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Abstract
The well-posedness of weak solutions to a double degenerate evolutionary
p(x)-Laplacian equation

ut = div(b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)),

is studied. It is assumed that b(x, t)|(x,t)∈Ω×[0,T ] > 0 but b(x, t)|(x,t)∈∂Ω×[0,T ] = 0,
A′(s) = a(s) ≥ 0, and A(s) is a strictly monotone increasing function with A(0) = 0.
A weak solution matching up with the double degenerate parabolic equation is
introduced. The existence of weak solution is proved by a parabolically regularized
method. The stability theorem of weak solutions is established independent of the
boundary value condition. In particular, the initial value condition is satisfied in a
wider generality.
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1 Introduction
In this paper, the double degenerate evolutionary p(x)-Laplacian equation

ut = div
(

b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

)

+ f (x, t, u,∇u), (x, t) ∈ QT = Ω × (0, T), (1.1)

is considered, in which Ω ⊂R
N is a bounded domain with smooth boundary ∂Ω , p(x) > 1

is a C1(Ω) function, b(x, t) ∈ C1(QT ) satisfies

b(x, t) > 0, (x, t) ∈ Ω × [0, T]; b(x, t) = 0, (x, t) ∈ ∂Ω × [0, T], (1.2)

A′(s) = a(s) ≥ 0 and a(s) ∈ C1(R), A(0) = 0. If A(s) = s and b(x, t) = 1, equation (1.1) comes
from a new interesting family of fluids, the so-called electrorheological fluids (see [1, 2]),
and has been widely studied [2–15] in recent decade. If b(x, t) = 1, p(x) = p > 1 is a constant,
equation (1.1) is a generalization of the following polytropic infiltration equation:

ut = div
(∣
∣∇um∣

∣
p–2∇um)

+ f (x, t, u,∇u), (x, t) ∈ QT , (1.3)
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where m > 0; if p > 1 + 1
m , we have the slow diffusion case, while for p < 1 + 1

m , it is the
fast diffusion case. There are many papers [16–29] that studied various questions about
equation (1.3) with the usual initial boundary value conditions

u(x, t) = u0(x), x ∈ Ω , (1.4)

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T). (1.5)

If f (x, t, u,∇u) = ∇B(u) and u0(x) ∈ Lq(Ω) with q ≥ 1, the initial-boundary value prob-
lem of equation (1.3) was considered in [16]. By modifying the usual Morse iteration
and imposing some restrictions on f (x, t, u,∇u), the local L∞-estimates were obtained,
and ut ∈ L2(RN × (τ , T)) was proved [16]. When f (x, t, u,∇u) = 0, the Cauchy problem of
equation (1.3) with the initial value u0(x) ∈ L1(RN ) was studied in [18], the existence and
uniqueness of weak solutions were proved, and ut ∈ L1(RN × (τ , T)) was shown for any
τ > 0. When the initial value u0(x) is just a measure, the Cauchy problem was considered
in [19]. A more general equation was studied in [17] based on an L1 initial value condi-
tion. The large-time behavior of solutions to equation (1.3) had been studied in [21–24,
26], etc. The extinction, positivity, and the blow-up of solutions had been studied in [25,
27], etc. Of course, there are a lot of papers on the other subjects, such as the regularity,
Harnack inequality, and the free boundary problem, etc.; for examples, one can refer to
[20, 28, 29], etc. Recently, using some techniques of [18], the existence and uniqueness of
weak solutions to the following equation:

ut = div
(

a(x)
∣
∣∇um∣

∣
p–2∇um)

, (x, t) ∈ QT , (1.6)

had been studied in [30–32], where a(x) satisfies

a(x) > 0, x ∈ Ω ; a(x) = 0, x ∈ ∂Ω . (1.7)

