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Abstract
In this paper, we present a modified Schrödinger-type identity related to the
Schrödinger-type boundary value problem with mixed boundary conditions and
spatial heterogeneities. This identity can be regarded as an L1-version of Fisher–Riesz’s
theorem and has a broad range of applications. Using it and fixed point theory in
L1-metric spaces, we prove that there exists a unique solution for the singular
boundary value problem with mixed boundary conditions and spatial
heterogeneities. We finally provide two examples, which show the effectiveness of
the Schrödinger-type identity method.
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1 Introduction
In this paper, we consider a singular boundary value problem with mixed boundary con-
ditions and spatial heterogeneities given by (see [1–7])

– �f = χ f in ,ג

f = 0 on �1,

∂f + V (t)f = χω(t)uq on �2, q > 1,

(1.1)

where:
(i) ג = (0, W ) × (0, w) is a bounded rectangular domain, ג represents a porous medium

with Lipschitz boundary ג∂ = �1 ∪�2, where

�2 =
({0} × [0, w]

) ∪ (
[0, W ] × {w}) ∪ ({W } × [0, w]

)

is the part in contact with air or covered by fluid, and

�1 = [0, W ] × {0}

is the impervious part of .ג∂ Let P = ×ג (0, M), where M > 0;
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(ii) –� stands for the minus Laplacian operator, χ is a function of the variable t
satisfying

c1 ≤ χ (t) ≤ c2 for a.e. t ∈ (0, W ) (1.2)

for two positive constants c1 and c2, and ω(t) satisfies

0 ≤ ω(t) ≤ 1 for a.e. t ∈ .ג (1.3)

(iii) the spatial heterogeneities on the boundary come given by the potentials
V , b ∈ C(�2), where b > 0 on �2, and V possesses arbitrary sign at each point x ∈ �2;

(iv) ∂f (x) stands for the outer normal derivative of f at t ∈ �2.
Our goal in this paper is to analyze the Schrödinger-type identity for (1.1). In the

Schrödinger-type identity the continuous part of the corresponding Schrödinger oper-
ator is unchanged, and only the discrete part of the spectrum is changed by adding or
removing a finite number of discrete eigenvalues to the spectrum. We can view the pro-
cess of adding or removing discrete eigenvalues as changing the “unperturbed” potential
and the “unperturbed” wavefunction into the “perturbed” potential and the “perturbed”
wavefunction, respectively. Hence our goal is to present a Schrödinger-type identity at
the potential and wavefunction levels by expressing the change in the potential and wave-
function in terms of quantities related to the perturbation and the unperturbed quanti-
ties.

The singular boundary value problem arises in many areas of applied mathematics and
physics, and only its positive solution is significant in practice (see [8–12]). In recent years
the study of positive solutions for ordinary elliptic systems and of positive radial solutions
for elliptic systems in annular domains has received considerable attention; see [13–17]
and the references therein. These references discussed mainly (1.1) for the particular case
ω(t) = 1 and V (t) = 0 and established some interesting results by applying the fixed point
theorems of cone compression type, the lower and upper solutions method, and the fixed
point index theory in cones, and especially extended the relevant results on the scalar
second-order ordinary differential equations. For instance, Huang [18] has developed the
Randon transform of the singular integral, where they have considered a linear stochas-
tic Schrödinger equation in terms of local quantum Bernoulli noise. Subsequently, Sun
[19] obtained new applications of the above identity for obtaining transmutations via the
fixed point index for nonlinear integral equations. It is possible to derive a wide range
of transmutation operators by this method. Zhang et al. [20] introduced a Schrödinger-
type identity for a Schrödinger free boundary problem in Rn and established necessary
and sufficient conditions for the product of some distributional functions with uniformly
sublinear term. Bahrouni et al. [21] obtained qualitative properties of entire solutions to
a Schrödinger equation with sublinear nonlinearity and sign-changing potentials. Their
analysis considered three distinct cases, and they established sufficient conditions for the
existence of infinitely many solutions. In 2019, they [22] also considered the bound state
solutions of sublinear Schrödinger equations with lack of compactness. Using variational
methods, they proved the existence of two solutions with negative and positive energies,
one of these solutions being nonnegative. Rybalko [23] studied an initial value problem
for a one-dimensional nonstationary linear Schrödinger equation with a point singular
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potential. Xiang et al. [24] considered the existence and multiplicity of solutions for the
Schrödinger–Kirchhof-type problems involving the fractional p-Laplacian and critical ex-
ponent. Xue and Tang [25] established the existence of bound state solutions for a class of
quasilinear Schrödinger equations whose nonlinear term is asymptotically linear.

Recently, there have been also many extensive attentions (see [26, 27] and references
therein) for singular Schrödinger-type boundary value problems under a general sublin-
ear condition or a general superlinear condition involving the principal eigenvalue of the
Schrödinger operator, and in some sense their conditions are optimal.

Our paper is organized as follows. In Sect. 2, we present a modified Schrödinger-type
identity when a bound state is added to the spectrum of the Schrödinger operator. Ap-
plying it, in Sect. 3, we prove that there exists a unique solution for the singular bound-
ary value problem with mixed boundary conditions and spatial heterogeneities. Finally,
in Sect. 4, we present some illustrative examples for better understanding of the results
introduced.

