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Abstract
The paper deals with the following Kirchhoff–Poisson systems:

{
–(1 + b

∫
R3 |∇u|2 dx)�u + u + k(x)φu + λ|u|p–2u = h(x)|u|q–2u, x ∈ R

3,

–�φ = k(x)u2, x ∈ R
3,

(0.1)

where the functions k and h are nonnegative, 0 ≤ λ,b; 2 ≤ p ≤ 4 < q < 6. Via a
constraint variational method combined with a quantitative lemma, some existence
results on one least energy sign-changing solution with two nodal domains to the
above systems are obtained. Moreover, the convergence property of ub as b ↘ 0 is
established.
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1 Introduction
Consider the following Kirchhoff–Poisson systems:

⎧⎨
⎩–(1 + b

∫
R3 |∇u|2 dx)�u + u + k(x)φu + λ|u|p–2u = h(x)|u|q–2u, x ∈R

3,

–�φ = k(x)u2, x ∈R
3,

(1.1)

where k and h are nonnegative functions, 0 ≤ λ, b; 2 ≤ p ≤ 4 < q < 6.
When b = 0, systems (1.1) reduce to the following Schrödinger–Poisson systems:

⎧⎨
⎩–�u + u + k(x)φu + λ|u|p–2u = h(x)|u|q–2u, x ∈R

3,

–�φ = k(x)u2, x ∈R
3,

(1.2)

which stem from quantum mechanics and have important applications in the semicon-
ductor. From the physical viewpoint, the above systems have been introduced as a physical
model describing a charged wave interacting with its own electrostatic field in quantum
mechanics. The unknowns u and φ represent the wave functions associated to the particle
and electric potential. For more details, one can refer to [1–3] and the references therein.
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In [4], Cerami and Vaira studied the following Schrödinger–Poisson systems:

⎧⎨
⎩–�u + u + k(x)φ(x)u = a(x)|u|p–1u, x ∈ R

3,

–�φ = k(x)u2, x ∈ R
3,

(1.3)

with p ∈ (3, 5). Under some suitable conditions, some existence results on positive solu-
tions were obtained. Recently, Zhong and Tang [5] investigated the following Schrödinger–
Poisson systems:

⎧⎨
⎩–�u + u + k(x)φ(x)u = λf (x) + |u|4u, x ∈R

3,

–�φ = k(x)u2, x ∈R
3,

where the functions k and f are nonnegative, 0 < λ < λ1 and λ1 is the eigenvalue of the
problem –�u + u = λf (x)u in H1(R3). Via the variational method, the authors obtained
the existence results on the ground state sign-changing solution for 0 < λ < λ1. Replacing
u with V (x)u in (1.3), Batista and Furtado in [6] studied the following systems:

⎧⎨
⎩–�u + V (x)u + k(x)φu = a(x)|u|p–1u, x ∈R

3,

–�φ = k(x)u2, x ∈R
3,

where p ∈ (3, 5) and a(x) satisfies some mild conditions, especially, the potential function
V can be nonconstant and indefinite in sign. By a variational approach, they also get some
results of the existence of one nonnegative solution and one sign-changing solution. For
the related research on this problem, the reader can refer to the literature [7–14].

On the other hand, if k = 0 in (1.1), then (1.1) reduce to the following Kirchhoff-type
problem:

–
(

1 + b
∫
R3

|∇u|2 dx
)

�u + u + λ|u|p–2u = h(x)|u|q–2u, x ∈R
3. (1.4)

Associated with the above problem, we have to mention the following Kirchhoff Dirichlet
problem:

⎧⎨
⎩–(a + b

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

which stems from the stationary analogue of the equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0

proposed by Kirchhoff regarded as an extension of the classical D’Alembert wave equation
on free vibrations of elastic strings. Due to its importance on the physical background,
the Kirchhoff boundary problem received increasingly more attention. Recently, with the
help of the variational methods, a number of results on the existence and multiplicity of
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solutions for the Kirchhoff problem

⎧⎨
⎩–(a + b

∫
RN |∇u|2 dx)�u = f (u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(1.5)

have been established under various suitable conditions, where Ω ⊂ R
N is a bounded

domain with a smooth boundary ∂Ω and f satisfies various suitable conditions; see, for
example [15–21] and the references therein. Recently, Baraket and Molica Bisci in [22]
studied the following Kirchhoff-type problem:

⎧⎨
⎩–(a + b

∫
Ω

|�u|2)�u = λf (x, u) + μg(x, u) in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ R
N (N ≥ 3) is a bounded open subset. Under some suitable conditions, the

authors obtained multiplicity results via applying the three critical points theorem. Very
recently, Xu and Chen in [23] investigated the following Kirchhoff-type problem:

⎧⎨
⎩–(a + b

∫
R3 |�u|2)�u + Vu = f (u) in R

3,

u ∈ H1(R3),

and established the existence of a ground state solution by applying a critical point theo-
rem similar to the mountain pass lemma (see [24]). Moreover, for the related research on
fractional Kirchhoff-type and Schrödinger-type problems, the reader can refer to [25, 26]
and to the references therein and the monograph [27] published recently. However, re-
garding the existence of sign-changing solutions for the Kirchhoff problem, there are very
few results in the literature. Recently, Shuai in [28] studied the existence of the least energy
sign-changing solution of problem (1.5) and its convergence property on {un} as b ↘ 0.
Later, under conditions different from [28], with the help of some analytical techniques
and a non-Nehari manifold method, Tang and Cheng in [29] further studied problem (1.5)
and obtained some existence results on a ground state sign-changing solution ub as well
as its convergence property.

When b �= 0, and k �= 0, the systems (1.1) stand for Kirchhoff–Poisson systems. Because
the nonlocal terms b

∫
R3 (|∇u|2 dx)�u and φu are involved in the equation, the problem

is totally different from the case b = 0 and k = 0. In [30], Zhang considered the following
general singular Kirchhoff–Poisson systems:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–(a + b
∫
Ω

|�u|2)�u + φu = λhf (u) + g(u), in Ω ,

–�φ = u2, in Ω ,

u > 0, in Ω ,

u = φ = 0, on ∂Ω ,

where Ω ⊂ R
3 is a smooth bounded domain with boundary ∂Ω , constants a > 0, b ≥

0 and λ > 0 is a parameter, functions f , g , h satisfy some conditions. By combining the
variational method with a perturbation method, the author obtained the existence of two
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positive solutions if the parameter λ is small enough. In [31], Liu and Wang investigated
the following Kirchhoff–Poisson systems:

⎧⎨
⎩–(a + b

∫
R3 |�u|2)�u + u – qK(x)φu = f (x)|u|p–1u, x ∈ R

3,

–�φ = qK(x)u2, x ∈ R
3,

where the constants a > 0, b ≥ 0, 1 < p < 5, q > 0 and the functions f , K : R3 → R are
nonnegative. Applying the critical point theorem with parameter λ (see [24]), the authors
obtained the existence of a positive solution as well as a ground state solution with q = 1
corresponding to its limit problem. Moreover, very recently, Wang, Rǎdulescu and Zhang
in [32] studied a kind of fractional Kirchhoff–Poisson systems as follows:

⎧⎨
⎩M([u]2

s )(–�)su + V (x)u + φ(x)u = λf (x, u) in R
3,

(–�)tφ(x) = u2 in R
3,

where s, t ∈ (0, 1) with 2t + 4s > 3, M : R+
0 → R

+ is a continuous function satisfying certain
assumptions, the potential function V : R3 →R

+ is continuous, f satisfies a Carathéodory
condition, λ is a positive parameter. By applying the fountain theorem for the subcritical
case and the symmetric mountain pass theorem for the critical case, respectively, the au-
thors obtained infinitely many solutions for the system. Different from the works men-
tioned above, in the present paper, we shall combine a constraint variational method with
quantitative deformation properties to establish the existence results as regards one least
energy sigh-changing solution with two nodal domains to problem (1.1). Moreover, we
also study the convergence property on ub as b ↘ 0.

2 Preliminaries
Throughout this paper, we always assume the following conditions hold.

(l) 0 ≤ λ, b; 2 ≤ p ≤ 4 < q < 6.
(k) k ∈ L2(R3) ∩ L∞(R3)\{0} and k(x) ≥ 0 for a.e. x ∈ R

3.
(h) h(x) > 0 for a.e. x ∈R

3 and there exists q1 ∈ (q, 6) such that h ∈ L
6

6–q1 .
In addition, R+ = [0,∞), R0

+ = (0,∞), D1,2(R3) is the Sobolev space equipped with the
norm ‖u‖D1,2 = (

∫
R3 |∇u|2 dx) 1

2 and Ls is the Lebesgue space with norm |u|s = (
∫
R3 |u|s dx) 1

s

for s ≥ 1. Also, H1(R3) is the Sobolev space equipped with the norm

‖u‖ =
(∫

R3

(|∇u|2 + u2)dx
) 1

2
.