Equation (1.6) is always degenerate on the boundary. This is the most characteristic feature
of equation (1.6) different from equation (1.3). Let us give a further explanation. For two
weak solutions u(x, t), v(x, t) of equation (1.6) with the initial value (1.4) but independent
of the boundary value condition (1.5), satisfying

∇um ∈ L1(0, T ; Lp(Ω)
)

, ∇vm ∈ L1(0, T ; Lp(Ω)
)

,

multiplying by Sn(um – vm) on both sides of equation (1.6) and integrating over Qt = Ω ×
(0, t), from (1.7), one has

∫ t

0
Sn

(

um – vm)

(ut – vt) dx dt

= –
∫∫

Qt

a(x)
(∣
∣∇um∣

∣
p–2∇um –

∣
∣∇vm∣

∣
p–2∇vm)(∇um – ∇vm)

S′
n
(

um – vm)

dx dt

≤ 0.

Here Sn(s) ∈ C1(R) is such that limn→∞ Sn(s) = sgn(s) is the sign function.
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Let n → ∞. Then

∫

Ω

|u(x, t) – v(x, t) dx ≤
∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx.

This inequality shows that the stability of weak solutions of equation (1.6) with the initial
value (1.4) can be true, the boundary value condition (1.5) is completely redundant. In
other words, for the well-posedness problem of equation (1.6), the degeneracy of a(x) on
the boundary (1.7) may take the place for the Dirichlet boundary value condition (1.5).

The main aim of this paper is to generalized the above conclusion to the double de-
generate evolutionary p(x)-Laplacian equation (1.1). For simplicity, we only discuss the
problem when f (x, t, u,∇u) ≡ 0 in equation (1.1). Since we assume that A(0) = 0, A(s) is a
strictly monotone increasing function, equation (1.6) is the special case of equation (1.1).
However, since the diffusion b(x, t) depends the time variable t and the nonlinearity of
A(s), equation (1.1) is more general, and there are some essential difficulties that should
be overcome.

2 Basic functional space and a new kind of weak solution
We should emphasize again that f (x, t, u,∇u) ≡ 0 in what follows. Let us first introduce a
basic lemma and the definition of weak solutions.

Lemma 2.1
(i) The spaces (Lp(x)(Ω),‖ · ‖Lp(x)(Ω)), (W 1,p(x)(Ω),‖ · ‖W 1,p(x)(Ω)), and W 1,p(x)

0 (Ω) are
reflexive Banach spaces.

(ii) Let p1(x) and p2(x) be real functions with 1
p1(x) + 1

p2(x) = 1 and p1(x) > 1. Then, the
conjugate space of Lp1(x)(Ω) is Lp2(x)(Ω). And for any u ∈ Lp1(x)(Ω) and
v ∈ Lp2(x)(Ω), we have

∣
∣
∣
∣

∫

Ω

uv dx
∣
∣
∣
∣
≤ 2‖u‖Lp1(x)(Ω)‖v‖Lp2(x)(Ω).

(iii)

If ‖u‖Lp(x)(Ω) = 1, then
∫

Ω

‖u‖p(x) dx = 1,

If ‖u‖Lp(x)(Ω) > 1, then ‖u‖p–

Lp(x)(Ω) ≤
∫

Ω

|u|p(x) dx ≤ ‖u‖p+

Lp(x)(Ω),

If ‖u‖Lp(x)(Ω) < 1, then ‖u‖p+

Lp(x)(Ω) ≤
∫

Ω

|u|p(x) dx ≤ ‖u‖p–

Lp(x)(Ω).

This lemma can be found in [33, 34]. From here on, p+ = maxx∈Ω p(x), p– = maxx∈Ω p(x).

