‖L2(Ω) by
the norm ‖ · ‖ and ‖ · ‖L2(Γ1) by ‖ · ‖Γ1 , respectively. We define, for all 1 ≤ p < ∞,

‖y‖p
p,Γ1

=
∫

Γ1

∣∣y(x)
∣∣p dΓ .

Let 0 < μ < 1
2 , we define the bilinear form a(·, ·) as follows:

a(y,κ) =
∫

Ω

{
∂2y
∂x2

1

∂2κ

∂x2
1

+
∂2y
∂x2

2

∂2κ

∂x2
2

+ μ

(
∂2y
∂x2

1

∂2κ

∂x2
2

+
∂2y
∂x2

2

∂2κ

∂x2
1

)

+ 2(1 – μ)
∂2y

∂x1∂x2

∂2κ

∂x1∂x2

}
dx. (2.1)

A simple calculation, based on the integration by parts formula, yields

∫
Ω

(
�2y

)
κ dx = a(y,κ) –

(
B1y,

∂κ

∂ν

)
Γ

+ (B2y,κ)Γ .
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Thus, for (y,κ) ∈ (H4(Ω) ∩ W ) × W , it holds

∫
Ω

(
�2y

)
κ dx = a(y,κ) –

(
B1y,

∂κ

∂ν

)
Γ1

+ (B2y,κ)Γ1 . (2.2)

Since Γ0 �= ∅, we have (see [39]) that
√

a(y, y) is equivalent to the H2(Ω) norm on W , that
is,

C1‖�y‖2 ≤ a(y, y) ≤ C2‖�y‖2 for some C1, C2 > 0. (2.3)

Now we state the assumptions for problem (1.1)–(1.7). We will need the following assump-
tions.

(H1) Hypotheses on g .
Let g : R+ →R

+ be a nonincreasing C1 function satisfying

g(0) > 0, 1 –
∫ ∞

0
g(s) ds := l > 0. (2.4)

(H2) Hypotheses on f .
Let f : R → R be a nondecreasing C1 function with f (0) = 0. There exists an odd and

strictly increasing function ξ : [–1, 1] →R such that

∣∣ξ (s)
∣∣ ≤ ∣∣f (s)

∣∣ ≤ ∣∣ξ–1(s)
∣∣ for |s| ≤ 1, (2.5)

c1|s|m–1 ≤ ∣∣f (s)
∣∣ ≤ c2|s|m–1 for |s| > 1, (2.6)

where c1 and c2 are positive constants, m > 2, and ξ–1 denotes the inverse function of ξ .
We state the well-posedness which can be established by the arguments of [11–13, 29,

40].

Theorem 2.1 Suppose that (H1)–(H2) hold and (y0, y1) ∈ (H4(Ω) ∩ W ) × (H3(Ω) ∩ V )).
Then, for any T > 0, there exists a unique solution of problem (1.1)–(1.7) such that

y ∈ C
(
[0, T]; H4(Ω) ∩ W

) ∩ C1([0, T]; H3(Ω) ∩ V
) ∩ C2([0, T]; L2(Ω)

)
.

A direct calculation gives

a
(
(g ∗ y)(t), yt(t)

)
= –

1
2

d
dt

[(
g�∂2y

)
(t) –

(∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)]

–
1
2

g(t)a
(
y(t), y(t)

)
+

1
2
(
g ′�∂2y

)
(t), (2.7)

where

(g ∗ y)(t) =
∫ t

0
g(t – s)y(s) ds,

(
g�∂2y

)
(t) =

∫ t

0
g(t – s)a

(
y(t) – y(s), y(t) – y(s)

)
ds.

We recall the trace Sobolev embedding

W ↪→ Lp(Γ1) for p ≥ 2
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and the embedding inequality

‖y‖p,Γ1 ≤ B‖�y‖ for y ∈ W , (2.8)

where B > 0 is the optimal constant. We define the energy associated with problem (1.1)–
(1.7) by

E(t) := E
(
y(t), z(t)

)

=
1

ρ + 2
∥∥yt(t)

∥∥ρ+2
ρ+2 +

α

2
∥∥∇yt(t)

∥∥2 +
1
2

(
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)

+
1
2
(
g�∂2y

)
(t) –

1
p
∥∥y(t)

∥∥p
p,Γ1

+
1
4
∥∥�z(t)