C is for various positive constants, which can be different from one line to another line in
the text.

Let S̄ be the best Sobolev constant for the embedding of D1,2(R3) in L6(R3). That is,

S̄ = inf
u∈D1,2(R3)\{0}

‖u‖D1,2

|u|6 . (2.1)

Similarly,

Sr = inf
u∈H1(R3)\{0}

(
∫
R3 (|∇u|2 + u2) dx) 1

2

|u|r , r ∈ [1, 6]. (2.2)
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For any fixed u ∈ H1(R3), from the Lax–Milgram theorem it follows that there exists an
unique φu ∈ D1,2(R3) that satisfies –�φ = k(x)u2 weakly, that is, for any v ∈ D1,2(R3),

∫
R3

∇φu · ∇v dx =
∫
R3

k(x)u2v dx.

Moreover,

φu(x) =
1

4π

∫
R3

k(y)u2(y)
|x – y| dy. (2.3)

Let

Lφu (v) =
∫
R3

k(x)φuv2 dx, v ∈ H1(
R

3),

then

Lφu (v) =
1

4π

∫
R3

∫
R3

k(x)k(y)u2(x)v2(y)
|x – y| dx dy. (2.4)

Clearly, the energy functional associated with (1.1) can be expressed by

Jb(u) =
1
2
‖u‖2 +

b
4
|∇u|42 +

1
4

∫
R3

k(x)φu(x)u2 dx

+
λ

p

∫
R3

|u|p dx –
1
q

∫
R3

h(x)|u|q dx. (2.5)

Lemma 2.1 ([5]) Suppose that k ∈ L∞(R3). Then, for any u ∈ H1(R3), there exists C > 0
such that

Lφu (u) =
∫
R3

k(x)φuu2 dx =
∫
R3

|∇φu|2 dx ≤ C‖u‖4.

Lemma 2.2 Assume that condition (k) holds. Then we have
(i) φu ≥ 0, for any u ∈ H1(R3);

(ii) for any t ∈ R, φtu = t2φu;
(iii) ‖φu‖D1,2 ≤ S̄–1S–2

6 |k|2‖u‖2;
(iv) |φu|6 ≤ S̄–1‖φu‖D1,2 .

Proof Under the condition (k), the conclusions (i) and (ii) directly follow from Eq. (2.3).
the conclusions (iii) and (iv) directly follow from (2.4) in [4]. �

For R > 0, let ΩR = {x ∈ R
3 : |x| ≤ R}, ΩC

R = {x ∈R
3 : |x| > R}. Denote

u+(x) = max
{

u(x), 0
}

, u–(x) = min
{

u(x), 0
}

.
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Lemma 2.3 Assume that conditions (l), (k) and (h) hold. Then, for any {un} ⊂ H1(R3) with
u±

n ⇀ u± weakly in H1(R3) and u±
n (x) −→ u±(x) for a.e. x ∈R

3, we have

(i) (a)
∫
R3

k(x)φun u2
n dx →

∫
R3

k(x)φuu2 dx,
∫
R3

k(x)φu±
n

(
u±

n
)2 dx →

∫
R3

k(x)φu±
(
u±)2 dx,

(b)
∫
R3

k(x)φun

(
u±

n
)2 dx →

∫
R3

k(x)φu
(
u±)2 dx,

(c)
∫
R3

k(x)φu+
n

(
u–

n
)2 dx →

∫
R3

k(x)φu+
(
u–)2 dx,

(d)
∫
R3

k(x)φun unϕ dx →
∫
R3

k(x)φuuϕ dx, ∀ϕ ∈ H1(
R

3).

(ii) (a)
∫
R3

h(x)|un|q dx →
∫
R3

h(x)|u|q dx,

(b)
∫
R3

h(x)|un|q–2unϕ dx →
∫
R3

h(x)|u|q–2uϕ dx, ∀ϕ ∈ H1(
R

3),

(c)
∫
R3

|un|p–2unϕ dx →
∫
R3

|u|p–2uϕ dx, ∀ϕ ∈ H1(
R

3).

Proof Item (i) Conclusions (a) and (d) follow from Lemma 6 in [5] and Lemma 2.1 in [6]
and Lemma 2.1 in [4]. Conclusion (b) and (c) can be similarly proved, we omit it.

Item (ii). We only prove that
∫
R3 h(x)|un|q dx → ∫

R3 h(x)|u|q dx. The other relations can
be obtained similarly.

In fact, the condition q < q1 < 6 implies that 4 < 6q
q1

< 6. Let r = 6q
q1

. The sequence un ⇀ u
weakly in H1(R3) shows that {un} is bounded in H1(R3). Therefore, by (2.2) there exists
M > 0 such that |un|qr ≤ M, |u|qr ≤ M. Thus

∣∣∣∣
∫

ΩC
R

h(x)
(|un|q – |u|q)dx

∣∣∣∣ ≤
∫

ΩC
R

h(x)
(|un|q + |u|q)dx

≤
(∫

ΩC
R

h
6

6–q1 dx
) 6–q1

6 (|un|qr + |u|qr
)

≤ 2M
(∫

ΩC
R

h
6

6–q1 dx
) 6–q1

6
.

Because h ∈ L 6
6–q1

, we can choose R > 0 large enough so that 2M(
∫
ΩC

R
h

6
6–q1 dx)

6–q1
6 < ε, and

therefore,

∣∣∣∣
∫

ΩC
R

h(x)
(|un|q – |u|q)dx

∣∣∣∣ < ε.

On the other hand, by the absolute continuity on integral together with h ∈ L 6
6–q1

, for

any η > 0, there is δ > 0 such that (
∫

G |h(x)| 6
6–q1 dx)

6–q1
6 < η for each G ⊂ ΩR with mes G < δ.
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Then

∫
G

h(x)|un|q dx ≤ |un|qr
(∫

G

∣∣h(x)
∣∣ 6

6–q1 dx
) 6–q1

6
< Mη.

So, we can apply the Vitali theorem to obtain

lim
n→∞

∫
ΩR

h(x)|un|q dx =
∫

ΩR

h(x)|u|q dx.

Hence,

lim
n→∞

∫
R3

h(x)|un|q dx = lim
n→∞

∫
Ωc

R

h(x)|un|q dx + lim
n→∞

∫
ΩR

h(x)|un|q dx

=
∫

Ωc
R

h(x)|u|q dx +
∫

ΩR

h(x)|u|q dx =
∫
R3

h(x)|u|q dx.

The proof is complete. �

In terms of Lemmas 2.1–2.3, it can be verified that Jb is well defined on H1(R3) and is of
C1 as well as

〈
J ′
b(u), v

〉
=

∫
R3

(∇u · ∇v + uv) dx + b|∇u|22
(∫

R3
∇u · ∇v dx

)

+
∫
R3

k(x)φuuv dx + λ

∫
R3

|u|p–2uv dx –
∫
R3

h(x)|u|q–2uv dx. (2.6)

Obviously, u ∈ H1(R3) is a critical point of Jb if and only if (u,φu) is a solution of systems
(1.1). Noting that φu is nonnegative for any u ∈ H1(R3), (u,φu) is a sign-changing solution
of system (1.1) if and only if u is a critical point of Jb with u± �= 0.

By (2.3)–(2.4) and the Fubini theorem, we know that

Lφu+
(
u–)

=
∫
R3

k(x)φu+
(
u–)2 dx =

∫
R3

k(x)φu–
(
u+)2 dx = Lφu–

(
u+)

(2.7)

and

Jb(u) = Jb
(
u+)

+ Jb
(
u–)

+
b
2
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

1
2

Lφu+
(
u–)

, (2.8)
〈
J ′
b(u), u+〉

=
〈
J ′
b
(
u+)

, u+〉
+ b

∣∣∇u+∣∣2
2

∣∣∇u–∣∣2
2 + Lφu+

(
u–)

, (2.9)〈
J ′
b(u), u–〉

=
〈
J ′
b
(
u–)

, u–〉
+ b

∣∣∇u+∣∣2
2

∣∣∇u–∣∣2
2 + Lφu+

(
u–)

. (2.10)

Let

Mb =
{

u ∈ H1(
R

3) : u± �= 0,
〈
J ′
b(u), u+〉

=
〈
J ′
b(u), u–〉

= 0
}

.

In the following, we will look for the minimum point of the functional Jb on Mb, which
is the sigh-changing solution of systems (1.1).

The following lemma is crucial and plays an important role in obtaining our main results
later.
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Lemma 2.4 Assume u ∈ H1(R3) with u± �= 0. Then there is an unique pair (su, tu) ∈ R
0
+ ×

R
0
+ satisfying that suu+ + tuu– ∈ Mb.