Definition 2.2 A function u(x, t) is said to be a weak solution of equation (1.1) with the
initial condition (1.5), if

u ∈ L∞(QT ),
∂

∂t

∫ u

0

√

a(s) ds ∈ L2(QT ), b(x, t)
∣
∣∇A(u)

∣
∣
p(x) ∈ L1(QT ), (2.1)



Weng Boundary Value Problems        (2019) 2019:172 Page 4 of 13

and for any function ϕ ∈ C1
0(QT ), the following integral equivalence holds:

∫∫

QT

[
∂u
∂t

ϕ(x, t) + b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u) · ∇ϕ

]

dx dt = 0. (2.2)

Initial condition (1.5) is satisfied in the sense of

lim
t→0

∫

Ω

∣
∣
∣
∣

∫ u(x,t)

0

√

a(s) –
∫ u0(x)

0

√

a(s) ds
∣
∣
∣
∣
dx = 0. (2.3)

In this paper, we first study the existence of the weak solution.

Theorem 2.3 If b(x, t) satisfies (1.2) and

∣
∣
∣
∣

∂b(x, t)
∂t

∣
∣
∣
∣
≤ cb(x, t), (2.4)

A(s) is a strictly monotone increasing continuous function, A(0) = 0, u0(x) ≥ 0,

u0 ∈ L∞(Ω), b(x, 0)u0(x) ∈ W 1,p(x)(Ω), (2.5)

then there is a nonnegative solution of equation (1.1) with the initial value (1.5).

Theorem 2.4 If b(x, t) satisfies (1.2), A(s) is a strictly monotone increasing function, A(0) =
0, and for large enough n,

n1– 1
p+

(∫

Ω 1
n t\Ω 2

n t

|∇b|p(x) dx
) 1

p+

≤ c(T), (2.6)

u(x, t) and v(x, t) are two weak solutions of equation (1.1) with the initial values u0(x) and
v0(x), respectively, then

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx, a.e. t ∈ [0, T). (2.7)

From here on, ∇b represents the gradient of the spatial variable x, and for any t ∈ [0, T),

Ω 1
n t =

{

x ∈ ∂Ω : b(x, t) >
1
n

}

.

3 The proof of Theorem 2.3
Without loss the generality, we may assume that A(s) is a C1 function, A′(s) = a(s) ≥ 0.
Consider the parabolically regularized system

ut = div
((

b(x, t) + ε
)∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

)

, (x, t) ∈ QT , (3.1)

u(x, 0) = u0(x) + ε, x ∈ Ω , (3.2)

u(x, t) = ε, (x, t) ∈ ∂Ω × (0, T). (3.3)
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Proof of Theorem 2.3 Similar as in [35, 36], by the monotone convergence method, we can
prove that the solution uε ∈ L1(0, T : W 1,p(x)(Ω)) of the initial-boundary value problem
(3.1)–(3.3) is such that

‖uε‖L∞(QT ) ≤ c. (3.4)

Multiplying (3.1) by A(uε) – A(ε) and integrating the result over Qt = Ω × (0, t) for any
t ∈ [0, T), as well as denoting

∫ r

0
A(s) ds = A(r),

we get

∫

Ω

A
(

uε(x, t)
)

dx +
∫∫

Qt

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x) dx dt

=
∫

Ω

A
(

u0(x)
)

dx + A(ε)
∫

Ω

[

u(x, t) – u0(x)
]

dx (3.5)

and
∫∫

QT

b(x, t)
∣
∣∇A(uε)

∣
∣
p(x) dx dt

≤ c
∫∫

QT

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x) dx dt

≤ c. (3.6)

Multiplying (3.1) by [A(uε) – A(ε)]t and integrating the result over Qt = Ω × (0, t),

∫∫

Qt

(

A(uε)
)

tuεt dx dt +
∫∫

Qt

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε)∇(

A(uε)
)

t dx dt

= 0. (3.7)

Since

∣
∣∇A(uε)

