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Abstract
This paper considers the Cauchy problem for fast diffusion equation with nonlocal

source ut =�um + (
∫
Rn uq(x, t)dx)

p–1
q ur+1, which was raised in [Galaktionov et al. in

Nonlinear Anal. 34:1005–1027, 1998]. We give the critical Fujita exponent
pc =m + 2q–n(1–m)–nqr

n(q–1) , namely, any solution of the problem blows up in finite time
whenever 1 < p ≤ pc , and there are both global and non-global solutions if p > pc .
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1 Introduction
In this paper, we study the following Cauchy problem of fast diffusion parabolic equation
with a nonlinear nonlocal source:

⎧
⎪⎨

⎪⎩

ut = �um + (
∫
Rn uq(x, t) dx)

p–1
q ur+1, (x, t) ∈ R

n × (0, T),

u(x, 0) = u0(x), x ∈R
n,

(1.1)

where the spatial dimension n ≥ 1, the coefficients m, p, q, r satisfy max{0, 1 – 2
n + r} <

m < 1, p > 1, q ≥ 1, 0 ≤ r < 2
n , and the initial data u0(x) is a nontrivial nonnegative contin-

uous function.
The quasilinear parabolic equations involving a nonlocal term originate in the phe-

nomena of diffusion about concentration of some Newtonian fluids or the density of
some biological species and heat transfer in a special medium with nonlocal source (see
[2, 3] and the references therein). In the past three decades, various nonlocal mathemati-
cal models were established to describe many physical phenomena (see [1, 4–9] and ref-
erences therein). At the same time, many important results have appeared on the blow-up
problem for a nonlinear parabolic equation with nonlocal source (see [2, 6, 8–11] and ref-
erences therein), and for nonlocal nonlinear diffusion equations [12, 13]. However, most of
efforts have been devoted in bounded domains, there were few researches for the Cauchy
problems (see [1, 14, 15]).

It is well known that the classical Cauchy problem

ut = �u + up in R
n × (0, T) (1.2)
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possesses the critical exponent 1 + 2
n [16–19], that is to say, any nontrivial solution blows

up in finite time if 1 < p ≤ 1 + 2
n , whereas global and non-global solutions coexist if p >

1 + 2
n , depending on the size of initial data. From then on, the Fujita phenomenon has

been observed for many nonlinear PDEs (see surveys [20, 21] and references therein).
The study for the Cauchy problem of nonlocal nonlinear parabolic equation was pro-

posed by Galaktionov et al. [1], in which it was proved that the Cauchy problem (1.1) with
m = 1 has a critical Fujita exponent, and Wang et al. [15] obtained similar results by other
methods. Recently, Zhou [14] considered the global and non-global existence of solutions
for (1.1) with m > 1.

The present paper investigates a fast diffusion parabolic equation (1.1) (max{0, 1 – 2
n } <

m < 1) with a nonlocal source, and establishes the critical Fujita exponent pc = m +
2q–n(1–m)–nqr

n(q–1) . Comparing with the known result for the parallel problem with a local source

ut = �um + up in R
n × (0, T),

the critical Fujita exponent was obtained in [22, 23] and shown to be pc = 1 + 2m
n .

In the rest of the paper, we always let u be a solution to (1.1), and pc = m + 2q–n(1–m)–nqr
n(q–1) .

The main results are stated in the following theorems.

Theorem 1.1 For 1 < p ≤ pc, there are no global nontrivial solutions to (1.1).

Theorem 1.2 For p > pc, there are both global and non-global solutions to (1.1).

This paper is organized as follows. Section 2 concerns the non-global solution to prove
Theorem 1.1. Section 3 deals with the global existence to prove Theorem 1.2. And Sect. 4
shows in what ways the parameter q of the nonlocal source affects the behavior of solutions
in the fast diffusion problem (1.1).

