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Abstract
In this paper we consider sharp conditions on ω and f for the existence of C1[0, 1]
positive solutions to a second-order singular nonlocal problem u′′(t) +ω(t)f (t,u(t)) = 0,
u(0) = u(1) =

∫ 1
0 g(t)u(t)dt; it turns out that this case is more difficult to handle than

two point boundary value problems and needs some new ingredients in the
arguments. On the technical level, we adopt the topological degree method.
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1 Introduction
We consider sharp conditions for the second-order singular differential equation with in-
tegral boundary conditions

⎧
⎨

⎩

u′′(t) + ω(t)f (t, u(t)) = 0, t ∈ J ,

u(0) = u(1) =
∫ 1

0 g(t)u(t) dt,
(1.1)

where J = (0, 1), ω is Lp-integrable on [0, 1] for some 1 ≤ p ≤ +∞, f may be singular at
t = 0 and/or 1.

In addition, ω and f satisfy the following conditions:
(H1) ω ∈ Lp[0, 1] and there exists ζ > 0 such that ω(t) ≥ ζ a.e. on J ;
(H2) f (t, u) : J × [0, +∞) → [0, +∞) is continuous;
(H3) g ∈ L1[0, 1] is positive with μ ∈ [0, 1), where

μ =
∫ 1

0
g(t) dt.

The theory of boundary value problems with positive solutions originates from various
real life problems, such as plasma physics, gas dynamics, and chemical reaction. The study
of boundary value problems with positive solutions has attracted recently the attention of
different researchers, and it is a topic of current interest, see [1–28] and the references
therein. Problems with integral boundary conditions come naturally from thermal con-
duction problems [29] and hydrodynamic problems [30]. In recent years there has been
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a lot of investigation of boundary value problems with integral boundary conditions (see
for instance [31–43]). In particular, Boucherif [44] used the fixed point theorem in cones
to consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = f (t, u(t)), 0 < t < 1,

u(0) – cu′(0) =
∫ 1

0 g0(t)u(t) dt,

u(1) – du′(1) =
∫ 1

0 g1(t)u(t) dt.

(1.2)

The author obtained several excellent results on the existence of positive solutions to prob-
lem (1.2).

Recently, Feng [45] studied the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

(g(t)x′(t))′ + w(t)f (t, x(t)) = 0, 0 < t < 1,

ax(0) – b limt→0+ g(t)x′(t) =
∫ 1

0 h(s)x(s) ds,

ax(1) + b limt→1– g(t)x′(t) =
∫ 1

0 h(s)x(s) ds.

(1.3)

The author got the existence results of symmetric positive solutions to problem (1.3) by
applying the theory of fixed point index in cones. For other related results on problem
(1.1), we refer the reader to [46–61] and the references cited therein.

At the same time, we notice that a type of problem on sharp conditions has received
much attention, for instance, see [62–69] and the references cited therein. Specially, by the
compressing fixed point theorem, Yang [65] gave the sharp conditions for the existence of
positive solutions for the following second-order differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + f (u(t)) = 0, 0 < t < 1,

αu(0) – βu′(0) = 0,

γ u(1) + δu′(1) = 0,

where α, β , γ , δ ≥ 0, ρ = αβ + αδ + γβ > 0, f is singular at t = 0 or t = 1.
In [66], Pouso considered the following initial value problem:

⎧
⎨

⎩

u′′(t) = f (u(t)),

u(0) = u0, u′(0) = u1.

The author obtained sharp conditions for local and global uniqueness and for the existence
of periodic solutions for the above problem which is based on a detailed analysis of time
maps. The other recent results concerning sharp condition problems can be found in [70–
75].