∣
∣
p(x)–2∇(

A(uε)
)

t =
1
2

∂

∂t

∫ |∇A(uε)|2

0
s

p(x)–2
2 ds,

and | ∂b(x,t)
∂t | ≤ cb(x, t), we obtain

∫∫

Qt

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε)∇(

A(uε)
)

t dx dt

=
1
2

∫∫

Qt

∂

∂t

[
(

b(x, t) + ε
)
∫ |∇A(uε)|2

0
s

p(x)–2
2 ds

]

dx dt

–
1
2

∫∫

Qt

∫ |∇A(uε)|2

0
s

p(x)–2
2 ds

∂b(x, t)
∂t

dx dt

=
1
2

∫

Ω

2
p(x)

[(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x) –

(

b(x, 0) + ε
)∣
∣∇A(u0)

∣
∣
p(x)]dx
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+ c
∫∫

Qt

b(x, t)
p(x)

∣
∣∇A(uε)

∣
∣
p(x) dx dt

≤ c.

Thus,
∫∫

Qt

(

A(uε)
)

tuεt dx dt =
∫∫

Qt

a(uε)|uεt|2 dx dt ≤ c. (3.8)

By (3.6), uε ⇀ u weakly-* in L∞(QT ). For any ϕ(x, t) ∈ C1
0(QT ), we have

lim
ε→0

∫∫

QT

∂

∂t

(∫ uε

0

√

a(s) ds –
∫ u

0

√

a(s) ds
)

ϕ(x, t) dx dt

= – lim
ε→0

∫∫

QT

∫ uε

u

√

a(s) dsϕt(x, t) dx dt

= – lim
ε→0

∫∫

QT

√

a(ξ )(u – uε)ϕt(x, t) dx dt

= 0, (3.9)

where ξ ∈ (u, uε) is the mean value. From (3.9) we can extrapolate that

∂

∂t

∫ uε

0

√

a(s) ds ⇀
∂

∂t

∫ u

0

√

a(s) ds in L2(QT ). (3.10)

Hence, by (3.6), there exists an n-dimensional vector
−→
ζ = (ζ1, . . . , ζn) such that

−→
ζ =

(ζ1, . . . , ζn) and

|−→ζ | ∈ L1(0, T ; L
p(x)

p(x)–1 (Ω)
)

,

such that

b(x, t)
∣
∣A(∇uε)

∣
∣
p(x)–2∇uε ⇀

−→
ζ in L1(QT ).

In order to prove that u is a solution of equation (1.1), we notice that for any function
ϕ ∈ C1

0(QT ),

∫∫

QT

[

uεtϕ +
(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ

]

dx dt = 0. (3.11)

As ε → 0, since b(x, t) is a C1(QT ) function with b(x, t)|∂Ω×[0,T] = 0, b(x, t) > 0, (x, t) ∈ Ω ×
[0, T], we get c > maxsuppϕ

|∇ϕ|
b(x,t) > 0 due to ϕ ∈ C∞

0 (QT ), and accordingly,

ε

∣
∣
∣
∣

∫∫

QT

∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ dx dt

∣
∣
∣
∣

≤ ε sup
suppϕ

|∇ϕ|
b(x, t)

∫∫

QT

b(x, t)
(∣
∣∇A(uε)

∣
∣
p(x) + c

)

dx dt

→ 0,
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as well as
∫∫

QT

�ζ · ∇ϕ dx dt

= lim
ε→0

∫∫

QT

b(x, t)
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕdx dt

= lim
ε→0

∫∫

QT

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ dx dt

– lim
ε→0

ε

∫∫

QT

∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ dx dt

= lim
ε→0

∫∫

QT

(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ dx dt.

