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Abstract
The topological sensitivity analysis method gives the variation of a criterion with
respect to the creation of a small hole in the domain. In this paper, we use this
method to solve an inverse problem related to the turbine blade cooling. The aim is
to optimize the hole characteristics created in the blade vane in order to improve the
behavior of the cooling system. A topological optimization algorithm is proposed and
some numerical results, showing the efficiency of our approach, are presented.
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1 Introduction
Modern gas turbine engines are designed to operate at high temperature (1200–1400◦C)
to improve thermal efficiency and power output. The temperature variation within the
blade material (which causes thermal stresses) must be limited in order to ensure a rea-
sonable lifetime. Therefore, there is a need for an efficient cooling system. Discrete jet film
is one of the techniques most used for protecting the blades. This process is achieved by
injecting cooler air through discrete holes created in the blade vane (see Fig. 1).

In order to improve the behavior of this cooling system, a considerable effort has been
devoted to optimize size, location, and shape of the created holes. Various approaches and
techniques have been developed and exploited to address this issue [1–3].

In this paper, we suggest a mathematical approach based on the topological sensitivity
analysis method [4–11]. The main idea is to compute the asymptotic topological expan-
sion with respect to the insertion of a small cooling hole.

This technique has been successfully used in different applications: identification of gas
bubbles created during the mould filling process [12], optimization of injectors locations
in water reservoirs [13], geometric control problem for fluid flow [14], etc.

However, most contributions have been limited to the steady state regime. In this pa-
per, we exploit this idea for solving a time-dependent topological optimization problem
associated with a parabolic partial differential equation.

The paper is organized as follows. We begin by the problem formulation in Sect. 2. The
topological sensitivity analysis method is introduced in Sect. 3. The variation of the cost
function with respect to a small topological perturbation of the domain is computed and
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Figure 1 The turbine blade vane with cooling holes
(see [1])

Figure 2 The turbine blade domain Ω

an asymptotic expansion is presented. Based on the obtained theoretical results, we pro-
pose in Sect. 4 a simple and efficient reconstruction procedure that we use for some nu-
merical investigations.

2 Formulation of the problem
Let Ω ⊂ R

3 be the domain describing the turbine vane (see Fig. 2). We denote by {H∗
k , k =

1, . . . , m} the cooling holes to be created in Ω . The size, location, and shape of the un-
known holes H∗

k can be formulated as solution to the following topology optimization
problem:

(P) min
H⊂Ω

j(Ω\H).

Here j is a shape function measuring the temperature gradient, defined by

j(Ω\H) =
∫ T

0

∫
Ω\H

|∇θH|2 dx dt,

where θH is the temperature field solution to the following heat transfer problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θH
∂t – �θH = Q in Ω\H× (0, T),

∇θH.n = gN on ∂Ω × (0, T),

θH = 0 on ∂H× (0, T),

θH(·, 0) = ϕ in Ω\H,

with Q being a given source term, gN a heat flux, and ϕ the initial temperature distribu-
tion.

To solve this optimization problem, we propose in this work a fast and accurate algo-
rithm based on the topological sensitivity analysis method. It consists in studying the vari-
ation of function j with respect to the creation of a small hole Hz,ε = z + εH (ε ∈ ]0, 1[ and
H ⊂ R

3) inside the domain Ω . The concept of topological sensitivity allows finding the
place where the creation of a small cooling hole would bring the best possible improve-
ment to the performance of the turbine.
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3 Topological sensitivity analysis
We present in this section a topological sensitivity expansion of the design function j with
respect to the insertion of a small cooling hole Hz,ε inside the domain Ω . We consider

– θ0 to be the solution to the heat transfer problem in the nonperturbed domain Ω

⎧⎪⎪⎨
⎪⎪⎩

∂θ0
∂t – �θ0 = Q in Ω × (0, T),

∇θ0.n = gN on ∂Ω × (0, T),

θ0(·, 0) = ϕ in Ω .

(1)

– v0 to be the solution to the associated adjoint problem

⎧⎪⎪⎨
⎪⎪⎩

– ∂v0
∂t – �v0 = –DJ0(θ0) in Ω × (0, T),

∇v0.n = 0 on ∂Ω × (0, T),

v0(·, T) = ϕ in Ω ,

(2)

where J0 is a cost function defined on H1(Ω) by

J0(θ ) =
∫

Ω

|∇θ |2 dx, ∀θ ∈ H1(Ω).

The shape function j satisfies the following theorem (see [15]).

Theorem 3.1 Let Hz,ε = z + εH be a small geometric perturbation inserted in the back-
ground domain Ω . The shape function j admits the following asymptotic expansion:

j(Ω\Hz,ε) = j(Ω) + εδj(z) + o(ε). (3)

Here δj is the topological sensitivity function defined in Ω by

δj(x) =
∫ T

0
θ0(x, t)

[
v0(x, t) + θ0(x, t)

]
dt

(
–

∫
∂H

q(y) ds(y)
)

, ∀x ∈ Ω , (4)

where q ∈ H–1/2(∂H) solves the following boundary integral equation:

∫
∂H

Γ (y – x)q(x) ds(x) = –1, ∀y ∈ ∂H. (5)