However, as we know, in literature there are no articles on sharp conditions for the analo-
gous second order singular differential equations with integral boundary conditions. This
shows that the study in the case of ω ∈ Lp[0, 1] and g �≡ 0 is still open for problem (1.1).
The purpose of this paper is to establish sharp conditions over ω and f for the existence
of positive solutions of (1.1). More precisely, we will investigate and give sharp conditions
on the functions ω(t) and f (t, u) which satisfy
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(H4) f (t, 1) > 0, t ∈ J , and there exist constants λ1 ≥ λ2 > 1 and 0 < λ3 ≤ λ4 < 1 such that,
for all t ∈ J , u ∈ [0, +∞),

lλ1 f (t, u) ≤ f (t, lu) ≤ lλ2 f (t, u), ∀l ∈ J ′ = [0, 1]; (1.4)

lλ4 f (t, u) ≤ f (t, lu) ≤ lλ3 f (t, u), ∀l ∈ J ′. (1.5)

(H5)

0 <
∫ 1

0
H(s, s)f (s, 1) ds < +∞,

where H(s, s) is defined in (2.2).

Remark 1.1 It is not difficult to see that
(i) (1.4) is equivalent to

lλ2 f (t, u) ≤ f (t, lu) ≤ lλ1 f (t, u), ∀l ≥ 1. (1.6)

(ii) (1.5) is equivalent to

lλ3 f (t, u) ≤ f (t, lu) ≤ lλ4 f (t, u), ∀l ≥ 1. (1.7)

Remark 1.2 If f (t, u) satisfies (H4), then it follows from (1.4) that, for every t ∈ J , f (t, u) is
nondecreasing with regard to u ∈ [0, +∞), and

lim
u→+∞ min

t∈[ξ ,η]

f (t, u)
u

= +∞, ∀[ξ ,η] ⊂ J .

Similarly by (1.5), for every t ∈ J , f (t, u) is nondecreasing with regard to u ∈ [0, +∞), and

lim
u→0

max
t∈[ξ ,η]

f (t, u)
u

= 0, ∀[ξ ,η] ⊂ J .

The rest of the present paper is structured as follows. In the next section, we intro-
duce some notation and preliminary results. In particular, we give some properties of the
Green’s function related to problem (1.1). In Sect. 3, by applying Hölder’s inequality and
combining the fixed point theorem, we analyze the sharp conditions for the existence of
positive solutions for problem (1.1). Finally, in Sect. 4, we present a few of related remarks
and comments.

2 Preliminaries
In this part, we prove a few lemmas and collect some known results for the convenience of
later use and reference. The following definitions can be found in Guo and Lakshmikan-
tham [76], or in Papageorgiou, Rădulescu, and Repovs [77].

Definition 2.1 Let E be a real Banach space over R. A nonempty closed set K ⊂ E is said
to be a cone provided that

(i) a′u + b′v ∈ K for all u, v ∈ K and all a′ ≥ 0, b′ ≥ 0, and
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(ii) u, –u ∈ K implies u = 0.
Every cone K ⊂ E induces an ordering in E given by u ≤ v if and only if v – u ∈ K .

Lemma 2.1 Assume that (H1)–(H3) hold and μ �= 1. Then, for any y ∈ E, the boundary
value problem

⎧
⎨

⎩

–u′′(t) = y(t), 0 < t < 1,

u(0) = u(1) =
∫ 1

0 g(t)u(t) dt
(2.1)

has a unique solution u given by

u(t) =
∫ 1

0
H(t, s)y(s) ds, (2.2)

where

H(t, s) = G(t, s) +
1

1 – μ

∫ 1

0
G(τ , s)g(τ ) dτ , (2.3)

G(t, s) =

⎧
⎨

⎩

s(1 – t), 0 ≤ s ≤ t ≤ 1,

t(1 – s), 0 ≤ t ≤ s ≤ 1.
(2.4)

Proof First, suppose that u is a solution of (2.1). It is easy to see by integration of (2.1) that

u′(t) – u′(0) = –
∫ t

0
y(s) ds. (2.5)

This shows

u′(t) = u′(0) –
∫ t

0
y(s) ds. (2.6)

Integrating again, we obtain

u(t) = u(0) + u′(0)t –
∫ t

0

∫ τ

0
y(s) ds dτ

= u(0) + u′(0)t –
∫ t

0

∫ t

s
y(s) dτ ds

= u(0) + u′(0)t –
∫ t

0
y(s)(t – s) ds. (2.7)

Letting t = 1 in (2.6), we get

u(1) = u(0) + u′(0) –
∫ 1

0
(1 – s)y(s) ds.