Now, for any function ϕ ∈ C1
0(QT ),

∫∫

QT

(uϕt + �ζ · ∇ϕ) dx dt = 0. (3.12)

We shall prove that
∫∫

QT

b(x, t)
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ϕ dx dt

=
∫∫

QT

−→
ζ · ∇ϕ dx dt. (3.13)

We choose 0 ≤ ψ ∈ C∞
0 (QT ) and ψ = 1 in suppϕ, and let v ∈ L∞(QT ), b(x, t)|∇A(v)|p(x) ∈

L1(QT ). Then
∫∫

QT

ψ
(

b(x, t) + ε
)(∣

∣∇A(uε)
∣
∣
p(x)–2∇A(uε)

–
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

) · (∇A(uε) – ∇A(v)
)

dx dt

≥ 0. (3.14)

Let ϕ = ψA(uε) in (3.11). Then
∫∫

QT

ψ
(

b(x, t) + ε
)∣
∣∇A(uε)

∣
∣
p(x) dx dt

=
∫∫

QT

ψtA(uε) dx dt

–
∫∫

QT

(

b(x, t) + ε
)

A(uε)
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε)∇ψ dx dt. (3.15)

Accordingly,

∫∫

QT

ψtA(uε) dx dt –
∫∫

QT

(

b(x, t) + ε
)

A(uε)(
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ψ dx dt

–
∫∫

QT

(

b(x, t) + ε
)

ψ
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε)∇A(v) dx dt
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–
∫∫

QT

(

b(x, t) + ε
)

ψ
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v) · ∇(

A(uε) – A(v)
)

dx dt

≥ 0. (3.16)

Thus,
∫∫

QT

ψtA(uε) dx dt –
∫∫

QT

(

b(x, t) + ε
)

A(uε)(
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε) · ∇ψ dx dt

–
∫∫

QT

(

b(x, t) + ε
)

ψ
∣
∣∇A(uε)

∣
∣
p(x)–2∇A(uε)∇A(v) dx dt

–
∫∫

QT

ψb(x, t)
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v) · (∇A(uε) – ∇A(v)

)

dx dt

– ε

∫∫

QT

ψ
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v) · (∇A(uε) – ∇A(v)

)

dx dt

≥ 0. (3.17)

Since

ε

∣
∣
∣
∣

∫∫

QT

ψ
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v) · (∇A(uε) – ∇A(v)

)

dx dt
∣
∣
∣
∣

≤ ε sup
(x,t)∈QT

|ψ |
b(x, t)

∫∫

QT

b(x, t)
∣
∣∇A(v)

∣
∣
p(x)–1∣

∣∇A(uε) – ∇A(v)
∣
∣dx dt

≤ ε sup
(x,t)∈QT

|ψ |
b(x, t)

(∫∫

QT

b(x, t)
∣
∣∇A(v)

∣
∣
p(x) dx dt

+
∫∫

QT

b(x, t)
∣
∣∇A(v)

∣
∣
p(x)–1∣

∣∇A(uε)
∣
∣dx dt

)

(3.18)

converges to 0 when ε → 0, we have
∫∫

QT

ψtA(u) dx dt –
∫∫

QT

A(u)
−→
ζ · ∇ψ dx dt

–
∫∫

QT

ψ
−→
ζ · ∇A(v) dx dt

–
∫∫

QT

ψb(x, t)
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v) · (∇A(u) – ∇A(v)

)

dx dt

≥ 0.

Let ϕ = ψA(u) in (3.12). We obtain
∫∫

QT

ψ
−→
ζ · ∇A(u) dx dt –

∫∫

QT

A(u)ψt dx dt +
∫∫

QT

A(u)
−→
ζ · ∇ψ dx dt

= 0.

Accordingly,
∫∫

QT

ψ
(−→

ζ – b(x, t)
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

) · (∇A(u) – ∇A(v)
)

dx dt ≥ 0. (3.19)
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Let A(v) = A(u) – λϕ,λ > 0,ϕ ∈ C1
0(QT ), or equivalently, v = A–1(A(u) – λϕ). Then

∫∫

QT

ψ
(−→

ζ – b(x, t)
∣
∣∇(

A(u) – λϕ
)∣
∣
p(x)–2∇(

A(u) – λϕ
)) · ∇ϕ dx dt ≥ 0.