2 A modified Schrödinger-type identity
In this section, we introduce the following modified Schrödinger-type identity for the so-
lution of (1.1). As for the classical Schrödinger-type identity, we refer the reader to [19]
for more detail.

Lemma 2.1 Let

Σ1 = �1 × (0, M), Σ2 = �2 × (0, M), Σ3 = Σ2 ∩ {φ > 0}

and

Σ4 = Σ2 ∩ {φ = 0}.

(i) Let ε > 0, k ≥ 0, and ς ∈D(R2 × (0, M)) be such that ς ≥ 0 and ς = 0 on Σ3. Then

∫

P
χ (t)(ft + ω)

(
min

(
(f – k)+

ε
,ς

))

t
dt ds = 0. (2.1)

(ii) Let ς = 0 on Σ2. Then

∫

P
χ (t)(ft + ω)

(
min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
))

t
dt ds = 0. (2.2)

Proof Let ψ be a measure function satisfying

d
(
supp(ψ),Σ2

)
> 0

and

supp(ψ) ⊂R
2 × (0, M).
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Then we have that

(t, s) �→ ±ψ(t, t – κ)

vanishes on Σ2 and in ×ג {0, M} for any κ ∈ (–κ0,κ0), where κ0 is a positive constant.
Note that there exist two constants d1 > 0 and d2 > 0 such that

d1‖ft‖∗ ≤ ‖ft‖H1 ≤ d2‖ft‖∗ for all ft ∈ Σ1. (2.3)

It follows from (1.2), (1.3), and (2.3) that

∥∥Fl(ft) – Fl(f̄t)
∥∥∗ ≤ d2

d1
exp

((
1
2

RK̃R – 1
)

W
)

‖ft – f̄t‖∗ (2.4)

for all ft , f̄t ∈ Σ1.
So

∥∥fl(y)
∥∥2
H1 +

∥∥flt(y)
∥∥2
H1 + 2(1 – κ)

∫ t

0

(∥∥fl(y)
∥∥2
H1 +

∥∥flt(y)
∥∥2
H1

)
dy

≤R2 +
1

2κ

∫ M

0

∥
∥w(y)

∥
∥2
H1 dy ≤DM. (2.5)

On the other hand, we obtain that

2
∫ M

0

∥∥f ′
l (y)

∥∥2
H1 dy +

∫ M

0

d
dy

[∥∥fl(y)
∥∥2
H1 + 2

∫ 1

0
Ṽ

(
flt(t, y)

)
dx

]
dy

= 2
∫ M

0

〈
w(y), f ′

l (y)
〉
dy. (2.6)

It follows from (2.5) and (2.6) that

∫ M

0

d
dy

[∥∥fl(y)
∥∥2
H1 + 2

∫ 1

0
Ṽ

(
flt(t, y)

)
dx

]
dy

=
∥
∥fl(W )

∥
∥2
H1 –

∥
∥fl(0)

∥
∥2
H1 + 2

∫ 1

0

[
Ṽ

(
flt(t, W )

)
– Ṽ

(
flt(t, 0)

)]
dx = 0. (2.7)

Putting ιR = sup|t|≤√
2R ι(t), we obtain that

2
∫ M

0

〈
ι
(
flt(y)

)
fl(y), f ′

l (y)
〉
dy

≤ 2ιR

∫ M

0

∥∥fl(y)
∥∥∥∥f ′

l (y)
∥∥dy

≤ 2RιR

∫ M

0

∥∥f ′
l (y)

∥∥dy

≤ 2WR2ι2
R +

1
2

∫ M

0

∥
∥f ′

l (y)
∥
∥2 dy. (2.8)
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From (2.6), (2.7), and (2.8) it follows that

∫ M

0

∥
∥f ′

l (y)
∥
∥2
H1 dy ≤ 2WR2ι2

R + 2
∫ M

0

∥
∥w(y)

∥
∥2 dy ≤DW (2.9)

for all m ∈N and t ∈ [0, M].
For fixed i and j, from (2.9) we deduce that

∫ M

0

〈
f ′
l (y) + fl(y),χjζi(y)

〉
dy →

∫ M

0

〈
f ′(y) + f (y),χjζi(y)

〉
dy,

∫ M

0

〈
f ′
lt(y) + flt(y),χjtζi(y)

〉
dy →

∫ M

0

〈
f ′
t (y) + ft(y),χjtζi(y)

〉
dy.

(2.10)

It follows from (2.8) that

∫ M

0

〈
V̄

(
flt(y)

)
,χjtζi(y)

〉
dy →

∫ M

0

〈
V̄

(
ft(y)

)
,χjtζi(y)

〉
dy,

∫ M

0

〈
ι
(
flt(y)

)
fl(y),χjζi(y)

〉
dy →

∫ M

0

〈
ι
(
ft(y)

)
f (y),χjζi(y)

〉
dy.