Combining the boundary condition u(0) = u(1), we find

u′(0) =
∫ 1

0
(1 – s)y(s) ds. (2.8)
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Substituting the boundary condition u(0) =
∫ 1

0 g(t)u(t) dt and (2.8) into (2.6), we get

u(t) =
∫ 1

0
g(t)u(t) dt +

∫ 1

0
(1 – s)y(s) ds t –

∫ t

0
(t – s)y(s) ds

=
∫ 1

0
g(t)u(t) dt +

∫ t

0
s(1 – t)y(s) ds +

∫ 1

t
t(1 – s)y(s) ds

=
∫ 1

0
g(t)u(t) dt +

∫ 1

0
G(t, s)y(s) ds, (2.9)

where G(t, s) is defined by (2.4). Multiplying the above equation by g(t) and integrating it
again, we obtain

∫ 1

0
g(t)u(t) dt =

∫ 1

0
g(t)

[∫ 1

0
g(t)u(t) dt +

∫ 1

0
G(t, s)y(s) ds

]

dt

=
∫ 1

0
g(t)u(t) dt

∫ 1

0
g(t) dt +

∫ 1

0
g(t)G(t, s) dt

∫ 1

0
y(s) ds.

Then we have

(1 – μ)
∫ 1

0
g(t)u(t) dt =

∫ 1

0
g(t)G(t, s) dt

∫ 1

0
y(s) ds

and

∫ 1

0
g(t)u(t) dt =

∫ 1
0 g(t)G(t, s) dt

∫ 1
0 y(s) ds

1 – μ
. (2.10)

Therefore, we have

u(t) =
1

1 – μ

∫ 1

0
g(τ ) dτ

∫ 1

0
y(s)G(τ , s) ds +

∫ 1

0
G(t, s)y(s) ds

=
∫ 1

0

[

G(t, s) +
1

1 – μ

∫ 1

0
g(τ )G(τ , s) dτ

]

y(s) ds. (2.11)

Let

H(t, s) = G(t, s) +
1

1 – μ

∫ 1

0
G(τ , s)g(τ ) dτ . (2.12)

Then

u(t) =
∫ 1

0
H(t, s)y(s) ds. (2.13)

The proof of Lemma 2.1 is complete. �

We can show that G(t, s) and H(t, s) have the following properties.

Lemma 2.2 Let θ ∈ (0, 1
2 ) and define J0 = [θ , 1 – θ ]. If μ ∈ [0, 1), then for all t ∈ J0, s ∈ J ′, we

have

0 ≤ θe(s) ≤ G(t, s) ≤ e(s) ≤ 1
4

, (2.14)
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H(t, s) ≤ H(s, s) ≤ γ e(s) ≤ 1
4
γ , (2.15)

H(t, s) ≥ θH(s, s), H(t, s) ≥ θγ e(s), (2.16)

where

γ =
1

1 – μ
, e(s) = s(1 – s).

Proof It is clear to see from the definition of G(t, s) that G(t, s) ≤ e(s) ≤ 1
4 . Now, we show

that θe(s) ≤ G(t, s) also holds.
In fact, for any t ∈ J0, s ∈ J ′, we have the following.
Case 1. If 0 < s ≤ t ≤ 1 – θ , then

G(t, s)
G(s, s)

=
s(1 – t)
s(1 – s)

=
1 – t
1 – s

≥ 1 – t ≥ θ .

Case 2. If θ ≤ t ≤ s < 1, then

G(t, s)
G(s, s)

=
t(1 – s)
s(1 – s)

=
t
s

≥ t ≥ θ .

Case 3. If s ∈ {0, 1}, then it naturally follows from the definition of G(t, s) and G(s, s) that
G(t, s) = G(s, s) = 0.

This shows that

θe(s) ≤ G(t, s), t ∈ J0, s ∈ J ′.