2 Non-global solutions
This section mainly applies the test function method (refer to [15, 22]) to prove that any
solution of (1.1) must blow up in finite time for 1 < p ≤ pc. Introducing the test function

ϕk(x) =
(

k
π

) n
2

e–k|x|2 (2.1)

for some k > 0, we can simply verify that

∫

Rn
ϕk(x) dx = 1,

∥
∥ϕk(x)

∥
∥

L∞ =
(

k
π

) n
2

, �ϕk(x) ≥ –2knϕk(x).

Define

F(t) =
∫

Rn
u(x, t)ϕk(x) dx.

It is sufficient to show that F(t) blows up in finite time as 1 < p ≤ pc to deal with Theo-
rem 1.1.
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Proof of Theorem 1.1 Firstly, we consider the case of 1 < p < pc. Multiplying equation (1.1)
by ϕk(x) and integrating by parts in R

n, we get

F ′(t) =
∫

Rn
utϕk dx

=
∫

Rn
�umϕk dx +

(∫

Rn
uq dx

) p–1
q

∫

Rn
ur+1ϕk dx

≥ –2kn
∫

Rn
umϕk dx + ‖ϕk‖– p–1

q
L∞

(∫

Rn
uqϕk dx

) p–1
q

∫

Rn
ur+1ϕk dx.

Using Jensen’s inequality for m < 1, q > 1, and r > 0,

F ′(t) ≥ –2knFm(t) +
(

k
π

)– n(p–1)
2q

Fp+r(t)

= Fp+r(t)
((

k
π

)– n(p–1)
2q

– 2knF–(p+r–m)(t)
)

.

Assuming

F(t) >
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p–1)
2q(p+r–m) , (2.2)

we obtain

(
k
π

)– n(p–1)
2q

> 4knF–(p+r–m)(t),

and

F ′(t) ≥ 1
2

(
k
π

)– n(p–1)
2q

Fp+r(t). (2.3)

This implies

F(t) ≥
(

F–(p+r–1)(0) –
p + r – 1

2

(
k
π

)– n(p–1)
2q

t
)– 1

p+r–1
.

Obviously, F(t) blows up for any nonnegative initial data as t → T = 2F–(p+r–1)(0)
p+r–1 ( k

π
)

n(p–1)
2q .

In the following, we show that

F(0) >
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p–1)
2q(p+r–m) (2.4)

is a sufficient condition to prove condition (2.2). If not, there exists some τ , such that

F(τ ) =
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p–1)
2q(p+r–m) ,
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and

F(t) >
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p–1)
2q(p+r–m) , t ∈ [0, τ ).

This implies F ′(τ0) < 0 for some τ0 ∈ (0, τ ), which contradicts F ′(t) ≥ 0, t ∈ (0, τ ). Thereby,
to prove that a solution of (1.1) blows up in finite time, we only show (2.4) is true for any
nonnegative nontrivial initial data u0(x). Since n

2 < 2q+n(p–1)
2q(p+r–m) which was derived by 1 < p <

pc, there exists a k > 0 small enough, such that

F(0) =
(

k
π

) n
2
∫

Rn
e–k|x|2 u0(x) dx >

(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p–1)
2q(p+r–m) .

Next, we consider the case of p = pc. Supposing a solution of (1.1) is global for any t ≥ 0,
it holds that

F(t) =
(

k
π

) n
2
∫

Rn
e–k|x|2 u(x, t) dx ≤ (

π
n(p–1)

2q (4n)–1)– 1
p+r–m k

2q+n(p–1)
2q(p+r–m) . (2.5)

That is, if (2.5) is not true, namely F(t1) > (π
n(p–1)

2q (4n)–1)– 1
p+r–m k

2q+n(p–1)
2q(p+r–m) for some t1 > 0,

then the solution u(x, t) must blow up in finite time by the above proof. The condition
p = pc means n

2 = 2q+n(p–1)
2q(p+r–m) , and (2.5) can be rewritten as

∫

Rn
e–k|x|2 u(x, t) dx ≤ π

n
2
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m for t > 0. (2.6)

Without loss of generality, assuming u0(x) has compact support in R
n, we get that u(x, t) ∈

L(Rn) for any fixed t > 0 (see [24]). By Lebesgue Dominated Convergence Theorem, as
k → 0 in (2.6),

∫

Rn
u(x, t) dx ≤ π

n
2
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m . (2.7)

Integrating equation (1.1) on R
n × [0, t] , we have

∫

Rn
u(x, t) dx –

∫

Rn
u0(x) dx =

∫ t

0

(∫

Rn
uq dx

) p–1
q

∫

Rn
ur+1 dx dt.