(2.11)

So

∫ M

0

〈
f ′(y) + f (y),χjζi(y)

〉
dy +

∫ M

0

〈
f ′
t (y) + ft(y),χjtζi(y)

〉
dy

+
∫ M

0

〈
V̄

(
ft(y)

)
,χjtζi(y)

〉
dy +

∫ M

0

〈
ι
(
ft(y)

)
f (y),χjζi(y)

〉
dy

=
∫ M

0

〈
w(y),χjζi(y)

〉
dy, (2.12)

which yields the equation

∫ M

0

〈
f ′(y) + f (y),χ (y)

〉
dy +

∫ M

0

〈
f ′
t (y) + ft(y),χt(y)

〉
dy

+
∫ M

0

〈
V̄

(
ft(y)

)
,χt(y)

〉
dy +

∫ M

0

〈
ι
(
ft(y)

)
f (y),χ (y)

〉
dy

=
∫ M

0

〈
w(y),χ (y)

〉
dy for all w ∈ L2(0, W ;H1

0
)
. (2.13)

It follows from (2.13) that modified Schrödinger-type identities (2.1) and (2.2) hold. �

3 Uniqueness of the solution
In this section, we obtain our main result that a solution of problem (1.1) is unique. We
assume that

χ ∈ C1([0, W ]
)
. (3.1)

Now we can state our uniqueness theorem.
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Theorem 3.1 The solution of problem (1.1) associated with the initial data ω0 is unique
and satisfies

f ∈ L∞(
0, W ;H1

0 ∩H2), f ′ ∈ L2(0, W ;H1
0
)
. (3.2)

Furthermore, we have the estimate

‖f ‖L∞(ג) ≤ max
{‖f̃0‖L∞(Σ2),‖f ‖L∞(ג)

}
. (3.3)

Proof Consider a special orthonormal basis {χj} on H1
0 : χj(t) =

√
2 sin(jπx), j ∈N,

–�χj = τjχj, χj ∈ C∞(
[0, 1]

)
, τj = (jπ )2, j = 1, 2, . . . .

Put (see [28])

fl(s) =
l∑

j=1

dlj(s)χj, (3.4)

where
〈
f ′
l (s),χj

〉
+

〈
f ′
lt(s),χjt

〉
+

〈
flt(s) + V̄

(
flt(s)

)
,χjt

〉

+
〈(

1 + ι
(
flt(s)

))
fl(s),χj

〉
=

〈
w(s),χj

〉
, 1 ≤ j ≤ l,

fl(0) = f0l,

(3.5)

in which

f0l =
l∑

j=1

βljχj → f̃0 strongly in H1
0 ∩H2. (3.6)

Equality (3.5) yields that

d′
li(s) + dli(s) +

1
1 + τi

[〈
V̄

(
flt(s)

)
,χix

〉
+

〈
ι
(
flt(s)

)
fl(s),χi

〉]

=
1

1 + τi

〈
w(s),χi

〉
,

dli(0) = βli, 1 ≤ i ≤ l.

(3.7)

Multiplying the jth equation of (3.7) by dlj(s) and summing up with respect to j, we
obtain that

Sl(s) = Sl(0) + 2
∫ t

0

〈
w(y), fl(y)

〉
dy, (3.8)

where

Sl(s) =
∥∥fl(s)

∥∥2
H1 + 2

∫ t

0

∥∥fl(y)
∥∥2
H1 dy

+ 2
∫ t

0

〈
V̄

(
flt(y)

)
, flt(y)

〉
dy + 2

∫ t

0

〈
ι
(
flt(y)

)
, f 2

l (y)
〉
dy. (3.9)
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So

Sl(0) = ‖f0l‖2
H1 ≤ S̄0 (3.10)

for m ∈N, where f0l → f̃0 strongly in H1
0 ∩H2.

Consider

yV̄ (y) = y
∫ y

0
V (r) dr ≥ 0

for y ∈ R.
So

2
∫ t

0

〈
w(y), fl(y)

〉
dy ≤

∫ t

0

∥
∥w(y)

∥
∥2 dy +

∫ t

0

∥
∥fl(y)

∥
∥2 dy

≤
∫ W

0

∥∥w(y)
∥∥2 dy +

1
2
Sl(s), (3.11)

which yields that

Sl(s) ≤ 2S̄0 + 2
∫ W

0

∥∥w(y)
∥∥2 dy ≤ D(1)

W . (3.12)

Further, we obtain that
〈
f ′
lt(s),χjt

〉
+

〈
�f ′

l (s),�χj
〉
+

〈
�fl(s),�χj

〉

+
〈
flt(s),χjt

〉
+

〈
V

(
flt(s)

)
�fl(s),�χj

〉

+
〈
ι′
(
flt(s)

)
fl(s)�fl(s) + ι

(
flt(s)

)
flt(s),χjt

〉

=
〈
ft(s),χjt

〉
, 1 ≤ j ≤ l. (3.13)

Similarly,

Pl(s) = Pl(0) – 2
∫ t

0

[〈
ι′
(
flt(y)

)
fl(y)�fl(s), flt(y)

〉

+
〈
ι
(
flt(y)

)
,
∣
∣flt(y)

∣
∣2〉]dy + 2

∫ t

0

〈
ft(y), flt(s)

〉
dy

= Pl(0) + I1 + I2, (3.14)

where

Pl(s) =
∥∥flt(s)

∥∥2 +
∥∥�fl(s)

∥∥2 + 2
∫ t

0

(∥∥flt(y)
∥∥2 +

∥∥�fl(y)
∥∥2)dy

+ 2
∫ t

0

〈
V

(
flt(y)

)
,
∣
∣�fl(s)

∣
∣2〉dy. (3.15)

On the other hand, we have

Pl(0) =
∥
∥flt(0)

∥
∥2 +

∥
∥�fl(0)