It is not difficult to see that the inequality H(t, s) ≤ H(s, s) holds. Next, we show that
H(s, s) ≤ γ e(s) also holds.

H(s, s) ≤ G(s, s) +
1

1 – μ

∫ 1

0
G(s, s)g(τ ) dτ

= G(s, s)
[

1 +
1

1 – μ

∫ 1

0
g(τ ) dτ

]

= γ e(s).

Therefore, the proof of (2.15) is complete.
Due to (2.14), we find

H(t, s) ≥ θG(s, s) +
θ

1 – μ

∫ 1

0
G(s, s)g(τ ) dτ ≥ θH(s, s);

H(t, s) ≥ θG(s, s)
[

1 +
∫ 1

0 g(τ ) dτ

1 – μ

]

=
θ

1 – μ
G(s, s) = θγ e(s).

So, for all t ∈ J0, s ∈ J ′, (2.16) is established.
This concludes the proof of Lemma 2.2. �
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Definition 2.2 If a function u satisfies (1.1) and u(t) > 0, t ∈ J , then it is said that u ∈
C[0, 1]∩C2(0, 1) is a positive solution of problem (1.1); If the positive solution u ∈ C1[0, 1],
namely u′(0+) and u′(1–) exist, then u is said to be a C1[0, 1] positive solution of problem
(1.1).

Let E = C[0, 1]. Then E is a real Banach space with norm ‖ · ‖ defined by

‖u‖ = sup
t∈J ′

∣
∣u(t)

∣
∣, u ∈ E.

To establish the existence of positive solutions to problem (1.1), we consider the cone K
defined by

K =
{

u ∈ E : u(t) ≥ θ‖u‖, t ∈ J ′}, (2.17)

where θ is a constant as in Lemma 2.2. It is easy to see that K is a convex cone of E.
Also, define, for a given positive number r, the set Ωr by

Ωr =
{

u ∈ K : ‖u‖ < r
}

,

∂Ωr =
{

u ∈ K : ‖u‖ = r
}

.

To get some norm inequalities in our main results, we employ Hölder’s inequality.

Lemma 2.3 (Hölder) Let e ∈ Lp[a, b] with p > 1, h ∈ Lq[a, b] with q > 1, and 1
p + 1

q = 1. Then
eh ∈ L1[a, b], and

‖eh‖1 ≤ ‖e‖p‖h‖q.

Let e ∈ L1[a, b] and h ∈ L∞[a, b]. Then eh ∈ L1[a, b] and

‖eh‖1 ≤ ‖e‖1‖h‖∞.

Lemma 2.4 Assume that (H1)–(H5) hold. Define T : K → E by

(Tu)(t) =
∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds, ∀u ∈ K . (2.18)

Then u ∈ C[0, 1] is a C[0, 1] ∩ C2(0, 1) positive solution of (1.1) if and only if u is a fixed
point of T .

Proof Suppose that (H1)–(H5) hold. For fixed u ∈ E, u(t) ≥ 0, t ∈ J ′, taking a constant
0 < a < 1 such that a‖u‖ < 1, then it follows from (1.4) and (1.5) that

f
(
t, u(t)

) ≤
(

1
a

)λ1

f
(
t, au(t)

) ≤
(

1
a

)λ1

f
(
t, a‖u‖) ≤ aλ2–λ1‖u‖λ2 f (t, 1).

Consequently, for all t ∈ J ′, we get

0 <
∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds ≤ aλ2–λ1‖u‖λ2‖ω‖1

∫ 1

0
H(s, s)f (s, 1) ds < +∞.
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It is obvious that the operator

(Tu)(t) =
∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds, ∀u ∈ K

is defined well. And hence the definition of T and the properties of G(t, s) and H(t, s) yield
that u ∈ C[0, 1] is a C[0, 1] ∩ C2(0, 1) positive solution of (1.1) if and only if u is a positive
fixed point of operator T . This finishes the proof of Lemma 2.4. �

Lemma 2.5 ((Theorem 2.3.4 of [76]) (Fixed point theorem of cone expansion and com-
pression of norm type)) Let Ω1 and Ω2 be two bounded open sets in a real Banach space
E such that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2. Let the operator T : K ∩ (Ω̄2\Ω1) → K be completely
continuous, where K is a cone in E. Suppose that one of the two conditions

(i) ‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω2,
and

(ii) ‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω2,
is satisfied. Then T has at least one fixed point in K ∩ (Ω̄2\Ω1).