∥∥2, (2.9)

then

E′(t) =
1
2
(
g ′�∂2y

)
(t) –

g(t)
2

a
(
y(t), y(t)

)
–

(
f
(
yt(t)

)
, yt(t)

)
Γ1

≤ 0. (2.10)

So the energy E is a nonincreasing function. Next, we define the functionals

I(t) := I
(
y(t), z(t)

)

=
(

1 –
∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t) +

1
2
∥∥�z(t)

∥∥2 –
∥∥y(t)

∥∥p
p,Γ1

, (2.11)

H(t) := H
(
y(t), z(t)

)

=
1
2

[(
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t) +

1
2
∥∥�z(t)

∥∥2
]

–
1
p
∥∥y(t)

∥∥p
p,Γ1

. (2.12)

We define

e(t) = inf
(y,z)∈W×H2

0 (Ω),y�=0,
sup
λ≥0

H(λy,λz), t ≥ 0.

Lemma 2.1 For t ≥ 0, we get

0 < e0 ≤ e(t) ≤ sup
λ≥0

H(λy,λz),

where e0 = p–2
2p ( C1l

B2 )
p

p–2 and

sup
λ≥0

H(λy,λz) =
p – 2

2p

( (1 –
∫ t

0 g(s) ds)a(y(t), y(t)) + (g�∂2y)(t) + 1
2‖�z(t)‖2

‖y(t)‖2
p,Γ1

) p
p–2

.

Proof We find that

H(λy,λz) =
λ2

2

[(
1–

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t)+

1
2
∥∥�z(t)

∥∥2
]

–
λp

p
∥∥y(t)

∥∥p
p,Γ1

.
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If dH(λy,λz)
dλ

= 0, then we obtain

λ1 =
[ (1 –

∫ t
0 g(s) ds)a(y(t), y(t)) + (g�∂2y)(t) + 1

2‖�z(t)‖2

‖y(t)‖p
p,Γ1

] 1
p–2

.

It is easy to verify that d2H
dλ2 |λ=λ1 < 0, then from (2.3), (2.4), and (2.8)

sup
λ≥0

H(λy,λz) = H(λ1y,λ1z)

=
(

p – 2
2p

)( (1 –
∫ t

0 g(s) ds)a(y(t), y(t)) + (g�∂2y)(t) + 1
2‖�z(t)‖2

‖y(t)‖2
p,Γ1

) p
p–2

≥
(

p – 2
2p

)(
C1l‖�y(t)‖2

‖y(t)‖2
p,Γ1

) p
p–2 ≥

(
p – 2

2p

)(
C1l
B2

) p
p–2

.

By the definition of e0, we conclude that e0 > 0. �

Lemma 2.2 Assume that (H1)–(H2) hold. Suppose that (y0, y1) ∈ W × L2(Ω) and satisfy

I(0) < 0, E(0) < εe0 for any ε < 1. (2.13)

Then, for some T > 0, we get I(t) < 0 and

e0 <
p – 2

2p

[(
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t) +

1
2
∥∥�z(t)

∥∥2
]

<
p – 2

2p
∥∥y(t)

∥∥p
p,Γ1

(2.14)

for all t ∈ [0, T).

Proof Using (2.10) and (2.13), we obtain E(t) < εe0 for all t ∈ [0, T). We can also have
I(t) < 0 for all t ∈ [0, T). It can be showed by contradiction. Suppose that there exists some
t0 > 0 such that I(t0) = 0 and I(t) < 0 for 0 ≤ t < t0. Then

(
1–

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t)+

1
2
∥∥�z(t)

∥∥2 <
∥∥y(t)

∥∥p
p,Γ1

, 0 ≤ t < t0. (2.15)

Using Lemma 2.1 and (2.15), we see that

e0 <
p – 2

2p

{ (1 –
∫ t

0 g(s) ds)a(y(t), y(t)) + (g�∂2y)(t) + 1
2‖�z(t)‖2

[(1 –
∫ t

0 g(s) ds)a(y(t), y(t)) + (g�∂2y)(t) + 1
2‖�z(t)‖2]

2
p

} p
p–2

=
p – 2

2p

[(
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t) +

1
2
∥∥�z(t)

∥∥2
]

,

0 ≤ t < t0. (2.16)

Applying (2.15) and (2.16), we obtain

∥∥y(t)
∥∥p

p,Γ1
>

2pe0

p – 2
> 0, 0 ≤ t < t0.
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From t → ‖y(t)‖p
p,Γ1

> 0 is continuous, we have y(t0)|Γ1 �= 0. By (2.12) and I(t0) = 0, we find
that

e0 ≤ p – 2
2p

∥∥y(t0)
∥∥p

p,Γ1
= H(t0).