Proof For any u ∈ H1(R3) with u± �= 0, clearly, by (2.6)–(2.10) we know that su+ + tu– ∈ Mb

with (s, t) ∈R
0
+ ×R

0
+ if and only if the pair (s, t) satisfies the following systems:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s2‖u+‖2 + bs4|∇u+|42 + s4 ∫
R3 k(x)φu+ (u+)2 dx + λsp|u+|pp

+ s2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – sq ∫

R3 h(x)|u+|q dx = 0,

t2‖u–‖2 + bt4|∇u–|42 + t4 ∫
R3 k(x)φu– (u–)2 dx + λtp|u–|pp

+ s2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – tq ∫

R3 h(x)|u–|q dx = 0.

(2.11)

To study the solvability of systems (2.11), we investigate the following auxiliary systems
with a parameter η ∈ [0, 1]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s2‖u+‖2 + bs4|∇u+|42 + s4 ∫
R3 k(x)φu+ (u+)2 dx + λsp|u+|pp

+ ηs2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – sq ∫

R3 h(x)|u+|q dx = 0,

t2‖u–‖2 + bt4|∇u–|42 + t4 ∫
R3 k(x)φu– (u–)2 dx + λtp|u–|pp

+ ηs2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – tq ∫

R3 h(x)|u–|q dx = 0.

(2.12)

Let

E =
{
η|0 ≤ η ≤ 1 such that systems (2.12) have an unique solution in R

0
+ ×R

0
+
}

.

Put

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕη(s, t) = s2‖u+‖2 + bs4|∇u+|42 + s4 ∫
R3 k(x)φu+ (u+)2 dx + λsp|u+|pp

+ ηs2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – sq ∫

R3 h(x)|u+|q dx,

ψη(s, t) = t2‖u–‖2 + bt4|∇u–|42 + t4 ∫
R3 k(x)φu– (u–)2 dx + λtp|u–|pp

+ ηs2t2[b|∇u+|22|∇u–|22 +
∫
R3 k(x)φu+ (u–)2 dx] – tq ∫

R3 h(x)|u–|q dx.

(2.13)

(1) In this part, we show that 0 ∈ E.
Since ϕ0(s, t) = ϕ0(s, 0), ψ0(s, t) = ψ0(0, t), the solvability on ϕ0(s, t) = 0 and ψ0(s, t) = 0 is

the same. So, we only show that there an unique t̄ ∈R
0
+ such that ψ0(0, t̄) = 0.

In fact, owing to the fact that 2 ≤ p ≤ 4 < q < 6, λ ≥ 0, and h(x) > 0, a.e. x ∈ R, we know
that ψ0(0, t) > 0 as t > 0 is small enough and ψ0(0, t) < 0 as t > 0 is large enough. Hence,
there is a t̄ ∈R

0
+ such that ψ0(0, t̄) = 0.

Now, we prove that such a number t̄ ∈ R
0
+ is unique. To this end, let g(t) = t–2ψ0(0, t),

t ≥ 0.
By

g(t) =
∥∥u–∥∥2 + bt2∣∣∇u–∣∣4

2 + t2
∫
R3

k(x)φu–
(
u–)2 dx + λtp–2∣∣u–∣∣p

p

– tq–2
∫
R3

h(x)
∣∣u–∣∣q dx, t ≥ 0,
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we have g(0) > 0 and g(t̄) = 0. If there exists another number t0 > 0 with t0 �= t̄ such that
ψ0(0, t0) = 0, that is, g(t0) = 0, then we will obtain a contradiction via the following argu-
ment:

Case 1. If t0 < t̄, then

t0g ′(t0) = 2bt2
0
∣∣u–∣∣4

2 + 2t2
0

∫
R3

k(x)φu–
(
u–)2 dx + λ(p – 2)tp–2

0
∣∣u–∣∣p

p

– (q – 2)tq–2
0

∫
R3

h(x)
∣∣u–∣∣q dx. (2.14)

On the other hand, the fact that g(t0) = 0 implies that

bt2
0
∣∣∇u–∣∣4

2 + t2
0

∫
R3

k(x)φu–
(
u–)2 dx

= –
∥∥u–∥∥2 – λtp–2

0
∣∣u–∣∣p

p + tq–2
0

∫
R3

h(x)
∣∣u–∣∣q dx. (2.15)

Thus, substituting (2.15) into (2.14) and taking into account that 0 < t0, u– �= 0, 2 ≤ p ≤ 4 <
q < 6, λ ≥ 0 and h(x) > 0, a.e. x ∈R

3, we get

t0g ′(t0) = (p – 4)λtp–2
0

∣∣u–∣∣p
p + (4 – q)tq–2

0

∫
R3

h(x)
∣∣u–∣∣q dx – 2

∥∥u–∥∥2 < 0,

which together with g(t0) = 0 implies that g(t0 + δ) < 0 as 0 < δ is small enough. Hence,
there is a t∗ ∈ (t0, t̄) satisfying

g(t∗) = min
t∈[t0,t̄]

g(t) < 0, g ′′(t∗) ≥ 0.

However, observing that

t2
∗g ′′(t∗) = 2bt2

∗
∣∣∇u–∣∣4

2 + 2t2
∗

∫
R3

k(x)φu–
(
u–)2 dx + λ(p – 2)(p – 3)tp–2

∗
∣∣u–∣∣p

p

– (q – 2)(q – 3)tq–2
∗

∫
R3

h(x)
∣∣u–∣∣q dx

and

bt2
∗
∣∣∇u–∣∣4

2 + t2
∗

∫
R3

k(x)φu–
(
u–)2 dx < –λtp–2

∗
∣∣u–∣∣p

p + tq–2
∗

∫
R3

h(x)
∣∣u–∣∣q dx –

∥∥u–∥∥2

(following from g(t∗) < 0), we have

t2
∗g ′′(t∗) < λ(p – 1)(p – 4)tp–2

∗
∣∣u–∣∣p

p – (q – 1)(q – 4)tq–2
∗

∫
R3

h(x)
∣∣u–∣∣q dx – 2

∥∥u–∥∥2 < 0

(noting that 2 ≤ p ≤ 4 < q < 6, λ ≥ 0 and h(x) > 0, a.e. x ∈ R
3), which contradicts the fact

that g ′′(t∗) ≥ 0.
Case 2. If t̄ < t0, the proof is the same. In fact, by only replacing t0 with t̄ in the above

argument on case 1, we also obtain a contradiction.
Hence, we have proved that 0 ∈ E.
(2) In this part, we show that the set E is open and closed in [0, 1].
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(i) E is an open set in [0, 1].
For any fixed η0 ∈ E and (s0, t0) ∈ R

0
+ ×R

0
+ is an unique solution of (2.12) associated with

η = η0. By calculation, from (2.13) we know that

∂ϕη0

∂s

∣∣∣∣
(s0,t0)

= 2s0
∥∥u+∥∥2 + 4bs3

0
∣∣∇u+∣∣4

2 + 4s3
0

∫
R3

k(x)φu+
(
u+)2 dx

+ 2η0s0t2
0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

+ λpsp–1
0

∣∣u+∣∣p
p – qsq–1

0

∫
R3

h(x)
∣∣u+∣∣q dx, (2.16)

∂ϕη0

∂t

∣∣∣∣
(s0,t0)

= 2η0s2
0t0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]
, (2.17)

∂ψη0

∂s

∣∣∣∣
(s0,t0)

= 2η0s0t2
0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]
, (2.18)

∂ψη0

∂t

∣∣∣∣
(s0,t0)

= 2t0
∥∥u–∥∥2 + 4bt3

0
∣∣∇u–∣∣4

2 + 4t3
0

∫
R3

k(x)φu–
(
u–)2 dx

+ 2η0s2
0t0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

+ λptp–1
0

∣∣u–∣∣p
p – qtq–1

0

∫
R3

h(x)
∣∣u–∣∣q dx. (2.19)

Again, by ϕη0 (s0, t0) = 0, from (2.13) we have

bs3
0
∣∣∇u+∣∣4

2 + s3
0

∫
R3

k(x)φu+
(
u+)2 dx

= –η0s0t2
0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

– λsp–1
0

∣∣u+∣∣p
p + sq–1

0

∫
R3

h(x)
∣∣u+∣∣q dx – s0

∥∥u+∥∥2. (2.20)

By (2.16) combined with (2.20), we get

∂ϕη0

∂s

∣∣∣∣
(s0,t0)

= –2s0
∥∥u+∥∥2 – 2η0s0t2

0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

– λ(4 – p)sp–1
0

∣∣u+∣∣p
p – (q – 4)sq–1

0

∫
R3

h(x)
∣∣u+∣∣q dx. (2.21)