In the particular case where H = B(0, 1), we have

Corollary 3.2 If H is the unit ball centered at the origin, then

∫
∂H

q(y) ds(y) = –4π ,

and we have

j(Ω\Hz,ε) – j(Ω) = εδj(z) + o(ε),
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where

δj(x) = 4π

∫ T

0
θ0(x, t)

[
v0(x, t) + θ0(x, t)

]
dt, ∀x ∈ Ω ,∀x ∈ Ω . (6)

4 Numerical results
In order to improve the behavior of the cooling system, we need to optimize the lo-
cation and shape of the created cooling holes. The unknown cooling holes {H∗

k , k =
1, . . . , m} are likely to be created at zones where the topological sensitivity function
δj is most negative. More precisely, each hole H∗

k will be approximated by a level
set curve of the scalar function δj. The main steps of our procedure are the follow-
ing:

One-iteration algorithm:
• Solve problem (1) and its associated adjoint problem (2),
• Compute the topological sensitivity function δj(x), ∀x ∈ Ω defined by (6),
• Determine ζ ∗ ∈ [0, 1] such that j(Ω\Hζ∗ ) ≤ j(Ω\Hζ ), ∀ζ ∈ [0, 1], where
Hζ = {x ∈ Ω ; δj(x) < ζ δmin}, with δmin is the minimal value of δj in Ω .

Next, we will present some numerical simulations using the proposed algorithm. The
two problems are discretized using triangular mesh and P

1 finite element method [16] for
the spacial variable. The temporal discretization is based on a finite difference approxima-
tion method where the time computational is given by T = 1. The numerical simulations
are done using the free software FreeFem++ [17]. The initial computational domain is
shown in Fig. 2. The temperature distribution in the heated blade domain Ω is depicted
in Fig. 3. Next, we will present some numerical results. The first example is concerned
with the creation of one cooling hole. Then, we present the case of two holes, and finally
the case of multiple cooling holes.

4.1 Creating one cooling hole
The aim is to determine the best location to create a cooling hole that will reduce the tem-
perature gradient as much as possible. The results of this test are summarized in Figs. 4
and 5. The iso-surfaces of the topological sensitivity function δj and an horizontal cut of
δj at x3 = 0.3 are plotted in Fig. 4. The created cooling hole and the new temperature dis-
tribution in the perforated domain are illustrated in Fig. 5. As one can observe, the hole is
inserted at the zone where the topological sensitivity function is the most negative. We can
see that the temperature distribution is reduced comparing with the initial temperature
presented in Fig. 3.

(a) Discretized domain (b) Temperature distribution

Figure 3 The heated blade Ω
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(a) Iso-surfaces of δj (b) Horizontal cut at x3 = 0.3

Figure 4 The topological sensitivity function δj

(a) Optimal location of the hole (b) Temperature in the perforated domain

Figure 5 The created cooling hole and the new temperature distribution

(a) Iso-surfaces of δj (b) Horizontal cut at x3 = 0.3

Figure 6 The topological sensitivity function δj

(a) Location and shape of the holes (b) Temperature in the perforated domain

Figure 7 The created cooling holes and the new temperature distribution

4.2 Creating two cooling holes
In this test, we apply our proposed algorithm for detecting the best location of two
cooling holes which minimize the temperature gradient as much as possible. The ob-
tained numerical results are presented in Figs. 6 and 7. The iso-surfaces of the topo-
logical sensitivity function δj are plotted in Fig. 6. The best location of the two cool-
ing holes and the new temperature distribution in the perforated domain are shown in
Fig. 7.
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(a) Iso-surfaces of δj (b) Horizontal cut at x3 = 0.3

Figure 8 The topological sensitivity function δj

(a) Location and shape of the cooling holes (b) Temperature in the perforated domain

Figure 9 The created cooling holes and the new temperature distribution

Table 1 The percentage of reduction after inserting the holes

Test cases Creating one hole Creating two holes Creating multiple holes

j(Ω ) 1230 103 1230 103 1230 103

j(Ω\H) 753 103 639 103 438 103

Percentage of reduction 38% 48% 64%

4.3 Creating multiple cooling holes
This test is devoted to the creation of multiple cooling holes. In Fig. 8, we present the iso-
surfaces of the topological sensitivity function. As one can observe, the function δj admits
five negative local minima {zk , 1 ≤ k ≤ 5} inside the domain Ω . We will create a hole Hk

around each point zk . The shape and size of the holes Hk , 1 ≤ k ≤ 5 are defined by a level
set curve of the function δj

Hk =
{

x ∈ Ω ; δj(x) ≤ ck
}

,

where ck is chosen in such away that the shape function j decreases as much as possible.
In Fig. 9, we present the obtained location of the cooling holes and the new temperature

distribution in the perforated domain.

4.4 Optimization quality
Finally, in order to show the effects of the created holes on the behavior of the cooling
system, we summarize in Table 1 the percentage of reduction of the cost function ob-
tained after inserting the holes in the studied cases. This shows the efficiency of the used
approach.

5 Conclusion
The numerical study of the optimal hole creation problem in a the turbine blade cooling
system improving the behavior of the cooling system has been studied. The used technique
consists in studying the asymptotic expansion of the cost function with respect to the
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variation of the domain. A fast and accurate algorithm is proposed for creating cooling
holes in the blade vane. The presented numerical simulations show the efficiency of the
suggested approach.
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