This is contradiction to H(t0) ≤ E(t0) < e0. From Lemma 2.1, we get (2.14). �

We set

G(t) = ε̂e0 – E(t), (2.17)

where ε̂ = max{0, ε}. By (2.10), G is an increasing function. Using (2.9), (2.13), (2.14), and
(2.17), we obtain

0 < G(0) ≤ G(t) ≤ ε̂e0 +
1
p
∥∥y(t)

∥∥p
p,Γ1

≤ p0
∥∥y(t)

∥∥p
p,Γ1

, t ∈ [0, T), (2.18)

where p0 = ε̂
2 + (1 – ε̂) 1

p .

Lemma 2.3 Let the conditions of Lemma 2.2 hold. Then the solution y of problem (1.1)–
(1.7) satisfies

∥∥y(t)
∥∥s

p,Γ1
≤ C3

∥∥y(t)
∥∥p

p,Γ1
, t ∈ [0, T), for any 2 ≤ s ≤ p, (2.19)

where C3 > 0.

Proof If ‖y(t)‖p,Γ1 ≥ 1, then ‖y(t)‖s
p,Γ1

≤ ‖y(t)‖p
p,Γ1

.
If ‖y(t)‖p,Γ1 ≤ 1, then

∥∥y(t)
∥∥s

p,Γ1
≤ ∥∥y(t)

∥∥2
p,Γ1

≤ B2∥∥�y(t)
∥∥2 ≤ B2

C1
a
(
y(t), y(t)

)
,

where we used (2.3) and (2.8). Then there exists a positive constant C4 = max{1, B2

C1
} such

that

∥∥y(t)
∥∥s

p,Γ1
≤ C4

(∥∥y(t)
∥∥p

p,Γ1
+ a

(
y(t), y(t)

))
for any 2 ≤ s ≤ p. (2.20)

By (2.4), (2.9), (2.17), and (2.18),

l
2

a
(
y(t), y(t)

)

≤ ε̂e0 – G(t) –
1

ρ + 2
∥∥yt(t)

∥∥ρ+2
ρ+2 –

α

2
∥∥∇yt(t)

∥∥2

–
1
2
(
g�∂2y

)
(t) +

1
p
∥∥y(t)

∥∥p
p,Γ1

–
1
4
∥∥�z(t)

∥∥2

≤ ε̂e0 +
1
p
∥∥y(t)

∥∥p
p,Γ1

≤ p0
∥∥y(t)

∥∥p
p,Γ1

. (2.21)

Using (2.20) and (2.21), we get the desired result (2.19). �
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3 A blow-up of solution
To obtain the blow-up result for solutions with nonpositive initial energy as well as positive
initial energy, we use a similar method of [26, 29].

Theorem 3.1 Let (H1)–(H2) and the conditions of Lemma 2.2 hold, ε < p–4
p–2 and p >

max{4, m}. Moreover, we assume that g satisfies

∫ ∞

0
g(s) ds <

p – 2
p – 2 + 1

[(1–ε̂)2(p–2)+2(1–ε̂)]

, (3.1)

where ε̂ = max{0, ε} and

ξ–1(1) <
(

pβηε̂e0

(p – 1)|Γ1|
) p–1

p
, (3.2)

where 0 < η < min{2θ0, 2θ1, 4θ2}, 0 < β < η
1

p–1 , for some δ > 0,

θ0 =
(

p
2

– 1
)

(1 – ε̂) –
{(

p
2

– 1
)

(1 – ε̂) +
1

4δ

}∫ t

0
g(s) ds > 0, (3.3)

θ1 =
(

p
2

– 1
)

(1 – ε̂) + (1 – δ) > 0, (3.4)

θ2 =
(

p
4

– 1
)

– ε̂

(
p
4

–
1
2

)
> 0. (3.5)

Then the solution of system (1.1)–(1.7) blows up in finite time.