∥
∥2 = ‖f0mx‖2 + ‖�f0l‖2 ≤ P̄0 (3.16)

for any m ∈N, where P̄0 always indicates a constant depending on f̃0 (see [29]).
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It follows that

I1 = –2
∫ t

0

[〈
ι′
(
flt(y)

)
fl(y)�fl(s), flt(y)

〉

+
〈
ι
(
flt(y)

)
,
∣
∣flt(y)

∣
∣2〉]dy ≤ 0 (3.17)

and

I2 = 2
∫ t

0

〈
ft(y), flt(s)

〉
dy ≤

∫ W

0

∥∥ft(y)
∥∥∥∥flt(y)

∥∥dy

≤
∫ W

0

∥
∥ft(y)

∥
∥
√
Sl(y) dy ≤

√
D(1)

W

∫ W

0

∥
∥ft(y)

∥
∥dy (3.18)

from (3.14), (3.15), and (3.16).
So from (3.14), (3.16), (3.17), and (3.18) we have

Pl(s) ≤ P̄0 +
√

D(1)
W

∫ W

0

∥∥ft(y)
∥∥dy ≤ D(2)

W . (3.19)

Define

fl(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( s
σ

)2 if s ∈ [0, σ
2 ],

1 – 2(1 – s
σ

)2 if s ∈ ( σ
2 ,σ ],

1 if s ∈ (σ , M – σ ],

1 – 2(1 – M–t
σ

)2 if t ∈ (M – σ , M – σ
2 ],

2( M–t
σ

)2 if t ∈ (M – σ
2 , M],

where M ∈ (0, W ], and σ is a positive real number.
Note that fl ∈ C1([0, W ]) and

f ′
l (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 s
σ 2 if s ∈ [0, σ

2 ],
4
σ

(1 – s
σ

) if s ∈ ( σ
2 ,σ ],

0 if s ∈ (σ , M – σ ],

– 4
σ

(1 – M–s
σ

) if t ∈ (M – σ , M – σ
2 ],

– 4
σ

( M–s
σ

) if s ∈ (M – σ
2 , M].

Let Σ1 be the linear space generated by χ1,χ2, . . . ,χl . We consider the following problem:
Find a function fl(s) in the form (3.4) satisfying system (3.5) and the W -periodic condition
(see [30])

fl(0) = fl(W ). (3.20)

We consider the initial value problem given by (3.5), where f0l is given in Σ1.
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It follows that

d
ds

∥∥fl(s)
∥∥2
H1 + 2

∥∥fl(s)
∥∥2
H1 + 2

〈
V̄

(
flt(s)

)
, flt(s)

〉

+ 2
∥∥
√

ι
(
flt(s)

)
fl(s)

∥∥2

= 2
〈
w(s), fl(s)

〉
. (3.21)

So we have the following inequality:

2
〈
w(s), fl(s)

〉 ≤ 1
2δ1

∥∥w(s)
∥∥2 + 2κ

∥∥fl(s)
∥∥2 ≤ 1

2δ1

∥∥w(s)
∥∥2 + 2κ

∥∥fl(s)
∥∥2
H1 (3.22)

for all 0 < δ1 < 1.
From (3.21) and (3.22) it follows that

d
ds

∥∥fl(s)
∥∥2
H1 + 2(1 – δ1)

∥∥fl(s)
∥∥2
H1 + 2

〈
V̄

(
flt(s)

)
, flt(s)

〉

+ 2
∥∥
√

ι
(
flt(s)

)
fl(s)

∥∥2

≤ 1
2δ1

∥
∥w(s)

∥
∥2. (3.23)

So

d
ds

∥∥flt(s)
∥∥2
H1 + 2

∥∥flt(s)
∥∥2
H1 + 2

∥∥
√

V
(
flt(s)

)�fl(s)
∥∥2

+ 2
〈
ι′
(
flt(s)

)
fl(s)�fl(s) + ι

(
flt(s)

)
flt(s), flt(s)

〉

= 2
〈
ft(s), flt(s)

〉
. (3.24)

Similarly,

2
〈
ι′
(
flt(s)

)
fl(s)�fl(s) + ι

(
flt(s)

)
flt(s), flt(s)

〉

= 2
∫ 1

0
fl(t, s)flt(t, s)ι′

(
flt(t, s)

)
�fl(x, s) dx

+ 2
∫ 1

0
f 2
lt (t, s)ι

(
flt(t, s)

)
dx

= 2
∫ 1

0
fl(t, s)

∂

∂t

(∫ flt (t,s)

0
yι′(y)

)
dx + 2

∫ 1

0
f 2
lt (t, s)ι

(
flt(t, s)

)
dx

= –2
∫ 1

0
flt(t, s)

(∫ flt (t,s)

0
yι′(y)

)
dx + 2

∫ 1

0
f 2
lt (t, s)ι

(
flt(t, s)

)
dx

= 2
∫ 1

0

[
f 2
lt (t, s)ι

(
flt(t, s)

)
– flt(t, s)

(∫ flt (t,s)

0
yι′(y)

)]
dx ≥ 0, (3.25)
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which implies

d
ds

∥
∥flt(s)

∥
∥2
H1 + 2(1 – δ1)

∥
∥flt(s)

∥
∥2
H1 + 2

∥
∥
√

V
(
flt(s)