Similarly, by ψη0 (s0, t0) = 0, we can deduce that

∂ψη0

∂t

∣∣∣∣
(s0,t0)

= –2t0
∥∥u–∥∥2 – 2η0s2

0t0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

– λ(4 – p)tp–1
0

∣∣u–∣∣p
p – (q – 4)tq–1

0

∫
R3

h(x)
∣∣u–∣∣q dx. (2.22)
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Thus, by (2.17)–(2.18) and (2.21)–(2.22) as well as φu+ ,φu– ≥ 0, λ ≥ 0, 2 ≤ p ≤ 4 < q, h(x) >
0, a.e. x ∈R

3, we have the determinant

M =
∂ϕη0 (s0, t0)

∂s
· ∂ψη0 (s0, t0)

∂t
–

∂ϕη0 (s0, t0)
∂t

· ∂ψη0 (s0, t0)
∂s

> AB – 4η2
0s3

0t3
0

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]2

> 0,

where

A = 2s0
∥∥u+∥∥2 + 2η0s0t2

0

(
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

)
,

B = 2t0
∥∥u–∥∥2 + 2η0s2

0t0

(
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

)
,

M =

∣∣∣∣∣∣
∂ϕη0 (s0,t0)

∂s
∂ϕη0 (s0,t0)

∂t
∂ψη0 (s0,t0)

∂s
∂ψη0 (s0,t0)

∂t

∣∣∣∣∣∣ .

Hence, by the implicit function theorem, there exist an open neighborhood V0 of η0 and
∧0 ⊂ R

0
+ × R

0
+ of (s0, t0) such that the implicit function s = s(η), t = t(η) satisfies system

(2.12) on V0 × ∧0.
Now, we show that, for any η ∈ V0, the system (2.12) has no solution in (R0

+ ×R
0
+)\∧0.

Suppose by contradiction that there exists η1 ∈ V0 such that system (2.12) has another
solution (s̄, t̄) in (R0

+ ×R
0
+)\∧0 associated with η1 apart from the solution (s, t) in ∧0 associ-

ated with η1. Then, by the implicit function theorem again, we can find a solution function
s̄ = s̄(η), t̄ = t̄(η) in (η1 – ε,η1 + ε) for some ε > 0, which satisfies (2.12) and goes through
(η1, (s̄, t̄)).

1. If η0 < η1, then consider the saturated solution s̄ = s̄(η), t̄ = t̄(η) on its saturated
interval. Since it cannot be defined at η0 and cannot enter V0 × ∧0, there exists a
point η2 ∈ [η0,η1) such that the solution s̄ = s̄(η), t̄ = t̄(η) in (η2,η1) and
s̄2(η) + t̄2(η) → ∞ as η → η+

2 , which contradicts systems (2.12) noting that
2 ≤ p ≤ 4 < q < 6, λ ≥ 0, and h(x) > 0, a.e. x ∈ R

3. Hence V0 ⊂ E.
2. If η0 > η1, the proof is similar.
(ii) E is a closed set in [0, 1].

In fact, let {ηn} ⊂ E be a sequence with ηn → η0 ∈ [0, 1] and (sn, tn) ∈R
0
+ ×R

0
+ be the unique

solution of (2.12) associated with ηn. Because the sequence {ηn} is bounded, from (2.12)
it follows that {(sn, tn)} is bounded. Therefore, there exists a subsequence of {(sn, tn)}, still
denoted by {(sn, tn)}, such that (sn, tn) → (s0, t0). Of course, (s0, t0) satisfies systems (2.12)
for η = η0. Furthermore, by (2.12), we have

∥∥u+∥∥2 ≤ sq–2
n

∫
R3

h(x)
∣∣u+∣∣q dx,

which implies that sn ≥ c1 > 0 for some c1 > 0 because 2 ≤ p ≤ 4 < q < 6, h(x) > 0, a.e. x ∈R
3

and u+ �= 0. Similarly, there exists c2 > 0 such that tn ≥ c2 > 0. Thus, (s0, t0) ∈ R
0
+ × R

0
+ is

a solution of (2.12). Also, the implicit function theorem ensures that (s0, t0) is the unique
solution of (2.12) for η = η0 again. Hence, E is closed in [0, 1].
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Summing up the above arguments (i) and (ii), we get E = [0, 1], and therefore, the con-
clusion of Lemma 2.4 is true. �

Lemma 2.5 Assume that u ∈ H1(R3) with u± �= 0 and ϕ1(1, 1) ≤ 0, ψ1(1, 1) ≤ 0, where
ϕ1, ψ1 are given as in (2.13) with η = 1. Then the unique pair (su, tu) ∈ R

0
+ × R

0
+ given in

Lemma 2.4 satisfies 0 < su, tu ≤ 1.

Proof If su ≥ tu > 0, then, by suu+ + tuu– ∈ Mb together with (2.11), we have

s2
u
∥∥u+∥∥2 + s4b

∣∣∇u+∣∣4
2 + s4

u

∫
R3

k(x)φu+
(
u+)2 dx

+ s4
u

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

≥ –λsp
u
∣∣u+∣∣p

p + sq
u

∫
R3

h(x)
∣∣u+∣∣q dx.

Thus

s–2
u

∥∥u+∥∥2 + b
∣∣∇u+∣∣4

2 +
∫
R3

k(x)φu+
(
u+)2 dx+

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

≥ –λsp–4
u

∣∣u+∣∣p
p + sq–4

u

∫
R3

h(x)
∣∣u+∣∣q dx. (2.23)

On the other hand, the assumption ϕ1(1, 1) ≤ 0 implies that

∥∥u+∥∥2 + b
∣∣∇u+∣∣4

2 +
∫
R3

k(x)φu+
(
u+)2 dx+

[
b
∣∣∇u+∣∣2

2

∣∣∇u–∣∣2
2 +

∫
R3

k(x)φu+
(
u–)2 dx

]

≤ –λ
∣∣u+∣∣p

p +
∫
R3

h(x)
∣∣u+∣∣q dx. (2.24)

By (2.23)–(2.24), we have

(
s–2

u – 1
)∥∥u+∥∥2 + λ

(
sp–4

u – 1
)∣∣u+∣∣p

p ≥ (
sq–4

u – 1
)∫

R3
h(x)

∣∣u+∣∣q dx.

Because u+ �= 0, 0 ≤ λ, 2 ≤ p ≤ 4 < q < 6 and h(x) > 0, for a.e. x ∈ R
3, the above inequality

implies that 0 < su ≤ 1, and so, 0 < tu ≤ 1.
For the case 0 < tu ≤ su, the proof is similar. �

Let mb := inf{Jb(u)|u ∈ Mb}. We have the following lemma.

Lemma 2.6 Assume that (l), (k), (h) hold. Then mb > 0 can be achieved at some point
ub ∈ Mb.

Proof For any u ∈ Mb, by 〈J ′
b(u), u〉 = 0 and (2.2), we have

‖u‖2 ≤ ‖u‖2 + b|∇u|42 +
∫
R3

k(x)φuu2 dx + λ

∫
R3

|u|p dx

=
∫
R3

h(x)|u|q dx ≤ |h| 6
6–q1

|u|qr ≤ |h| 6
6–q1

S–q
r ‖u‖q,
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where r = 6q
q1

satisfying 4 < r < 6. Hence, ‖u‖ ≥ c0 > 0, where c0 = ( Sq
r

|h| 6
6–q1

)
1

q–2 . Also, by

Jb(u) = Jb(u) –
1
q
〈
J ′
b(u), u

〉

=
(

1
2

–
1
q

)
‖u‖2 +

(
1
4

–
1
q

)
b|∇u|42 +

(
1
4

–
1
q

)∫
R3

k(x)φuu2 dx

+ λ

(
1
p

–
1
q

)
|u|pp

≥
(

1
2

–
1
q

)
‖u‖2 ≥

(
1
2

–
1
q

)
c2

0 > 0,

we have mb ≥ ( 1
2 – 1

q )c2
0 > 0.