Proof We suppose that there exists some positive constant B0 such that, for t > 0, the
solution y(t) of (1.1)–(1.7) satisfies

∥∥yt(t)
∥∥ρ+2

ρ+2 +
∥∥∇yt(t)

∥∥2 +
∥∥�y(t)

∥∥2 +
∥∥y(t)

∥∥p
p,Γ1

≤ B0. (3.6)

Let us define

F(t) = G1–σ (t) +
ε

ρ + 1

∫
Ω

∣∣yt(t)
∣∣ρyt(t)y(t) dx + αε

∫
Ω

∇yt(t)∇y(t) dx, (3.7)

where ε > 0 shall be taken later and

0 < σ < min

{
1

ρ + 2
,

p – m
p(m – 1)

}
. (3.8)

Using (1.1)–(1.6), (2.2), (2.9), and (2.17), we get

F ′(t) = (1 – σ )G–σ (t)G′(t) +
ε

ρ + 1
∥∥yt(t)

∥∥ρ+2
ρ+2 + αε

∥∥∇yt(t)
∥∥2 – ε

∥∥�z(t)
∥∥2

– εa
(
y(t), y(t)

)

+ εa
(
(g ∗ y)(t), y(t)

)
– ε

(
f
(
yt(t)

)
, y(t)

)
Γ1

+ ε
∥∥y(t)

∥∥p
p,Γ1

+ εpE(t) – εpE(t)

= (1 – σ )G–σ (t)G′(t) +
ε

ρ + 1
∥∥yt(t)

∥∥ρ+2
ρ+2 + αε

∥∥∇yt(t)
∥∥2 – ε

∥∥�z(t)
∥∥2
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– εa
(
y(t), y(t)

)

+ εa
(
(g ∗ y)(t), y(t)

)
– ε

(
f
(
yt(t)

)
, y(t)

)
Γ1

+ εp
(
G(t) – ε̂e0

)
+

εp
ρ + 2

∥∥yt(t)
∥∥ρ+2

ρ+2

+ εp
(

α

2
∥∥∇yt(t)

∥∥2 +
1
2

(
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)

+
1
2
(
g�∂2y

)
(t) +

1
4
∥∥�z(t)

∥∥2
)

. (3.9)

From (2.14), we find that

–ε̂e0 > ε̂

(
1
p

–
1
2

)((
1 –

∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
+

(
g�∂2y

)
(t) +

1
2
∥∥�z(t)

∥∥2
)

. (3.10)

Moreover, we give

a
(
(g ∗ y)(t), y(t)

)
=

∫ t

0
g(t – s)a

(
y(s) – y(t), y(t)

)
ds +

(∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)

≥
(

1 –
1
4δ

)(∫ t

0
g(s) ds

)
a
(
y(t), y(t)

)
– δ

(
g�∂2y

)
(t), (3.11)

for some δ > 0. Combining (3.9), (3.10), and (3.11), we deduce that

F ′(t) ≥ (1 – σ )G–σ (t)G′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥yt(t)
∥∥ρ+2

ρ+2 + εα

(
1 +

p
2

)∥∥∇yt(t)
∥∥2

+ ε

[(
p
2

– 1
)

(1 – ε̂) –
{(

p
2

– 1
)

(1 – ε̂) +
1
4δ

}∫ t

0
g(s) ds

]
a
(
y(t), y(t)

)

+ ε

[(
p
2

– 1
)

(1 – ε̂) + (1 – δ)
](

g�∂2y
)
(t)

+ ε

[(
p
4

– 1
)

– ε̂

(
p
4

–
1
2

)]∥∥�z(t)
∥∥2

+ εpG(t) – ε
(
f
(
yt(t)

)
, y(t)

)
Γ1

(3.12)

for some δ with 0 < δ < 1 + ( p
2 – 1)(1 – ε̂). By (3.1), (3.3)–(3.5), estimate (3.12) can be rewrit-

ten by

F ′(t) ≥ (1 – σ )G–σ (t)G′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥yt(t)
∥∥ρ+2

ρ+2 + εα

(
1 +

p
2

)∥∥∇yt(t)
∥∥2

+ εθ0a
(
y(t), y(t)

)
+ εθ1

(
g�∂2y

)
(t) + εθ2

∥∥�z(t)
∥∥2

+ εpG(t) – ε
(
f
(
yt(t)

)
, y(t)

)
Γ1

. (3.13)