)�fl(s)
∥
∥2

≤ 1
2δ1

∥∥ft(s)
∥∥2. (3.26)

From (3.23) and (3.26) it follows that

d
ds

[∥∥fl(s)
∥
∥2
H1 +

∥
∥flt(s)

∥
∥2
H1

]
+ 2(1 – δ1)

(∥∥fl(s)
∥
∥2
H1 +

∥
∥flt(s)

∥
∥2
H1

)

≤ 1
2δ1

∥∥w(s)
∥∥2
H1 , (3.27)

which, together with (3.27), gives

∥∥fl(s)
∥∥2
H1 +

∥∥flt(s)
∥∥2
H1

≤ (‖f0l‖2
H1 + ‖f0mx‖2

H1 – R2)e–2(1–δ1)t

+
(
R2 +

1
2δ1

∫ t

0
e2(1–δ1)s∥∥w(y)

∥∥2
H1 dy

)
e–2(1–δ1)t

≤ (‖f0l‖2
H1 + ‖f0mx‖2

H1 – R2)e–2(1–δ1)t + R2, (3.28)

where R2 = sup
0≤t≤W

R1(s),

R1(s) =

⎧
⎨

⎩

1
2δ1

1
e2(1–δ1)t–1

∫ t
0 e2(1–δ1)s‖w(y)‖2

H1 dy, 0 < s ≤ W ,
1

4δ1(1–δ1)‖w(0)‖2
H1 , s = 0.

(3.29)

Note that ‖f0l‖2
H1 + ‖f0lx‖2

H1 ≤R2. It follows from (3.28) that

∥
∥fl(s)

∥
∥2
H1 +

∥
∥flt(s)

∥
∥2
H1 ≤R2, that is, Σ1 = W for all l. (3.30)

Let B̄l(0, R) be a closed ball in the space Σ1 of linear combinations of the functions χ1,
χ2, . . . , χl . Put

Fl : B̄l(0, R) → B̄l(0, R),

f0l �→ fl(W ).
(3.31)

It is obvious that yl(s) satisfies

〈
y′

l(s) + yl(s),χj
〉
+

〈
y′

lt(s) + ylt(s),χjt
〉

+
〈
V̄

(
flt(s)

)
– V̄

(
f̄lt(s)

)
,χjt

〉

+
〈
ι
(
flt(s)

)
fl(s) – ι

(
f̄lt(s)

)
f̄l(s),χj

〉
= 0. (3.32)
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Similarly,

d
ds

∥
∥yl(s)

∥
∥2
H1 + 2

∥
∥yl(s)

∥
∥2
H1 + 2

〈
V̄

(
flt(s)

)
– V̄

(
f̄lt(s)

)
, ylt(s)

〉

+ 2
〈
ι
(
flt(s)

)
fl(s) – ι

(
f̄lt(s)

)
f̄l(s), yl(s)

〉
= 0. (3.33)

From (3.33) it follows that

d
ds

∥
∥yl(s)

∥
∥2
H1 + (2 – RK̃R)

∥
∥yl(s)

∥
∥2
H1 ≤ 0, (3.34)

which yields that

∥∥yl(W )
∥∥2
H1 ≤ e(RK̃R–2)W ‖f0l – f̄t‖2

H1 ,

∥
∥Fl(f0l) – Fl(f̄t)

∥
∥
H1 ≤ exp

((
1
2

RK̃R – 1
)

W
)

‖f0l – f̄t‖H1 .
(3.35)

We obtain that

Ql(s) = Ql(0) – 2
∫ t

0

〈
ι
(
flt(y)

)
fl(y), f ′

l (y)
〉
dy + 2

∫ t

0

〈
w(y), f ′

l (y)
〉
dy

= Ql(0) + J1 + J2 (3.36)

by multiplying the jth equation of (3.35), where

Ql(s) =
∥
∥fl(s)

∥
∥2
H1 + 2

∫ t

0

∥
∥f ′

l (y)
∥
∥2
H1 dy + 2

∫ 1

0
Ṽ

(
flt(t, s)

)
dx,

Ṽ (x) =
∫ z

0
V̄ (y) dy ≥ 0 ∀z ∈ R.

(3.37)

It is obvious that there exists a positive constant Q̄0 independent of m such that

Ql(0) = ‖f0l‖2
H1 + 2

∫ 1

0
Ṽ

(
f0mx(t)

)
dx ≤ Q̄0 ∀m ∈N (3.38)

since f0l → f̃0 strongly in H1
0 ∩H2.

From (3.19) it follows that

∣
∣flt(t, s)

∣
∣ ≤ ∥

∥flt(y)
∥
∥

C0([0,1]) ≤ √
2
∥
∥flt(y)

∥
∥
H1

≤ √
2
√∥∥flt(y)

∥∥2 +
∥∥�fl(y)

∥∥2 ≤ √
2
√

2
∥∥�fl(y)

∥∥2

≤ 2
∥
∥�fl(y)

∥
∥ ≤ 2

√
Pl(y) ≤ 2

√
D(2)

W ,
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which yields that

J1 = –2
∫ t

0

〈
ι
(
flt(y)

)
fl(y), f ′

l (y)
〉
dy

≤ 2 sup
|x|≤2

√
D(2)

W

ι(x)
∫ t

0

∥
∥fl(y)