And then

∫ t

0

(∫

Rn
uq dx

) p–1
q

∫

Rn
ur+1 dx dt ≤

∫

Rn
u(x, t) dt ≤ π

n
2
(
π

n(p–1)
2q (4n)–1)– 1

p+r–m

as u0(x, t) ≥ 0. This implies that

∫ ∞

0

(∫

Rn
uq dx

) p–1
q

∫

Rn
ur+1 dx dt < +∞. (2.8)
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On the other hand, from [25] we know that there exists δ > 0 such that the solution of
(1.1) satisfies

u(x, τ ) > δ
(
1 + B|x|2)– 1

1–m

for B = (1–m)αδ1–m

2mn and some τ > 0. Setting

u(x, t) = δ(1 + t)–α
(
1 + B|x|2(1 + t)– 2α

n
)– 1

1–m

with α = n
2–n(1–m) , it is simple to verify

u(x, t) ≤ u(x, t + τ ) for x ∈R
n, t > 0.

And we have

∫ ∞

0

(∫

Rn
uq(x, t) dx

) p–1
q

∫

Rn
ur+1(x, t) dx dt

≥
∫ ∞

0

(∫

Rn
uq(x, t + τ ) dx

) p–1
q

∫

Rn
ur+1(x, t + τ ) dx dt

≥
∫ ∞

0

(∫

Rn
uq(x, t) dx

) p–1
q

∫

Rn
ur+1(x, t) dx dt

= B– p+q–1
2q δp+r

(∫

Rn

(
1 + |ξ |2)– q

1–m dξ

) p–1
q

∫

Rn

(
1 + |ξ |2)– r+1

1–m dξ

∫ ∞

0
(1 + t)–1 dt

= +∞,

since –α(p + r – 1) + α(p–1)
q = –1 for p = pc and ξ =

√
Bx(1 + t)– α

n . This contradicts (2.8),
and so our assumption that the solution of (1.1) globally exist for t > 0 is not true, which
proves Theorem 1.1 with p = pc. �

3 Coexistence of global and non-global solutions
This section mainly deals with the global solution for the case of p > pc to derive Theo-
rem 1.2.

Proof of Theorem 1.2 Firstly, we show that the solution of (1.1) must blow up in finite
time for large initial data u0(x). The proof of Theorem 1.1 means that u(x, t) does not exist
globally, provided u0 satisfies

(
k
π

) n
2
∫

Rn
e–k|x|2 u0(x) dx >

(
π

n(p–1)
2q (4n)–1)– 1

p+r–m k
2q+n(p+1)
2q(p+r–m) . (3.1)

For any fixed k = k0 > 0, we can choose large u0(x) to fulfil condition (3.1).
Next, we prove that the solution of (1.1) exists globally for any small initial data u0(x).

Let

ū = (t + 1)–β
(
D1 + D2|x|2(t + 1)–β(1–m)–1)– 1

1–m ,
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where β = n(p–1)+2q
2q(p+r–1)–n(1–m)(p–1) , and D1, D2 > 0 are to be determined. We demonstrate that

ū is a global supersolution of (1.1) for suitable D1 and D2. Setting

Z = D1 + D2|x|2(t + 1)–β(1–m)–1 =: D1 + D2z,

with z = |x|2(t + 1)–β(1–m)–1, we have

ūt – �ūm –
(∫

Rn
ūq dx

) p–1
q

ūr+1

= (t + 1)–β–1Z– 1
1–m –1

[

–βZ +
D2(β – βm + 1)

1 – m
z +

2mD2n
1 – m

Z –
4mD2

2
(1 – m)2 z

– (t + 1)–βr+1
(∫

Rn
(t + 1)–βq(D1 + D2|y|2(t + 1)–1–β(1–m))– q

1–m dy
) p–1

q
Z– r

1–m +1
]