If λ → 0, then
∫∫

QT

ψ
(−→

ζ – b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

) · ∇ϕ dx dt ≥ 0.

Moreover, if λ < 0, similarly we can get

∫∫

QT

ψ
(−→

ζ – b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

) · ∇ϕ dx dt ≤ 0.

Thus,
∫∫

QT

ψ
(−→

ζ – b(x, t)
∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

) · ∇ϕ dx dt = 0.

Noticing that ψ = 1 on suppϕ, (3.13) holds.
At last, let us prove the initial value condition (1.4) in the sense of (2.3). For any 0 ≤ t1 <

t2 < T , by (3.8),

∫

Ω

∣
∣
∣
∣

∫ uε(x,t2)

0

√

a(s) –
∫ uε(x,t1)

0

√

a(s) ds
∣
∣
∣
∣
dx

≤ (t2 – t1)
∫

Ω

∣
∣
∣
∣

∫ 1

0

∂

∂s

∫ uε (x,st2+(1–s)t1)

0

√

a(s) ds
∣
∣
∣
∣
dx

≤ (t2 – t1)
∫

Ω

∫ 1

0

∣
∣
∣
∣

∂

∂s

∫ uε (x,st2+(1–s)t1)

0

√

a(s)
∣
∣
∣
∣
ds dx

≤ (t2 – t1)
∫ T

0

∫

Ω

∣
∣
∣
∣

∂

∂t

∫ uε (x,s)

0

√

a(s)
∣
∣
∣
∣
ds dx dt

≤ (t2 – t1)
(∫ T

0

∫

Ω

∣
∣
√

a(uε)|uεt
∣
∣
2 dx dt

) 1
2

≤ c(t2 – t1). (3.20)

Thus u satisfies equation (1.1) in the sense of Definition 2.2. �

4 Stability theorem

Proof of Theorem 2.4 Let u(x, t) and v(x, t) be two weak solutions of equation (1.1) with
the initial values u0(x) and v0(x), respectively. For any given positive integer n, let Sn(s) be
an odd function, and

Sn(s) =

⎧

⎨

⎩

1, s > 1
n ,

n2s2e1–n2s2 , 0 ≤ s ≤ 1
n ,

Hn(s) =
∫ s

0
Sn(s) ds.
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Clearly,

lim
n→0

Sn(s) = sgn(s), s ∈ (–∞, +∞).

Denote Ωλt = {x ∈ Ω : b(x, t) > λ} for any λ > 0, and define

φn(x, t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1, if x ∈ Ω 2
n t ,

n(b(x, t) – 1
n ), if x ∈ Ω 1

n t \ Ω 2
n t ,

0, if x ∈ Ω \ Ω 1
n t .

By a limiting procedure, we can choose φnSn(A(u) – A(v)) as a test function, and get

∫ t

0

∫

Ω

φn(x, t)Sn
(

A(u) – A(v)
)∂(u – v)

∂t
dx dt

+
∫ t

0

∫

Ω

b(x, t)
(∣
∣∇A(u)

∣
∣
p(x)–2∇A(u) –

∣
∣∇A(v)

∣
∣
p(x)–2∇Av

)

× ∇(

A(u) – A(v)
)

S′
n
(

A(u) – A(v)
)

φn(x, t) dx dt

+
∫ t

0

∫

Ω

b(x, t)
(∣
∣∇A(u)

∣
∣
p(x)–2∇A(u) –

∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

)

× Sn
(

A(u) – A(v)
)∇φn(x, t) dx dt

= 0. (4.1)

Thus, since A(r) ≥ 0 is a monotone increasing function,

lim
n→∞

∫ t

0

∫

Ω

φn(x, t)Sn
(

A(u) – A(v)
)∂(u – v)

∂t
dx dt

=
∫ t

0

∫

Ω

sgn
(

A(u) – A(v)
)∂(u – v)

∂t
dx dt

=
∫ t

0

∫

Ω

sgn(u – v)
∂(u – v)