Lemma 2.6 If u is a C1[0, 1] positive solution of problem (1.1), then there exists b > 0 sat-
isfying u(s) ≥ bH(s, s), s ∈ J ′.

Proof Let u take its maximum at t0. Then we discuss Lemma 2.6 under the following two
cases.

Case 1. If 0 < t0 ≤ 1
2 , then let

h(t) =

⎧
⎨

⎩

1–t0
t0

t, 0 ≤ t ≤ t0,

–t + 1, t0 < t ≤ 1.

Case 2. If 1
2 < t0 < 1, then let

h(t) =

⎧
⎨

⎩

t, 0 ≤ t ≤ t0,

– t0
1–t0

t + t0
1–t0

, t0 < t ≤ 1.

Due to the concavity of u and since h(t0) < 1, we have

u(t) ≥ u(t0)h(t).

Next we show that h(t) > e(t) on J ′ holds.
It is easy to see by calculating that

e′(0) = 1, e′(1) = –1.

On the one hand, when 0 < t0 ≤ 1
2 , we have

h′(t) =

⎧
⎨

⎩

1–t0
t0

, 0 ≤ t ≤ t0,

–1, t0 < t ≤ 1.
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It is obvious that

1 – t0

t0
> 1,

so by the concavity of e we have that h(t) > e(t) on J ′.
On the other hand, when 1

2 < t0 < 1, we have

h′(t) =

⎧
⎨

⎩

1, 0 ≤ t ≤ t0,

– 1–t0
t0

, t0 < t ≤ 1.

It can be easily seen that

–
1 – t0

t0
< –1,

similarly we can obtain that h(t) > e(t) on J ′.
At the same time, by Lemma 2.2, we have

u(t) ≥ u(t0)h(t) ≥ u(t0)e(t) ≥ u(t0)
γ

H(t, t) = bH(t, t), t ∈ J ,

where b = u(t0)
γ

.
In order to better understand the above two cases, we draw Figs. 1 and 2.
This gives the proof of Lemma 2.6. �

Figure 1 Case 1

Figure 2 Case 2
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3 Sharp conditions for the existence of positive solutions
In this section, we establish sharp conditions for the existence of positive solutions for
problem (1.1) by Lemmas 2.1–2.6. We analyze the following three cases for ω ∈ Lp[0, 1] :
p > 1, p = 1, and p = ∞. Case p > 1 is treated in Theorem 3.1.

Theorem 3.1 Suppose that (H1)–(H5) hold. Then problem (1.1) admits a u ∈ C1[0, 1] pos-
itive solution if and only if

0 <
∫ 1

0
ω(s)f (s, 1) ds < +∞.

Proof (1) Necessity.
Let u ∈ C1[0, 1] be a positive solution of problem (1.1), then u′(0) and u′(1) exist and are

finite.
On the one hand, we know that u(t) is a concave function on J ′ by u′′ ≤ 0. Therefore,

by Lemma 2.6, there exists b > 0 satisfying u(s) ≥ bH(s, s), s ∈ J ′. Setting l = min{b, 1}, then
u(s) ≥ lH(s, s), s ∈ J ′. And by (1.4) and Remark 1.2, we have

∫ 1

0
ω(s)f

(
s, H(s, s)

)
ds ≤

∫ 1

0
ω(s)f

(

s,
1
l

u(s)
)

ds

≤ l̄
∫ 1

0

[
–u′′(s)

]
ds

≤ l̄
[
u′(0) – u′(1)

]

< +∞,

where l̄ = ( 1
l )λ1 .

On the other hand, if we assume that f (s, u(s)) ≡ 0, which shows that ω(s)f (s, u(s)) ≡ 0
by (H1). Then, by Lemma 2.4, it is obvious that u = 0, which contradicts u is a positive
solution of problem (1.1).