Let {un} ⊂ Mb with Jb(un) → mb as n → ∞. By

Jb(un) = Jb(un) –
1
q
〈
J ′
b(un), un

〉 ≥ (
1
2

–
1
q

)
‖un‖2,

and Jb(un) → mb, we know that {un} is bounded in H1(R3), which implies that there exist
ub ∈ H1(R3) and a subsequence, still denoted by {un}, such that un ⇀ ub as well as u±

n ⇀

u±
b weakly in H1(R3).
By {un} ⊂ Mb, it follows from 〈J ′

b(un), u±
n 〉 = 0 that

∥∥u±
n
∥∥2 ≤ ∥∥u±

n
∥∥2 + b|∇un|22

∣∣∇u±
n
∣∣2
2 +

∫
R3

k(x)φun

(
u±

n
)2 dx+λ

∣∣u±
n
∣∣p
p

=
∫
R3

h(x)
∣∣u±

n
∣∣q dx ≤ |h| 6

6–q1
S–q

r
∥∥u±

n
∥∥q, (2.25)

where r = 6q
q1

. Therefore,

∥∥u±
n
∥∥ ≥ c0 > 0. (2.26)

Thus, by (2.25)–(2.26) and Lemma 2.3, we obtain 0 < c2
0 ≤ limn→∞

∫
R3 h(x)|u±

n |q dx =∫
R3 h(x)|u±

b |q dx, which implies that u±
b �= 0 taking into account the assumption h(x) > 0,

a.e. x ∈R
3.

Again, by the weak semi-continuity of the norm and Lemma 2.3, we get

∥∥u±
b
∥∥2 + b|∇ub|22

∣∣∇u±
b
∣∣2
2 +

∫
R3

k(x)φub

(
u±

b
)2 dx+λ

∣∣u±
b
∣∣p
p

≤ lim
n→∞ inf

{∥∥u±
n
∥∥2 + b|∇un|22

∣∣∇u±
n
∣∣2
2 +

∫
R3

k(x)φun

(
u±

n
)2 dx+λ

∣∣u±
n
∣∣p
p

}

= lim
n→∞ inf

{∫
R3

h(x)
∣∣u±

n
∣∣q dx

}
=

∫
R3

h(x)
∣∣u±

b
∣∣q dx,

which means that ϕ1(1, 1) ≤ 0 and ψ1(1, 1) ≤ 0 in (2.13) corresponding to ub. Hence, by
Lemma 2.5, there exists an unique (s, t) ∈ (0, 1]× (0, 1] with u∗

b = su+
b + tu–

b ∈ Mb. Moreover,
by the weak semi-continuity of the norm and Lemmas 2.2–2.3 and (2.7), we have

mb ≤ Jb
(
u∗

b
)

–
1
q
〈
J ′
b
(
u∗

b
)
, u∗

b
〉
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=
(

1
2

–
1
q

)∥∥u∗
b
∥∥2 +

(
1
4

–
1
q

)
b
∣∣∇u∗

b
∣∣4
2 +

(
1
4

–
1
q

)∫
R3

k(x)φu∗
b

(
u∗

b
)2 dx

+ λ

(
1
p

–
1
q

)∣∣u∗
b
∣∣p
p

=
(

1
2

–
1
q

)[
s2∥∥u+

b
∥∥2 + t2∥∥u–

b
∥∥2]

+
(

1
4

–
1
q

)
b
[
s4∣∣∇u+

b
∣∣4
2 + t4∣∣∇u–

b
∣∣4
2 + 2s2t2∣∣∇u+

b
∣∣4
2

∣∣∇u–
b
∣∣4
2

]

+
(

1
4

–
1
q

)[
s4

∫
R3

k(x)φu+
b

(
u+

b
)2 dx + t4

∫
R3

k(x)φu–
b

(
u–

b
)2 dx

+ 2s2t2
∫
R3

k(x)φu+
b

(
u–

b
)2 dx

]

+ λ

(
1
p

–
1
q

)(
sp∣∣u+

b
∣∣p
p + tp∣∣u–

b
∣∣p
p

)

≤
(

1
2

–
1
q

)(∥∥u+
b
∥∥2 +

∥∥u–
b
∥∥2) +

(
1
4

–
1
q

)
b
[∣∣∇u+

b
∣∣4
2 +

∣∣∇u–
b
∣∣4
2 + 2

∣∣∇u+
b
∣∣2
2

∣∣∇u–
b
∣∣2
2

]

+
(

1
4

–
1
q

)[∫
R3

k(x)φu+
b

(
u+

b
)2 dx +

∫
R3

k(x)φu–
b

(
u–

b
)2 dx + 2

∫
R3

k(x)φu+
b

(
u_

b
)2 dx

]

+ λ

(
1
p

–
1
q

)(∣∣u+
b
∣∣p
p +

∣∣u–
b
∣∣p
p

)

≤ lim
n→∞ inf

{(
1
2

–
1
q

)(∥∥u+
n
∥∥2 +

∥∥u–
n
∥∥2)

+
(

1
4

–
1
q

)
b
[∣∣∇u+

n
∣∣4
2 +

∣∣∇u–
n
∣∣4
2 + 2

∣∣∇u+
n
∣∣2
2

∣∣∇u–
n
∣∣2
2

]

+
(

1
4

–
1
q

)[∫
R3

k(x)φu+
n

(
u+

n
)2 dx +

∫
R3

k(x)φu–
n

(
u–

n
)2 dx + 2

∫
R3

k(x)φu+
n

(
u_

n
)2 dx

]

+ λ

(
1
p

–
1
q

)(∣∣u+
n
∣∣p
p +

∣∣u–
n
∣∣p
p

)}

= lim
n→∞ inf

[
Jb(un) –

1
q
〈
J ′
b(un), un

〉]
= lim

n→∞ inf
[
Jb(un)

]
= mb.

Thus, s = t = 1, and therefore, ub ∈ Mb, Jb(ub) = mb. �

Lemma 2.7 For any given u ∈ H1(R3) with u± �= 0. Let g(s, t) = Jb(su+ + tu–), (s, t) ∈
R+ × R+, then there exists an unique pair (su, tu) ∈ R

0
+ × R

0
+ such that g attains its global

maximum on R+ ×R+ at the point (su, tu), which is exactly obtained in Lemma 2.4.

Proof Because 2 ≤ p ≤ 4 < q < 6, λ ≥ 0 and h(x) > 0, a.e. x ∈R
3, we can know that g(s, t) →

–∞ as |(s, t)| → ∞. Hence, we only need to prove that g cannot achieve its maximum on
the boundary of R+ × R+. In fact, if not—if g achieved its maximum at point (0, t̄), t̄ > 0,
then, by

g(s, t̄) = Jb
(
su+ + t̄u–)

=
s2

2
∥∥u+∥∥2 +

s4

4
b
∣∣∇u+∣∣4

2 +
s4

4

∫
R3

k(x)φu+
(
u+)2 dx +

λ

p
sp∣∣u+∣∣p

p
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–
sq

q

∫
R3

h(x)
∣∣u+∣∣q dx

+
t̄2

2
∥∥u–∥∥2 +

t̄4

4
b
∣∣∇u–∣∣4

2 +
t̄4

4

∫
R3

k(x)φu–
(
u–)2 dx +

λ

p
t̄p∣∣u–∣∣p

p

–
t̄q

q

∫
R3

h(x)
∣∣u–∣∣q dx

+ 2s2 t̄2
(

b
∣∣∇u+∣∣4

2

∣∣∇u–∣∣4
2 +

∫
R3

k(x)φu+
(
u–)2 dx

)
≥ g(s, 0) + g(0, t̄),

and the fact that g(s, 0) > 0 as s > 0 is small enough, we know that g(s, t̄) > g(0, t̄) as s > 0
is small enough, which contradicts the assumption that g achieved its maximum value at
(0, t̄) on R+ ×R+. So, g achieved its maximum in some point (su, tu) ∈R

0
+ ×R

0
+ on R+ ×R+.

Of course, (su, tu) is a critical point of g on R+ ×R+, and therefore it follows from the proof
of Lemma 2.4 that the pair (su, tu) is the unique solution of systems (2.11) in R

0
+ ×R

0
+. �

3 Main results
We are now in a position to give our main results in this paper.

Theorem 3.1 Assume that conditions (l), (k), (h) hold, then problem (1.1) possesses one
least energy sign-changing solution ub, which has exactly two nodal domains, where ub is
given in Lemma 2.6.

Proof We apply the quantitative deformation lemma to prove that J ′
b(ub) = 0.

Owing to the fact that ub ∈ Mb and Jb(ub) = mb, in terms of Lemma 2.7, for any (s, t) ∈
R

0
+ ×R

0
+ with (s, t) �= (1, 1), we immediately obtain

Jb
(
su+

b + tu–
b
)

< Jb
(
u+

b + u–
b
)

= mb. (3.1)

If J ′
b(ub) �= 0, then there exist r > 0 and τ > 0 satisfying

∥∥J ′
b(u)

∥∥ > τ as ‖u – ub‖ < 3r.

Set U = (1 –σ0, 1 +σ0)× (1 –σ0, 1 +σ0), where 0 < σ0 < 1
2 , and h(s, t) = su+

b + tu–
b , (s, t) ∈ Ū .