∂t
dx dt

=
∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx –

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx. (4.2)

Certainly, we have

∫ t

0

∫

Ω

b(x, t)
(∣
∣∇A(u)

∣
∣
p(x)–2∇A(u) –

∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

)

× ∇(

A(u) – A(v)
)

S′
n
(

A(u) – A(v)
)

φn(x, t) dx dt

≥ 0. (4.3)

Denote q(x) = p(x)
p(x)–1 , for any t ∈ [0, T), |∇φn(x, t)| = 1

λ
∇b(x, t) when x ∈ Ω 1

n t \ Ω 2
n t ; else-

where it is identically set to zero. Then we have

∣
∣
∣
∣

∫ t

0

∫

Ω

b(x, t)
(∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)
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–
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

) · ∇φn(x, t)Sn
(

A(u) – A(v)
)

dx dt
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

0

∫

Ω 1
n t\Ω 2

n t

b(x, t)
(∣
∣∇A(u)

∣
∣
p(x)–2∇A(u)

–
∣
∣∇A(v)

∣
∣
p(x)–2∇A(v)

) · ∇φngn
(

A(u) – A(v)
)

dx dt
∣
∣
∣
∣

≤
∫ t

0
n

∫

Ω 1
n t\Ω 2

n
t
b(x, t)

∣
∣∇A(u)

∣
∣
p(x)–1 +

∣
∣∇A(v)

∣
∣
p(x)–1∣

∣∇bSn
(

A(u) – A(v)
)∣
∣dx

≤ c
∫ t

0

[(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(u)

∣
∣
p(x)

) 1
q+

+
(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(v)

∣
∣
p(x)

) 1
q+ ]

dt

×
∫ t

0
n
(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇b(x, t)

∣
∣
p(x) dx

) 1
p+

dt

≤ c
∫ t

0

[(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(u)

∣
∣
p(x)

) 1
q+

+
(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(v)

∣
∣
p(x)

) 1
q+ ]

dt

×
∫ t

0
n1– 1

p+
(∫

Ω 1
n t\Ω 2

n t

∣
∣∇b(x, t)

∣
∣
p(x) dx

) 1
p+

dt

≤ c
∫ t

0

[(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(u)

∣
∣
p(x)

) 1
q+

+
(∫

Ω 1
n t\Ω 2

n t

b(x, t)
∣
∣∇A(v)

∣
∣
p(x)

) 1
q+ ]

dt, (4.4)

which goes to 0 as n → 0.
Now, let n → ∞ in (4.1). Then

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T). �

5 Conclusion
The well-posedness of weak solutions to a double degenerate parabolic equation is stud-
ied in this paper. Comparing with the related works in this field, the equation consid-
ered in this paper is more general and has wider applications. It includes the nonlin-
ear heat conduction equation, the reaction–diffusion equation, the non-Newtonian fluid
equation, and the electrorheological fluid equation, etc. Though the method used in this
paper seems quite standard, there are still some essential innovations. For example, the
initial value condition is satisfied in a special sense and the stability of weak solutions
can be proved without any boundary value condition. Certainly, since we assume that
b(x, t)|x∈Ω > 0 and A(s) is a strictly monotone increasing function, it excludes the strongly
degenerate hyperbolic–parabolic mixed-type equations. It is well-known that for such
equations, only under the entropy conditions, the uniqueness of a weak solution can be
true; one can refer to the references [37–41] for the details. Thus, if it is only assumed
that a(s) ≥ 0 or b(x, t) is degenerate in the interior of Ω , proving the uniqueness of a weak
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solution to equation (1.1) is a quite interesting and challenging problem. By the way, since
equation (1.1) is isotropic, generalizing the method used in this paper to an anisotropic
parabolic equation also seems very interesting. If A(s) = s and b(x, t) = b(x), some progress
has been made in [42, 43] in recent years.
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