∥
∥
∥
∥f ′

l (y)
∥
∥dy

≤ 2 sup
|x|≤2

√
D(2)

W

ι(x)
∫ t

0

√
Sl(y)

∥∥f ′
l (y)

∥∥dy

≤ 2
√

D(1)
W sup

|x|≤2
√

D(2)
W

ι(x)
∫ t

0

∥∥f ′
l (y)

∥∥dy

≤ 2WD(1)
W sup

|x|≤2
√

D(2)
W

ι2(x) +
1
2

∫ t

0

∥
∥f ′

l (y)
∥
∥2 dy

≤ 2WD(1)
W sup

|x|≤2
√

D(2)
W

ι2(x) +
1
4
Ql(s) (3.39)

and

J2 = 2
∫ t

0

〈
w(y), f ′

l (y)
〉
dy

≤ 2
∫ W

0

∥∥w(y)
∥∥2 dy +

1
2

∫ t

0

∥∥f ′
l (y)

∥∥2 dy

≤ 2
∫ W

0

∥∥w(y)
∥∥2 dy +

1
4
Ql(s). (3.40)

Combining (3.36) and (3.38)–(3.40), we have

Ql(s) ≤ 2
(

Q̄0 + 2WD(1)
W sup

|x|≤2
√

D(2)
W

ι2(x) + 2
∫ W

0

∥
∥w(y)

∥
∥2 dy

)
≤ D(3)

W . (3.41)

It follows from (3.12), (3.19), and (3.41) that there exists a subsequence of {fl}, still de-
noted by {fl}, such that

fl → u in L∞(
0, W ;H1

0 ∩H2) weakly*,

f ′
l → f ′ in L2(0, W ;H1

0
)

weakly.
(3.42)

Applying the modified Schrödinger-type identity, by Lemma 2.1 there exists a subse-
quence of {fl} such that

fl → f strongly in L2(0, W ;H1
0) and a.e. in ,ג

flt → ft strongly in L2(ג) and a.e. in .ג
(3.43)
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It follows from (3.43) that

V̄
(
flt(t, s)

) → V̄
(
ft(t, s)

)
for a.e. (t, s) in ,ג

ι
(
flt(t, s)

)
fl(t, s) → ι

(
ft(t, s)

)
f (t, s) for a.e. (t, s) in .ג

(3.44)

Inequalities (3.19) yield that

∣∣flt(t, s)
∣∣ ≤ ∥∥flt(s)

∥∥
C0([0,1]) ≤ √

2
∥∥flt(s)

∥∥
H1

≤ 2
∥∥�fl(s)

∥∥ ≤ 2
√
Pl(s) ≤ 2

√
D(2)

W ;
∣∣V̄

(
flt(t, s)

)∣∣ ≤ sup
|x|≤2

√
D(2)

W

∣∣V̄ (x)
∣∣ ≤ DW ;

∣∣ι
(
flt(t, s)

)
fl(t, s)

∣∣ ≤ ∥∥flt(s)
∥∥∣∣ι

(
flt(t, s)

)∣∣

≤
√

D(2)
W sup

|x|≤2
√

D(2)
W

∣∣ι(x)
∣∣ ≤ DW .

(3.45)

It follows from (3.44) and (3.45) that

V̄ (flt) → V̄ (ft) strongly in L2(ג),

ι(flt)fl → ι(ft)u strongly in L2(ג).
(3.46)

So

〈
fs(s), w

〉
+

〈
fxs(s),χt

〉
+

〈
ft(s) + V̄

(
ft(s)

)
,χt

〉
+

〈(
1 + ι

(
ft(s)

))
f (s), w

〉

=
〈
w(s), w

〉
, ∀w ∈H1

0,

f (0) = f̃0.

(3.47)

Furthermore,

f ∈ L∞(
0, W ;H1

0 ∩H2), f ′ ∈ L2(0, W ;H1
0
)
.

Let f and v be two weak solutions of (1.1) such that

f , v ∈ L∞(
0, W ;H1

0 ∩H2), f ′, v′ ∈ L2(0, W ;H1
0
)
. (3.48)

Put χ = f – v, which satisfies

〈
χs(s), y

〉
+

〈
χxs(s), yt

〉
+

〈
χt(s), yt

〉
+

〈
χ (s), y

〉

+
〈
V̄

(
ft(s)

)
– V̄

(
vt(s)

)
, yt

〉
+

〈
ι
(
ft(s)

)
u – ι

(
vt(s)

)
v, y

〉
= 0, ∀y ∈H1

0,

χ (0) = 0,

u, v,χ ∈ L∞(
0, W ;H1

0 ∩H2), fs, vs,χs ∈ L2(0, W ;H1
0
)
.