It follows from (3.1) that

m∗ := max
∂U

Jb ◦ h = max
∂U

Jb
(
su+

b + tu–
b
)

< mb. (3.2)

Take 0 < ε < min{(mb – m∗)/2, τ r/8}, S = {u ∈ H1(R3) : ‖u – ub‖ < r}.
Let S2r = {u ∈ H1(R3) : dist(u, S) ≤ 2r}. Applying Lemma 2.3 in [33], there exists a defor-

mation η satisfying that
(i) η(1, u) = u, if u /∈ J–1

b (mb – 2ε, mb + 2ε) ∩ S2r ;
(ii) η(1, Jmb+ε

b ∩ S) ⊂ Jmb–ε

b ;
(iii) Jb(η(1, u)) ≤ Jb(u) for any u ∈ H1(R3).
Now, we show that

η
(
1, h(U)

) ∩ Mb �= ∅,

which will contradict the definition of mb.
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First, we claim that

max
(s,t)∈Ū

Jb
(
η
(
1, h(s, t)

))
< mb. (3.3)

In fact, for any (s, t) ∈ Ū , we consider the following two cases:
(a) If (s, t) �= (1, 1), then, by (3.3) together with (iii) above, we have

Jb
(
η
(
1, h(s, t)

)) ≤ Jb
(
h(s, t)

)
= Jb

(
su+

b + tu–
b
)

< mb.

(b) If (s, t) = (1, 1), then, by Jb(h(1, 1)) = Jb(ub) = mb < mb + ε and h(1, 1) = ub ∈ S, it
follows from (ii) that

Jb
(
η
(
1, h(1, 1)

)) ≤ mb – ε < mb.

Hence, from the above arguments (a) and (b), we know that (3.3) is true.
Secondly, for (s, t) ∈ Ū , let ϕ(s, t) = η(1, h(s, t)) and

φ(s, t) =
(
φ1(s, t),φ2(s, t)

)
, ψ(s, t) =

(
ψ1(s, t),ψ2(s, t)

)
,

where

φ1(s, t) =
〈
J ′
b
(
h(s, t)

)
, u+

b
〉
, φ2(s, t) =

〈
J ′
b
(
h(s, t)

)
, u–

b
〉
,

ψ1(s, t) =
1
s
〈
J ′
b
(
ϕ(s, t)

)
,ϕ+(s, t)

〉
, ψ2(s, t) =

1
t
〈
J ′
b
(
ϕ(s, t)

)
,ϕ–(s, t)

〉
.

Since ub ∈ Mb, by Lemma 2.4, φ(s, t) = 0 ⇔ (s, t) = (1, 1). Again, by the proof of Lemma 2.4,
we know that ∂(φ1,φ2)

∂(s,t) |(1,1) > 0, and therefore, the degree theory yields

deg(φ, U , θ ) = 1,

where θ = (0, 0). On the other hand, for any (s, t) ∈ ∂U , by (3.2) and 0 < ε < mb–m∗
2 , we have

Jb
(
h(s, t)

) ≤ m∗ < mb – 2ε.

Thus, h(s, t) /∈ J–1
b (mb – 2ε, mb + 2ε) ∩ S2r . So, the conclusion (i) above implies that

ϕ(s, t) = η
(
1, h(s, t)

)
= h(s, t), for any (s, t) ∈ ∂U ,

which means that φ(s, t) = ψ(s, t), for any (s, t) ∈ ∂U . Hence, deg(ψ , U , θ ) = deg(φ, U , θ ) = 1.
Therefore, there exists (s0, t0) ∈ U such that ψ(s0, t0) = 0. That means that η(1, h(s0, t0)) =
ϕ(s0, t0) ∈ Mb. Hence, Jb(1, h(s0, t0)) ≥ mb, which contradicts (3.3). Thus, we have deduced
that J ′

b(ub) = 0, ub ∈ Mb, and ub is a least energy sign-changing solution of problem (1.1).
Finally, we show that ub has exactly two nodal domains. To this end, let ub = u1 + u2 + u3,

satisfying that u1(x) ≥ 0, u2(x) ≤ 0, for any x ∈ R
3; u1(x) = u2(x) = 0, for any x ∈ R

3\(Ω1 ∪
Ω2); u3(x) = 0, for any x ∈ Ω1 ∪ Ω2, where Ω1 = {x ∈R

3|u1(x) > 0}, Ω2 = {x ∈R
3|u2(x) < 0}

are connected open subsets of Ω .
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Set u = u1 + u2. Then u+ = u1 and u– = u2 with u± �= 0.
In the following, we deduce that u3 = 0.
Suppose by contradiction that u3 �= 0. Then, by J ′

b(ub)u1 = 0, we can deduce that
ϕ1(1, 1) ≤ 0. Similarly, by J ′

b(ub)u2 = 0, we can deduce that ψ1(1, 1) ≤ 0, where ϕ1, ψ1 are
given by (2.13) with u+ = u1, u– = u2. So, by Lemmas 2.4–2.5, there exists an unique pair
(su, tu) ∈ (0, 1] × (0, 1] such that suu+ + tuu– ∈ Mb. Then

mb ≤ Jb(suu1 + tuu2),
〈
J ′
b(suu1 + tuu2), suu1 + tuu2

〉
= 0.

Consequently,

mb ≤ Jb(suu1 + tuu2) = Jb(suu1 + tuu2) –
1
q
〈
J ′
b(suu1 + tuu2), suu1 + tuu2

〉

=
(

1
2

–
1
q

)(
s2

u‖u1‖2 + t2
u‖u2‖2) +

(
1
4

–
1
q

)
b
[
s2

u|∇u1|22 + t2
u|∇u2|22

]2

+
(

1
4

–
1
q

)∫
R3

k(x)
[
s4

uφu1 (u1)2 + t4
uφu2 (u2)2 + 2s2

ut2
uφu1 (u2)2]dx

+ λ

(
1
p

–
1
q

)(
sp

u|u1|pp + tp
u|u2|pp

)

≤
(

1
2

–
1
q

)(‖u1‖2 + ‖u2‖2) +
(

1
4

–
1
q

)
b
[|∇u1|22 + |∇u2|22

]2

+
(

1
4

–
1
q

)∫
R3

k(x)
[
φu1 (u1)2 + φu2 (u2)2 + 2φu1 (u2)2]dx

+ λ

(
1
p

–
1
q

)(|u1|pp + |u2|pp
)

= Jb(u1 + u2) –
1
q
〈
J ′
b(u1 + u2), u1 + u2

〉

= Jb(ub) –
1
q
〈
J ′
b(ub), u1 + u2

〉

–
[

Jb(u3) +
(

1
2

–
1
q

)(
b
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22 +

∫
R3

k(x)φu1+u2 (u3)2 dx
)]

= Jb(ub) –
[

Jb(u3) +
(

1
2

–
1
q

)(
b
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22

+
∫
R3

k(x)φu1+u2 (u3)2 dx
)]

. (3.4)

On the other hand, by the fact that u3 �= 0, 2 ≤ p ≤ 4 < q < 6, λ ≥ 0, we have

Jb(u3) = Jb(u3) –
1
q
〈
J ′
b(ub), u3

〉

=
(

1
2

–
1
q

)
‖u3‖2 +

(
1
4

–
1
q

)
b|∇u3|42 +

(
1
4

–
1
q

)∫
R3

k(x)φu3 (u3)2 dx

+ λ

(
1
p

–
1
q

)
|u3|pp –

b
q
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22 –

1
q

∫
R3

k(x)φu1+u2 (u3)2 dx

> –
b
q
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22 –

1
q

∫
R3

k(x)φu1+u2 (u3)2 dx.



Chai and Liu Boundary Value Problems        (2019) 2019:160 Page 18 of 25

Thus,

Jb(u3) +
1
q

(
b
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22 +

∫
R3

k(x)φu1+u2 (u3)2 dx
)

> 0.

The condition q > 4 shows that 1
2 – 1

q > 1
q , and therefore, it follows from the above inequality

that

Jb(u3) +
(

1
2

–
1
q

)(
b
∣∣∇(u1 + u2)

∣∣2
2|∇u3|22 +

∫
R3

k(x)φu1+u2 (u3)2 dx
)

> 0. (3.5)

By (3.4)–(3.5), we have

mb < Jb(ub) = mb,

which is a contradiction. Hence, u3 = 0, and therefore, ub has exactly two nodal domains.�

In the following, we always assume that b > 0 in problem (1.1). We will investigate the
convergence of ub as b ↘ 0.

Theorem 3.2 Assume that the conditions (l), (k), (h) hold. Then, for any sequence {bn}
with bn ↘ 0 as n → ∞, there exists a subsequence, still denoted by {bn} such that ubn →
u0 ∈ H1(R3) in H1(R3) as n → ∞. Moreover, u0 is a least energy sign-changing solution of
problem (1.2).