Using a method similar to [30], we now estimate the last term of the right-hand side of
(3.13). Setting Γ11 = {x ∈ Γ1 : |yt(x, t)| ≤ 1} and Γ12 = {x ∈ Γ1 : |yt(x, t)| > 1}, we obtain

(
f
(
yt(t)

)
, y(t)

)
Γ1

≤
∫

Γ11

∣∣f (yt(x, t)
)∣∣∣∣y(x, t)

∣∣dΓ +
∫

Γ12

∣∣f (yt(x, t)
)∣∣∣∣y(x, t)

∣∣dΓ . (3.14)
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From (2.5) and Young’s inequality, we get

∫
Γ11

∣∣f (yt(x, t)
)∣∣∣∣y(x, t)

∣∣dΓ

≤
(∫

Γ11

∣∣ξ–1(1)
∣∣ p

p–1 dΓ

) p–1
p

(∫
Γ11

∣∣y(x, t)
∣∣p dΓ

) 1
p

≤ βp–1

p
∥∥y(t)

∥∥p
p,Γ1

+
(p – 1)|Γ1|

pβ

(
ξ–1(1)

) p
p–1 , β > 0. (3.15)

On the other hand, by using (2.6), (2.10), (2.17), and Young’s inequality, we have

∫
Γ12

∣∣f (yt(x, t)
)∣∣∣∣y(x, t)

∣∣dΓ

≤ c2

(∫
Γ12

∣∣yt(x, t)
∣∣m dΓ

) m–1
m

(∫
Γ12

∣∣y(x, t)
∣∣m dΓ

) 1
m

≤ c2

(
1
c1

∫
Γ12

f
(
yt(x, t)

)
yt(x, t) dΓ

) m–1
m

(∫
Γ12

∣∣y(x, t)
∣∣m dΓ

) 1
m

≤ cm
2 γ m

m
∥∥y(t)

∥∥m
p,Γ1

+
m – 1

c1mγ
m

m–1
G′(t), γ > 0. (3.16)

Inserting (3.14)–(3.16) into (3.13), we obtain

F ′(t) ≥
[

(1 – σ )G–σ (t) –
ε(m – 1)
c1mγ

m
m–1

]
G′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥yt(t)
∥∥ρ+2

ρ+2

+ εα

(
1 +

p
2

)∥∥∇yt(t)
∥∥2 + εθ0a

(
y(t), y(t)

)

+ εθ1
(
g�∂2y

)
(t) + εθ2

∥∥�z(t)
∥∥2 + εpG(t)

–
εβp–1

p
∥∥y(t)

∥∥p
p,Γ1

–
εcm

2 γ m

m
∥∥y(t)

∥∥m
p,Γ1

–
ε(p – 1)|Γ1|

pβ

(
ξ–1(1)

) p
p–1 . (3.17)

We choose γ = (τG–σ (t))– m–1
m , τ > 0 will be specified later. Using (2.18), (2.19), and (3.8),

we see that

–
εcm

2 γ m

m
∥∥y(t)

∥∥m
p,Γ1

= –
εcm

2 τ 1–m

m
Gσ (m–1)(t)

∥∥y(t)
∥∥m

p,Γ1

≥ –
εcm

2 τ 1–m

m
pσ (m–1)

0
∥∥y(t)

∥∥σp(m–1)+m
p,Γ1

≥ –εC5τ
1–m∥∥y(t)

∥∥p
p,Γ1

, (3.18)

where C5 = cm
2 pσ (m–1)

0 C3
m . Substituting (3.18) into (3.17), we have

F ′(t) ≥
[

(1 – σ ) –
ετ (m – 1)

c1m

]
G–σ (t)G′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

)∥∥yt(t)
∥∥ρ+2

ρ+2

+ εα

(
1 +

p
2

)∥∥∇yt(t)
∥∥2 + εθ0a

(
y(t), y(t)

)

+ εθ1
(
g�∂2y

)
(t) + εθ2

∥∥�z(t)
∥∥2 + εpG(t)
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– ε

(
βp–1

p
+ C5τ

1–m
)∥∥y(t)

∥∥p
p,Γ1

–
ε(p – 1)|Γ1|

pβ

(
ξ–1(1)

) p
p–1 . (3.19)

Adding and subtracting εηG(t) on the right-hand side of (3.19) and applying (2.9) and
(2.17), we obtain