(3.49)
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Define the following functions �1 and �2 of (s1
1, s2

1) (resp. (s1
2, s2

2)) by

�1(s1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( s1–s1
1

δ
)2 if s1 ∈ [t1

1 , s1
1 + δ

2 ],

1 – 2(1 – s1–s1
1

δ
)2 if s1 ∈ (s1

1 + δ
2 , s1

1 + δ],

1 if s1 ∈ (s1
1 + δ, s2

1 – δ],

1 – 2(1 – s2
1–s1
δ

)2 if s1 ∈ (s2
1 – δ, s2

1 – δ
2 ],

2( s2
1–s1
δ

)2 if s1 ∈ (s2
1 – δ

2 , s2
1],

and

�2(s2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( s2–s1
2

δ
)2 if s2 ∈ [s1

2, s1
2 + δ

2 ],

1 – 2(1 – s2–s1
2

δ
)2 if s2 ∈ (s1

2 + δ
2 , s1

2 + δ],

1 if s2 ∈ (s1
2 + δ, s2

2 – δ],

1 – 2(1 – s2
2–s2
δ

)2 if s2 ∈ (s2
2 – δ, s2

2 – δ
2 ],

2( s2
2–s2
δ

)2 if s2 ∈ (s2
2 – δ

2 , s2
2].

Putting y = χ = u – v in (3.49) and integrating with respect to t, we have

�(s) = – 2
∫ t

0

〈
V̄

(
ft(y)

)
– V̄

(
vt(y)

)
,χt(y)

〉
dy

– 2
∫ t

0

〈
ι
(
ft(y)

)
f (y) – ι

(
vt(y)

)
v(y),χ (y)

〉
dy

= �1(s) + �2(s), (3.50)

where

�(s) =
∥
∥χ (s)

∥
∥2
H1 + 2

∫ t

0

∥
∥χ (y)

∥
∥2
H1 dy. (3.51)

Noting the monotonicity of the function z �→ V̄ (x), we have

�1(s) = –2
∫ t

0

〈
V̄

(
ft(y)

)
– V̄

(
vt(y)

)
,χt(y)

〉
dy ≤ 0. (3.52)

Furthermore,

[
ι(ft)u – ι(vt)v

]
w =

[
ι(ft)w +

(
ι(ft) – ι(vt)

)
v
]
w

= ι(ft)w2 +
(
ι(ft) – ι(vt)

)
vw

≥ (
ι(ft) – ι(vt)

)
vw, (3.53)
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which implies that

�2(s) = –2
∫ t

0

〈
ι
(
ft(y)

)
f (y) – ι

(
vt(y)

)
v(y),χ (y)

〉
dy

≤ –2
∫ t

0

〈[
ι
(
ft(y)

)
– ι

(
vt(y)

)]
v(y),χ (y)

〉
dy

≤ 2
∫ t

0

∥∥[
ι
(
ft(y)

)
– ι

(
vt(y)

)]
v(y)

∥∥∥∥χ (y)
∥∥dy

≤ 2
∫ t

0

∥
∥ι

(
ft(y)

)
– ι

(
vt(y)

)∥∥
∥
∥vt(y)

∥
∥
∥
∥χ (y)

∥
∥dy. (3.54)

Putting

M = ‖u‖L∞(0,W ;H1
0∩H2) + ‖v‖L∞(0,W ;H1

0∩H2)

and

LM = sup
|x|≤M

∣∣ι′(x)
∣∣,

we obtain that

∣∣ι(ft) – ι(vt)
∣∣ ≤ LM|χt|. (3.55)

So

�2(s) ≤ 2LM

∫ t

0

∥
∥χt(y)

∥
∥
∥
∥vt(y)

∥
∥
∥
∥χ (y)

∥
∥dy

≤ 2MLM

∫ t

0

∥∥χt(y)
∥∥∥∥χ (y)

∥∥dy

≤ MLM

∫ t

0
�(y) dy. (3.56)

Then from (3.50), (3.52), and (3.56) it follows that

�(s) ≤ MLM

∫ t

0
�(y) dy, (3.57)

which leads to �(s) = 0, that is, χ = f – v = 0.
Let us assume that

f0(t) ≤ M for a.e. t ∈ Σ2 and max
{‖f̃0‖L∞ ,‖f ‖L∞(ג)

} ≤ M. (3.58)
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Then ω = f – M satisfies

ωs – ωtts –
∂

∂t
(
ωt + V̄ (xt)

)
+ z + (x + M)ι(xt)

= w(t, s) – M, 0 < t < 1, 0 < s < W ,

z(0, s) = z(1, s) = –M,

z(t, 0) = f̃0(t) – M.

(3.59)

So

〈
ωs(s), v

〉
+

〈
ωxs(s), vt

〉
+

〈
ωt(s) + V̄

(
xt(s)

)
, vt

〉

+
〈
z(s) +

(
x(s) + M

)
ι
(
xt(s)

)
, v

〉

=
〈
w(s) – M, v

〉
for all v ∈H1

0. (3.60)

We deduce that the solution of the singular boundary value problem with mixed bound-
ary conditions and spatial heterogeneities (1.1) satisfies f ∈ L∞(0, W ;H1

0 ∩ H2), f ′ ∈
L2(0, W ;H1

0), so that we are allowed to take v = ω+ = 1
2 (|x| + z) in (3.60).