Proof For any sequence {bn} with bn ↘ 0 as n → ∞, ubn is one least energy sign-changing
solution of problem (1.1) corresponding to b = bn.

(1) Firstly, we show that {ubn} is bounded in H1(R3).
Take a nonzero function g ∈ C∞

0 (R3) with g± �= 0. Because 2 ≤ p ≤ 4 < q < 6, λ ≥ 0, and
h(x) > 0, a.e. x ∈R

3, we can choose an appropriate positive number τ > 0 such that

ϕ(1, 1) ≤ 0, ψ(1, 1) ≤ 0

holds for all b ∈ [0, 1] corresponding to u+ = τg+, u– = τg– in (2.13). Thus, by Lemma 2.5,
for each b ∈ (0, 1], there exists a pair (sb, tb) ∈ (0, 1] × (0, 1] such that sbu+ + tbu– ∈ Mb. Let
ū := sbu+ + tbu– and ub be a least energy sign-changing solution of problem (1.1), then

Jb(ub) ≤ Jb(ū) = Jb(ū) –
1
q
〈
J ′
b(ū), ū

〉

=
(

1
2

–
1
q

)(
sb

∥∥u+∥∥2 + tb
∥∥u–∥∥2) +

(
1
4

–
1
q

)
b
[
s2

b
∣∣∇u+∣∣2

2 + t2
b
∣∣∇u–∣∣2

2

]2

+
(

1
4

–
1
q

)∫
R3

k(x)
[
s4

bφu+
(
u+)2 + t4

bφu–
(
u–)2 + 2s2

bt2
bφu+

(
u–)2]dx

+ λ

(
1
p

–
1
q

)(
sp

b
∣∣u+∣∣p

p + tp
b
∣∣u–∣∣p

p

)

≤
(

1
2

–
1
q

)(∥∥u+∥∥2 +
∥∥u–∥∥2) +

(
1
4

–
1
q

)[∣∣∇u+∣∣2
2 +

∣∣∇u–∣∣2
2

]2
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+ λ

(
1
p

–
1
q

)(∣∣u+∣∣p
p +

∣∣u–∣∣p
p

)

+
(

1
4

–
1
q

)[∫
R3

k(x)
(
φu+

(
u+)2 + φu–

(
u–)2 + 2φu+

(
u–)2)dx

]
:= M0.

Thus, Jb(ub) ≤ M0 for all b ∈ [0, 1].
Owing to the fact that bn ↘ 0, we can assume bn ∈ (0, 1], and therefore, Jbn (ubn ) ≤ M0

for all n ≥ 1. On the other hand, for all n ≥ 1,

M0 ≥ Jbn (ubn ) = Jbn (ubn ) –
1
q
〈
J ′
bn (ubn ), ubn

〉 ≥ (
1
2

–
1
q

)
‖ubn‖2.

Hence, {ubn} is bounded in H1(R3).
(2) Because {ubn} is bounded in H1(R3), there exists a subsequence of {bn}, still denoted

by {bn}, such that ubn ⇀ u0 as well as u±
bn

⇀ u±
0 weakly in H1(R3). Then ubn → u0 in

Lr
loc(R3) for r ∈ [1, 6) and ubn (x) → u0(x) a.e. x ∈R

3.
Now, we show that ubn → u0 in H1(R3).
In fact, from ubn ⇀ u weakly in H1(R3) and J ′

bn
(ubn ) = 0, it follows that

〈
J ′
bn (ubn ) – J ′

0(u0), ubn – u0
〉

= –
〈
J ′
0(u0), ubn – u0

〉 → 0 as n → ∞.

On the other hand, we have

‖ubn – u0‖2 =
〈
J ′
bn (ubn ) – J ′

0(u0), ubn – u0
〉
– dn

–
∫
R3

k(x)φubn (ubn – u0)2 dx – λ

∫
R3

|ubn |p–2(ubn – u0)2 dx

≤ 〈
J ′
bn (ubn ) – J ′

0(u0), ubn – u0
〉
– dn,

where

dn = bn|∇ubn |22
∫
R3

∇ubn · (∇ubn – ∇u0) dx +
∫
R3

k(x)(φubn – φu0 )u0(ubn – u0) dx

+ λ

∫
R3

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx

–
∫
R3

h(x)|ubn |q–2ubn (ubn – u0) dx +
∫
R3

h(x)|u0|q–2u0(ubn – u0) dx.

In the following, we deduce that dn → 0 as n → ∞.
Owing to the fact that {ubn} is bounded in H1(R3), it is easy to verify that the sequence

{|∇ubn |22
∫
R3 ∇ubn · (∇ubn – ∇u0) dx} is bounded, and therefore

bn|∇ubn |22
∫
R3

∇ubn · (∇ubn – ∇u0) dx → 0 (3.6)

as n → ∞ noting that bn → 0 as n → ∞.
Now, we prove that

∫
R3

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx → 0 as n → ∞. (3.7)
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For R > 0, let ΩR = {x ∈R
3 : ‖x‖ < R}, ΩC

R = {x ∈R
3 : ‖x‖ ≥ R}, we have

An :=
∣∣∣∣
∫

ΩC
R

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx
∣∣∣∣

≤
∫

ΩC
R

(|ubn | + |u0|
)p–1|u0|dx

≤
(∫

ΩC
R

(|ubn | + |u0|
)2(p–1) dx

) 1
2
(∫

ΩC
R

|u0|2 dx
) 1

2

≤
(∫

R3

(|ubn | + |u0|
)2(p–1) dx

) 1
2
(∫

ΩC
R

|u0|2 dx
) 1

2

≤ 4p–1
(∫

R3

(|ubn |2(p–1) + |u0|2(p–1))dx
) 1

2
(∫

ΩC
R

|u0|2 dx
) 1

2

= 4p–1(|ubn |2(p–1)
2(p–1) + |u0|2(p–1)

2(p–1)
) 1

2

(∫
ΩC

R

|u0|2 dx
) 1

2
.

Because of the boundedness of {ubn} combined with (2.2), there exists M1 > 0 such that

4p–1(|un|2(p–1)
2(p–1) + |u0|2(p–1)

2(p–1)
) 1

2 ≤ M1.

On the other hand, the fact that u0 ∈ L2(R3) implies that ∀ε > 0, we can choose R > 0 large
enough so that

(∫
ΩC

R

|u0|2 dx
) 1

2
<

ε

2M1
.

Then∣∣∣∣
∫

ΩC
R

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx
∣∣∣∣ <

ε

2
. (3.8)

Similarly, for given R above, there exists M2 > 0 such that

Bn :=
∣∣∣∣
∫

ΩR

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx
∣∣∣∣

≤
∫

ΩR

(|ubn |p–2 + |u0|p–2)|u0||ubn – u0|dx

≤
∫

ΩR

(|ubn | + |u0|
)p–2|u0||ubn – u0|dx

≤
∫

ΩR

(|ubn | + |u0|
)p–1|ubn – u0|dx

≤
(∫

ΩR

(|ubn | + |u0|
)2(p–1) dx

) 1
2
(∫

ΩR

|ubn – u0|2 dx
) 1

2

≤ M2

(∫
ΩR

|ubn – u0|2 dx
) 1

2
.
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By the fact that ubn → u0 in Lr
loc(R3), r ∈ [1, 6), there exists N1 ≥ 1, such that

M2

(∫
ΩR

|ubn – u0|2 dx
) 1

2
<

ε

2

as n ≥ N1. Thus,

∣∣∣∣
∫

ΩR

(|ubn |p–2 – |u0|p–2)u0(ubn – u0) dx
∣∣∣∣ <

ε

2
(3.9)

as n ≥ N1.
Hence, (3.8)–(3.9) shows that (3.7) holds.
Now, we show that

∫
R3

h(x)|ubn |q–2ubn (ubn – u0) dx

–
∫
R3

h(x)|u0|q–2u0(ubn – u0) dx → 0, as n → ∞. (3.10)

We only prove that
∫
R3 h(x)|ubn |q–2ubn (ubn – u0) dx → 0 as n → ∞, because the proof on∫

R3 h(x)|u0|q–2u0(ubn – u0) dx → 0 is similar.
We make an argument similar to (3.7) as follows:
For R > 0, we have

∣∣∣∣
∫
R3

h(x)|ubn |q–2ubn (ubn – u0) dx
∣∣∣∣

≤
∫
R3

h(x)|ubn |q–1|ubn – u0|dx

=
∫

ΩR

h(x)|ubn |q–1|ubn – u0|dx +
∫

ΩC
R

h(x)|ubn |q–1|ubn – u0|dx.