F ′(t) ≥
[

(1 – σ ) –
ετ (m – 1)

c1m

]
G–σ (t)G′(t) + ε

(
1

ρ + 1
+

p
ρ + 2

–
η

ρ + 2

)∥∥yt(t)
∥∥ρ+2

ρ+2

+ εα

(
1 +

p
2

–
η

2

)∥∥∇yt(t)
∥∥2 + ε(p – η)G(t)

+ ε

{
θ0 –

η

2

(
1 –

∫ t

0
g(s) ds

)}
a
(
y(t), y(t)

)

+ ε

(
θ1 –

η

2

)(
g�∂2y

)
(t) + ε

(
θ2 –

η

4

)∥∥�z(t)
∥∥2

+ ε

(
η

p
–

βp–1

p
– C5τ

1–m
)∥∥y(t)

∥∥p
p,Γ1

+ εηe0ε̂ –
ε(p – 1)|Γ1|

pβ

(
ξ–1(1)

) p
p–1 . (3.20)

We fix η such that

0 < η < min{2θ0, 2θ1, 4θ2}, (3.21)

then we can choose β > 0 sufficiently small so that η – βp–1 > 0. And then, we select τ > 0
large enough such that η

p – βp–1

p – C5τ
1–m > 0. Finally, we take ε > 0 with

(1 – σ ) –
ετ (m – 1)

c1m
> 0, G1–σ (0) +

ε

ρ + 1

∫
Ω

|y1|ρy1y0 dx + αε

∫
Ω

∇y1∇y0 dx > 0.

Condition (3.2) yields

ηe0ε̂ –
(p – 1)|Γ1|

pβ

(
ξ–1(1)

) p
p–1 > 0.

Therefore, we get from (2.3) and (3.20)

F ′(t) ≥ C
(∥∥yt(t)

∥∥ρ+2
ρ+2 +

∥∥∇yt(t)
∥∥2 +

∥∥�y(t)
∥∥2 +

∥∥y(t)
∥∥p

p,Γ1
+ G(t)

)
, (3.22)

where C > 0 is a generic constant. Hence we have

F(t) ≥ F(0) > 0, ∀t ≥ 0.

By the similar arguments in [31, 32], we see that

F
1

1–σ (t) ≤ C
(∥∥yt(t)

∥∥ρ+2
ρ+2 +

∥∥∇yt(t)
∥∥2 +

∥∥�y(t)
∥∥2 +

∥∥y(t)
∥∥p

p,Γ1

)
. (3.23)

Indeed, using Young’s inequality and
∣∣∣∣
∫

Ω

∣∣yt(t)
∣∣ρyt(t)y(t) dx

∣∣∣∣ ≤ ∥∥yt(t)
∥∥ρ+1

ρ+2

∥∥y(t)
∥∥

ρ+2,
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we obtain

∣∣∣∣
∫

Ω

∣∣yt(t)
∣∣ρyt(t)y(t) dx

∣∣∣∣
1

1–σ ≤ (∥∥yt(t)
∥∥ρ+1

ρ+2

∥∥y(t)
∥∥

ρ+2

) 1
1–σ

≤ C
(∥∥yt(t)

∥∥ (ρ+1)κ
1–σ

ρ+2 +
∥∥y(t)

∥∥ μ
1–σ

ρ+2

)
, (3.24)

where 1
κ

+ 1
μ

= 1. By taking κ = (1–σ )(ρ+2)
ρ+1 and using (3.8), we get κ > 1 and μ

1–σ
=

ρ+2
(1–σ )(ρ+2)–(ρ+1) . Since G is an increasing function, (2.18) and (3.6), we arrive at

∥∥y(t)
∥∥ μ

1–σ

ρ+2 ≤ C
μ

1–σ
0

∥∥�y(t)
∥∥ μ

1–σ ≤ (C2
0B0)

μ
2(1–σ )

G(0)
G(t) ≤ C

∥∥y(t)
∥∥p

p,Γ1
, (3.25)

where C0 is the embedding constant. Similarly, by Young’s inequality, we obtain

∣∣∣∣
∫

Ω

∇yt(t)∇y(t) dx
∣∣∣∣

1
1–σ ≤ ∥∥∇yt(t)

∥∥ 1
1–σ

∥∥∇y(t)
∥∥ 1

1–σ

≤ C
(∥∥∇yt(t)

∥∥2 +
∥∥∇y(t)

∥∥ 2
1–2σ

)
. (3.26)