=: (t + 1)–β–1Z– 1
1–m –1G(Z). (3.2)

For max{0, 1 – 2
n + r} < m < 1, q ≥ 1, r ≥ 0 implying 2q

1–m ≥ 2
1–m > n, there exists a constant

C > 0 such that
∫

Rn
(t + 1)–βq(D1 + D2|y|2(t + 1)–1–β(1–m))– q

1–m dy

=
∫

Rn
(t + 1)–βq+ n+nβ(1–m)

2
(
D1 + D2|w|2)– q

1–m dw

≤ C(t + 1)–βq+ n+nβ(1–m)
2 .

Substituting the above inequity into the expression of G(Z) in (3.2), and using D2z = Z –D1,
β = n(p–1)+2q

2q(p+r–1)–n(1–m)(p–1) , we have

G(Z) ≥ –βZ +
D2(β – βm + 1)

1 – m
z +

2mD2n
1 – m

Z –
4mD2

2
(1 – m)2 z

– C(t + 1)–β(p+r–1)+ n+nβ(1–m)
2q (p–1)+1Z– r

1–m +1

=
(

–β +
β – βm + 1

1 – m
+

2mD2n
1 – m

–
4mD2

(1 – m)2

)

Z

–
(

β – βm + 1
1 – m

–
4mD2

(1 – m)2

)

D1 – CZ– r
1–m +1

=: F(Z). (3.3)

To describe F(Z) ≥ 0 for some D1 and D2, we have to show (i) F(D1) ≥ 0 and (ii) F ′(Z) ≥ 0
for Z ≥ D1.

(i) F(D1) = (–β + 2mDn
1–m )D1 – CD– r

1–m +1
1 ≥ 0 is equivalent to

D– r
1–m

1 ≤ 1
C

(

–β +
2mD2n
1 – m

)

, (3.4)

D2 >
β(1 – m)

2mn
. (3.5)



Yang et al. Boundary Value Problems        (2019) 2019:164 Page 7 of 8

Figure 1 Critical Fujita exponent curve in q–p plane

(ii) By simple computation, F ′(Z) = –β + β–βm+1
1–m + 2mD2n

1–m – 4mD2
(1–m)2 – C(1 – r

1–m )Z– r
1–m . If

1 – r
1–m ≤ 0, condition (ii) is ensured by

–β +
β – βm + 1

1 – m
+

2mD2n
1 – m

–
4mD2

(1 – m)2 > 0. (3.6)

If 1 – r
1–m > 0, condition (ii) is ensured by (3.6) and

D– r
1–m

1 ≤ 1 – m
C(1 – m – r)

(

–β +
β – βm + 1

1 – m
+

2mD2n
1 – m

–
4mD2

(1 – m)2

)

. (3.7)

Inequalities (3.5) and (3.6) require

β(1 – m)
2mn

< D2 <
1 – m

2m(2 – n(1 – m))
. (3.8)

Due to β = n(p–1)+2q
2q(p+r–1)–n(1–m)(p–1) and p > pc, we can choose some D2 > 0 that fulfils (3.8). For

such D2, choose D1 > 0 large enough to satisfy (3.4) and (3.7).
In conclusion, ū is a global supersolution to problem (1.1) with small initial data u0(x) ≤

ū(x, 0) = (D1 + D2|x|2)– 1
1–m . �

4 Conclusion
This paper shows that the model (1.1) possesses critical Fujita exponent pc = m +
2q–n(1–m)–nqr

n(q–1) in Theorems 1.1 and 1.2, and we find that the coefficient q of the nonlo-
cal term affects the critical Fujita exponent. It’s easy to see that pc is decreasing in q with
limq→∞ pc = m + 2

n – r and limq→1 pc = ∞. That is to say, the scope 1 < p ≤ pc for the
blow-up of any nontrivial solutions will be enlarged as q is decreasing, and any nontrivial
solution of (1.1) will blow up when p > 1 and q = 1. Refer to Fig. 1.
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