Take r1 = 6
q–1 , r2 = 6

1+(q1–q) . Then the condition (l) ensures that 1 < r1 < 2 < r2 < 6. By the
boundedness of {ubn} combined with (2.2) and the fact that ubn → u0 in Lr

loc(R3), r ∈ [1, 6),
there exists M1 > 0 such that

An :=
∫

ΩR

h(x)|ubn |q–1|ubn – u0|dx

≤
(∫

ΩR

h
6

6–q1 dx
) 6–q1

6
(∫

ΩR

|ubn |(q–1)r1 dx
) 1

r1
(∫

ΩR

|ubn – u0|r2 dx
) 1

r2

≤ |h| 6
6–q1

|ubn |q–1
6

(∫
ΩR

|ubn – u0|r2 dx
) 1

r2

≤ M1

(∫
ΩR

|ubn – u0|r2 dx
) 1

r2 → 0 (3.11)

as n → ∞.
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Similarly, let r = 6q
q1

, r1 = 6
q–1 , r2 = 6

1+(q1–q) , then 4 < r < 6 and there exists M2 > 0 such that

Bn :=
∫

ΩC
R

h(x)|ubn |q–1|ubn – u0|dx

≤
∫

ΩC
R

h(x)
(|ubn |q + |ubn |q–1|u0|

)
dx

≤
(∫

ΩC
R

h
6

6–q1 dx
) 6–q1

6
(∫

ΩC
R

|ubn |r dx
) q

r

+
(∫

ΩC
R

h
6

6–q1 dx
) 6–q1

6
(∫

ΩC
R

|ubn |r1(q–1) dx
) 1

r1
(∫

ΩC
R

|u0|r2 dx
) 1

r2

≤
(∫

ΩC
R

h
6

6–q1 dx
) 6–q1

6 [|ubn |qr + |ubn |q–1
6 |u0|r2

] ≤ M2

(∫
ΩC

R

h
6

6–q1 dx
) 6–q1

6
.

Because h ∈ L
6

6–q1 (R3), for any ε > 0, we can choose R > 0 large enough so that

(∫
ΩC

R

h
6

6–q1 dx
) 6–q1

6
<

ε

M2

and therefore
∫

ΩC
R

h(x)|ubn |q–1|ubn – u0|dx < ε. (3.12)

Hence, by (3.11)–(3.12), we conclude that
∫
R3 h(x)|ubn |q–2ubn (ubn – u0) dx → 0 as n → ∞.

Finally, we show that

∫
R3

k(x)(φubn – φu0 )u0(ubn – u0) dx → 0 as n → ∞. (3.13)

In fact, by Lemma 2.2(iii)–(iv) together with the boundedness of {ubn} in H1(R3), we have

∣∣∣∣
∫
R3

k(x)(φubn – φu0 )u0(ubn – u0) dx
∣∣∣∣

≤
∫
R3

k(x)|φubn – φu0 |
∣∣u0(ubn – u0)

∣∣dx

≤ |k|∞
(∫

R3
|φubn – φu0 |6

) 1
6
(∫

R3

∣∣u0(ubn – u0)
∣∣ 6

5 dx
) 5

6

≤ |k|∞
(|φubn |6 + |φu0 |6

)(∫
R3

∣∣u0(ubn – u0)
∣∣ 6

5 dx
) 5

6

≤ |k|∞S̄–2S–2
6 |k|2

(‖ubn‖2 + ‖u0‖2)(∫
R3

∣∣u0(ubn – u0)
∣∣ 6

5 dx
) 5

6

≤ M1

(∫
R3

∣∣u0(ubn – u0)
∣∣ 6

5 dx
) 5

6
. (3.14)
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For any R > 0, we know that

∫
R3

∣∣u0(ubn – u0)
∣∣ 6

5 dx =
∫

ΩR

∣∣u0(ubn – u0)
∣∣ 6

5 dx +
∫

ΩC
R

∣∣u0(ubn – u0)
∣∣ 6

5 dx.

Because

(∫
ΩC

R

∣∣u0(ubn – u0)
∣∣ 6

5 dx
)

≤
(∫

ΩC
R

|u0| 3
2 dx

) 4
5
(∫

ΩC
R

|ubn – u0

)
|6 dx)

1
5

≤
(∫

ΩC
R

|u0| 3
2 dx

) 4
5
(∫

ΩC
R

(|ubn | + |u0|
)6 dx

) 1
5

≤
(∫

ΩC
R

|u0| 3
2 dx

) 4
5 (|ubn |6 + |u0|6

) 6
5

≤ M2

(∫
ΩC

R

|u0| 3
2 dx

) 4
5

, (3.15)

and u0 ∈ L 3
2 (R3), for any given ε > 0, we can choose R > 0 large enough so that

M2

(∫
ΩC

R

|u0| 3
2 dx

) 4
5

< ε/2. (3.16)

On the other hand, since ubn → u0 in Lr
loc(R3), r ∈ [1, 6), there exists N > 0 such that

∫
ΩR

∣∣u0(ubn – u0)
∣∣ 6

5 dx =
(∫

ΩR

|ubn – u0

)
| 3

2 dx)
4
5

(∫
ΩR

|u0|6 dx
) 1

5

≤
(∫

ΩR

|ubn – u0

)
| 3

2 dx)
4
5

(∫
R3

|u0|6 dx
) 1

5
< ε/2 (3.17)

as n > N . Thus, by (3.14)–(3.17), we find that (3.13) holds. Consequently, by (3.6), (3.7),
(3.10) and (3.13), we obtain dn → 0 as n → ∞, and therefore, ubn → u0 as n → ∞ in
H1(R3).

Now, by

〈
J ′
0(u0), u±

bn

〉
=

〈
J ′
bn (ubn ), u±

bn

〉
–

〈
J ′
bn (ubn ) – J ′

0(ubn ), u±
bn

〉
–

〈
J ′
0(ubn ) – J ′

0(u0), u±
bn

〉
= –

〈
J ′
bn (ubn ) – J ′

0(ubn ), u±
bn

〉
–

〈
J ′
0(ubn ) – J ′

0(u0), u±
bn

〉
combined with the fact that ubn → u0, u±

bn
⇀ u±

0 in H1(R3) and bn → 0 and that Jb is a C1

functional in H1(R3), we have J ′
0(u0) = 0 and

〈
J ′
0(u0), u±

0
〉

= lim
n→∞

〈
J ′
0(u0), u±

bn

〉
= 0.

On the other hand, by an argument similar to (2.26) and a subsequent derivation on
u±

b �= 0, we know that u±
0 �= 0. So, u0 ∈ M0. That is, u0 is a sign-changing weak solution of

problem (1.2)
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Now, we prove that u0 is also a least energy sign-changing solution of problem (1.2). In
fact, assume that v0 ∈ M0 is a least energy sign-changing solution of problem (1.2). Then,
by Lemma 2.4, there is a sequence of pairs (sbn , tbn ) ∈ R

0
+ × R

0
+ with sbn v+

0 + tbn v–
0 ∈ Mbn .

Because bn → 0 as n → ∞, observing that (2.11) holds corresponding to b = bn, u = v0

and taking into account that 2 ≤ p ≤ 4 < q < 6, λ ≥ 0, and h(x) > 0, a.e. x ∈ R
3, it is easy

to check that {(sbn , tbn )} is bounded. Without loss of generality, we can assume that sbn →
s0 ∈ R+, tbn → t0 ∈ R+. Moreover, by an argument similar to that in (2)(ii) of the proof of
Lemma 2.4, it can be verified that s0 > 0, t0 > 0. Consequently, we have

s0v+
0 + t0v–

0 = lim
n→∞

(
sbn v+

0 + tbn v–
0
) ∈ M0.

Applying Lemma 2.4 for b = 0, it follows from v0 ∈ M0 that s0 = t0 = 1. Thus, we have

J0(v0) ≤ J0(u0) = lim
n→∞ Jbn (ubn ) ≤ lim

n→∞ Jbn

(
sbn v+

0 + tbn v–
0
)

= J0
(
v+

0 + v–
0
)

= J0(v0).

Hence, J0(v0) = J0(u0). That is, u0 is also a least energy sign-changing solution of problem
(1.2). The proof of Theorem 3.2 is complete. �

4 Conclusion
In this paper, with the help of the constraint variational method combined with a quan-
titative lemma, Kirchhoff–Poisson systems (1.1) are investigated and the existence result
on the least energy sign-changing solution with two nodal domains to the problem is es-
tablished. Moreover, the convergence property of ub as b ↘ 0 is also obtained. It should
be pointed out that, because the nonlocal terms b

∫
R3 (|∇u|2 dx)�u and φu are involved

here, the above Kirchhoff–Poisson systems are totally different from the case b = 0 and
k = 0 and there are more difficulties we need to overcome in the proof.
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