Like (3.25), we find that

∥∥∇y(t)
∥∥ 2

1–2σ ≤ C
2

1–2σ∗
∥∥�y(t)

∥∥ 2
1–2σ ≤ (C2∗B0) 1

1–2σ

G(0)
G(t) ≤ C

∥∥y(t)
∥∥p

p,Γ1
, (3.27)

where C∗ is the embedding constant. From (2.18), (3.7), (3.24)–(3.27), we see that (3.23)
holds. Combining (3.22) and (3.23), we deduce that

F ′(t) ≥ CF
1

1–σ (t) for t ≥ 0. (3.28)

By a simple integration of (3.28) over (0, t), we get

F
σ

1–σ (t) ≥ 1
F– σ

1–σ (0) – Cσ t
1–σ

for t ≥ 0.

Consequently, F(t) blows up in time T∗ ≤ 1–σ

CσF
σ

1–σ (0)
. Furthermore, we have from (3.23)

lim
t→T∗–

(∥∥yt(t)
∥∥ρ+2

ρ+2 +
∥∥∇yt(t)

∥∥2 +
∥∥�y(t)

∥∥2 +
∥∥y(t)

∥∥p
p,Γ1

)
= ∞.

This leads to a contradiction with (3.6). Therefore the solution of (1.1)–(1.7) blows up in
finite time. �

4 Conclusions
In this paper, we consider the blow-up of solutions for the quasilinear von Karman equa-
tion of memory type. In recent years, there has been published much work concerning
the wave equation with nonlinear boundary damping. But as far as we know, there was
no blow-up result of solutions to the viscoelastic von Karman equation with nonlinear
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boundary damping and source terms. Therefore, we will prove a finite time blow-up re-
sult of solution with positive initial energy as well as non-positive initial energy. Moreover,
we generalize the earlier result under a weaker assumption on the damping term.

Acknowledgements
The authors are thankful to the honorable reviewers and editors for their valuable comments and suggestions, which
improved the paper.

Funding
Research of MJL was supported by the Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1E1A1A03070738). Research of J-RK was
supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (2017R1D1A1B03028291).

Abbreviations
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1Department of Mathematics, Pusan National University, Busan, South Korea. 2Department of Applied Mathematics,
Pukyong National University, Busan, South Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 January 2019 Accepted: 9 October 2019

References
1. Bradley, M.E., Lasiecka, I.: Global decay rates for the solutions to a von Karman plate without geometric conditions.

J. Math. Anal. Appl. 181, 254–276 (1994)
2. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics. Springer, New

York (2010)
3. Khanmamedov, A.K.: Global attractors for von Karman equations with nonlinear interior dissipation. J. Math. Anal.

Appl. 318, 92–101 (2006)
4. Lasiecka, I.: Finite dimensionality and compactness of attractors for von Karman equations with nonlinear dissipation.

NoDEA Nonlinear Differ. Equ. Appl. 6, 437–472 (1999)
5. Puel, J., Tucsnak, M.: Boundary stabilization for the von Karman equations. SIAM J. Control Optim. 33, 255–273 (1996)
6. Chueshov, I., Lasiecka, I.: Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping.

J. Differ. Equ. 233, 42–86 (2007)
7. Favini, A., Horn, M., Lasiecka, I., Tataru, D.: Global existence, uniqueness and regularity of solutions to a von Karman

system with nonlinear boundary dissipation. Differ. Integral Equ. 9(2), 267–294 (1996)
8. Horn, M.A., Lasiecka, I.: Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback. Appl.

Math. Optim. 31, 57–84 (1995)
9. Kang, J.R.: Energy decay rates for von Karman system with memory and boundary feedback. Appl. Math. Comput.

218, 9085–9094 (2012)
10. Kang, J.R.: A general stability for a von Karman system with memory. Bound. Value Probl. 2015, 204 (2015)
11. Raposo, C.A., Santos, M.L.: General decay to a von Karman systems with memory. Nonlinear Anal. 74, 937–945 (2011)
12. Rivera, J.E.M., Menzala, G.P.: Decay rates of solutions of a von Karman system for viscoelastic plates with memory.

Q. Appl. Math. LVII(1), 181–200 (1999)
13. Rivera, J.E.M., Oquendo, H.P., Santos, M.L.: Asymptotic behavior to a von Karman plate with boundary memory

conditions. Nonlinear Anal. 62, 1183–1205 (2005)
14. Santos, M.L., Soufyane, A.: General decay to a von Karman plate system with memory boundary conditions. Differ.