So

〈
ωs(s),ω+(s)

〉
+

〈
ωxs(s),ω+

t (s)
〉
+

〈
ωt(s) + V̄

(
xt(s)

)
,ω+

t (s)
〉

+
〈
z(s) +

(
x(s) + M

)
ι
(
xt(s)

)
,ω+(s)

〉

=
〈
w(s) – M,ω+(s)

〉
, (3.61)

which yields that

1
2

d
dt

(∥∥ω+(s)
∥∥2 +

∥∥ω+
t (s)

∥∥2) +
∥∥ω+

t (s)
∥∥2 +

∥∥ω+(s)
∥∥2

= –
〈
V̄

(
x+

t (s)
)
,ω+

t (s)
〉
–

〈(
x+(s) + M

)
ι
(
x+

t (s)
)
,ω+(s)

〉

+
〈
w(s) – M,ω+(s)

〉 ≤ 0 (3.62)

and

〈
ωs(s),ω+(s)

〉
=

∫ 1

0
ωs(t, s)ω+(t, s) dx

=
∫ 1

0,z>0

(
x+(t, s)

)
tω

+(t, s) dx

=
1
2

d
dt

∫ 1

0,z>0

∣∣ω+(t, s)
∣∣2 dx

=
1
2

d
dt

∫ 1

0

∣
∣ω+(t, s)

∣
∣2 dx

=
1
2

d
dt

∥
∥ω+(s)

∥
∥2, (3.63)

and on the domain z > 0, we have ω+ = z, ωt = (x+)t , and ωs = (x+)s.
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It follows from (3.62) that

∥
∥ω+(s)

∥
∥2 +

∥
∥ω+

t (s)
∥
∥2 ≤ ∥

∥ω+(0)
∥
∥2 +

∥
∥ω+

t (0)
∥
∥2. (3.64)

Since

ω+(t, 0) =
(
f (t, 0) – M

)+ =
(
f̃0(t) – M

)+ = 0,

ω+
t (t, 0) = 0,

we obtain that ‖ω+(s)‖2 + ‖ω+
t (s)‖2 = 0. Thus ω+ = 0 and f (t, s) ≤ M for a.e. (t, s) ∈ .ג

The case –M ≤ f0(t) for a.e. t ∈ Σ2 and

M ≥ max
{‖f̃0‖L∞ ,‖f ‖L∞(ג)

}

can be dealt with by considering ω = u + M and ω– = 1
2 (|x| – z); we also have ω– = 0, and

hence f (t, s) ≥ –M for a.e. (t, s) ∈ .ג
Furthermore, we obtain that |f (t, s)| ≤ M for a.e. (t, s) ∈ ,ג that is,

‖u‖L∞(ג) ≤ M (3.65)

for all

M ≥ max
{‖f̃0‖L∞ ,‖f ‖L∞(ג)

}
,

which implies (3.3). The proof is complete. �

4 Examples
In this section, we will test two singular boundary value problems with mixed boundary
conditions and spatial heterogeneities by using the presented method.

Example 4.1 Consider the singular boundary value problem with mixed boundary con-
ditions and spatial heterogeneities

(
4cD1/4 + 3cD2/3 + 2cD3/4)s(y) =

M√
t2 + 81

(
cos x + cot–1 t

)
, 0 < y < 1, (4.1)

s(0) = 0, s(1/4) = 0, s(1) =
∫ 1/5

0
s(r) dr. (4.2)

Here M > 0, and

f (y, s) =
M√

t2 + 81

(
cos x + cot–1 t

)
.

Put p0 = 2 and p1 = p2 = 3. It is easy to see that they satisfy the conditions of Lemma 2.1
and

∣∣f (y, s) – f (y, t)
∣∣ ≤ 2

9
M|s – t|.
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Using the given values, we know that φ ≈ 0.44269 and φ1 ≈ 0.21725. So

∣
∣f (y, s)

∣
∣ ≤ M(3 + 2π )

3
√

t3 + 81
= θ (y)

and �φ1 < 1 when M < 41.32901.
On the one hand, all conditions of Theorem 3.1 hold. So problem (4.1)–(4.2) has at least

one weak solution in [0, W ]. On the other hand, �φ < 1 whenever M < 17.28439. So it
follows from Theorem 3.1 that there exists a unique weak solution for problem (4.1)–(4.2)
in [0, 1].

Example 4.2 Consider the singular boundary value problem with mixed boundary con-
ditions and spatial heterogeneities

(
3cD1/4 + 3cD2/3 + 2cD3/4)s(y) =

1
4π

cos (2πs) +
|s|2

1 + |s|2 , 0 < y < 1, (4.3)

s(0) = 0, s(1/4) = 0, s(1) =
∫ 3/4

0
s(r) dr. (4.4)

Here

f (y, s) =
2

3π
cos (3πs) +

|s|2
1 + |s|2 .

Similarly to Example 4.1, we obtain that

∣∣f (y, s)
∣∣ ≤

∣
∣∣∣

2
3π

cos (3πs) +
|s|2

1 + |s|2
∣
∣∣∣ ≤ 2

3
‖s‖ + 3,

g(y) = 1, and ψ(‖s‖) = 1
2‖s‖ + 1.

It is clear that M > 0.23971 (we have used φ = 0.38471). Thus the conclusion of Theo-
rem 3.1 applies to problem (4.3)–(4.4).

5 Conclusions
In this paper, we presented a modified Schrödinger-type identity related to the
Schrödinger-type boundary value problem with mixed boundary conditions and spatial
heterogeneities. This identity can be regarded as an L1-version of Fisher–Riesz’s theo-
rem, and it had a broad range of applications. Using it and fixed point theory in L1-metric
spaces, we proved that there exists a unique solution for the singular boundary value prob-
lem with mixed boundary conditions and spatial heterogeneities. We finally provided two
examples, which show the effectiveness of the Schrödinger-type identity method.
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