Integral Equ. 24(1–2), 69–81 (2011)
15. Kang, J.R.: General stability for a von Karman plate system with memory boundary conditions. Bound. Value Probl.

2015, 167 (2015)
16. Park, J.Y., Park, S.H., Kang, Y.H.: General decay for a von Karman equation of memory type with acoustic boundary

conditions. Z. Angew. Math. Phys. 63, 813–823 (2012)
17. Kang, J.R.: Asymptotic behavior to a von Karman equations of memory type with acoustic boundary conditions.

Z. Angew. Math. Phys. 67, 48 (2016)



Lee and Kang Boundary Value Problems        (2019) 2019:174 Page 14 of 14

18. Park, S.H.: Energy decay for a von Karman equation with time-varying delay. Appl. Math. Lett. 55, 10–17 (2016)
19. Kim, D.W., Park, J.Y., Kang, Y.H.: Energy decay rate for a von Karman system with a boundary nonlinear delay term.

Comput. Math. Appl. 75, 3269–3282 (2018)
20. Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolutions equations. Quart. J. Math. Oxford

28, 473–486 (1977)
21. Levine, H.A.: Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt = Au + F(u).

Trans. Am. Math. Soc. 192, 1–21 (1974)
22. Levine, H.A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equation. SIAM J.

Math. Anal. 5, 138–146 (1974)
23. Georgiev, V., Todorova, G.: Existence of solutions of the wave equation with nonlinear damping and source terms.

J. Differ. Equ. 109, 295–308 (1994)
24. Messaoudi, S.A.: Blow up in a nonlinearly damped wave equation. Math. Nachr. 231, 1–7 (2001)
25. Messaoudi, S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66

(2003)
26. Messaoudi, S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math.

Anal. Appl. 320, 902–915 (2006)
27. Song, H.: Blow up of arbitrarily positive initial energy solutions for a viscoelastic wave equation. Nonlinear Anal., Real

World Appl. 26, 306–314 (2015)
28. Park, S.H., Lee, M.J., Kang, J.R.: Blow-up results for viscoelastic wave equations with weak damping. Appl. Math. Lett.

80, 20–26 (2018)
29. Liu, W.J., Yu, J.: On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and

source terms. Nonlinear Anal. 74, 2175–2190 (2011)
30. Ha, T.G.: Blow-up for wave equation with weak boundary damping and source terms. Appl. Math. Lett. 49, 166–172

(2015)
31. Hao, J., Wei, H.: Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong

damping and source term. Bound. Value Probl. 2017, 65 (2017)
32. Liu, W.J.: General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source.

Nonlinear Anal. 73, 1890–1904 (2010)
33. Liu, W.J., Sun, Y., Li, G.: On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a

nonlinear source term. Topol. Methods Nonlinear Anal. 49(1), 299–323 (2017)
34. Liu, W.J., Zhuang, H.F.: Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge

equation with nonlinear damping and source terms. Nonlinear Differ. Equ. Appl. 24, 67 (2017)
35. Messaoudi, S.A., Bonfoh, A., Mukiawa, S., Enyi, C.: The global attractor for a suspension bridge with memory and

partially hinged boundary conditions. Z. Angew. Math. Mech. 97(2), 159–172 (2017)
36. Song, H.: Global nonexistence of positive initial energy solutions for a viscoelastic wave equation. Nonlinear Anal.

125, 260–269 (2015)
37. Song, H., Zhong, C.: Blow-up of solutions of a nonlinear viscoelastic wave equation. Nonlinear Anal., Real World Appl.

11, 3877–3883 (2010)
38. Vitillaro, E.: Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differ. Equ.

186, 259–298 (2002)
39. Chueshov, I., Lasiecka, J.: Global attractors for von Karman evolutions with nonlinear boundary dissipation. J. Differ.

Equ. 198, 196–231 (2004)
40. Ha, T.G.: Asymptotic stability of the semilinear wave equation with boundary damping and source term. C.R. Acad.

Sci. Paris 352, 213–218 (2014)


	Blow-up results for a quasilinear von Karman equation of memory type
	Abstract
	MSC
	Keywords

	Introduction
	Preliminary
	A blow-up of solution
	Conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