Hence there exists t1 ∈ J such that f (t1, u(t1)) > 0.
And then it follows from (H1), Remarks 1.2 and (1.6) that
Case 1. If ω(t1) > 0, then

0 < ω(t1)f
(
t1, u(t1)

)

≤ ω(t1)f
(
t1,‖ut1‖

)

≤ ω(t1)‖ut1‖λf (t1, 1),

where λ ∈ {λ2,λ3}.
Case 2. If ω(t1) = 0, then it follows from (H1) that there exists a small neighborhood

[a1, b1] ⊂ J of t1 such that ω(t) > 0 for t ∈ [a1, b1].
Hence it is easy to see by integration of f and ω that

∫ b1

a1

ω(s)f (s, 1) ds > 0.



Ma and Zhang Boundary Value Problems        (2019) 2019:173 Page 11 of 18

So,

∫ 1

0
ω(s)f (s, 1) ds ≥

∫ 1

0
ω(s)f

(

s,
u(s)
‖u‖

)

ds

≥
(

1
‖u‖

)λ∗ ∫ 1

0
ω(s)f

(
s, u(s)

)
ds

≥
(

1
‖u‖

)λ∗ ∫ b1

a1

ω(s)f
(
s, u(s)

)
ds

> 0,

where λ∗ ∈ {λ1,λ4}.
(2) Sufficiency.
(i) First, we prove that the operator T : K → K is completely continuous. For all u ∈ K ,

T(u) ≥ 0 on J0, it follows from (2.18) and Lemma 2.2 that

(Tu)(t) =
∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds

≥ θ

∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds

= θ‖Ty‖, ∀t ∈ J ′.

So we have that Tu ∈ K , ∀u ∈ K . Thus T(K) ⊂ K .
Next, it follows from Arzelà–Ascoli theorem that T : K → K is completely continuous.
It is clear that T is continuous.
Let Br = {u ∈ E|‖u‖ ≤ r} be a bounded set. Then, for all u ∈ Br , by the definition of ‖Tu‖

and by Lemma 2.2 and Lemma 2.3, we get

‖Tu‖ = max
t∈J

∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds

≤ γ

∫ 1

0
G(s, s)ω(s) ds L

≤ γ ‖G‖q‖ω‖pL

= Γ ,

where L = maxt∈J ,u∈Br f (t, u), Γ = γ ‖G‖q‖ω‖pL.
Therefore, the operator T : K −→ K is uniformly bounded.
On the other hand, since H(t, s) is continuous on J ′ × J ′, we can see that H(t, s) is uni-

formly continuous on J ′ × J ′. Therefore, for any ε > 0, there exists r > 0, when |t1 – t2| < r,
we get

∣
∣H(t1, s) – H(t2, s)

∣
∣ <

ε

‖ω‖1 · L
.
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Accordingly, for all u ∈ Br , when |t1 – t2| < r, we have

∣
∣(Tu)(t1) – (Tu)(t2)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
H(t1, s)ω(s)f

(
s, u(s)

)
ds –

∫ 1

0
H(t2, s)ω(s)f

(
s, u(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

[
H(t1, s) – H(t2, s)

]
ω(s)f

(
s, u(s)

)
ds

∣
∣
∣
∣

≤ ∣
∣‖ω‖1 · L

∣
∣ · ε

‖ω‖1 · L
≤ ε.

This shows that the set {T(u) : u ∈ Br} is equicontinuous, and it follows from Arzelà–
Ascoli theorem that operator T is completely continuous.

(ii) Next, we prove that T has at least one fixed point in K .
For u ∈ K , ‖u‖ ≤ 1, we get u(t) ≤ ‖u‖ ≤ 1, and by (1.4) and Remark 1.2, we obtain

f
(
t, u(t)

) ≤ uλ2 (t)f (t, 1).

Hence,

‖Tu‖ ≤
∫ 1

0
γ G(s, s)ω(s)uλ2 (s)f (s, 1) ds

≤ γ ‖u‖λ2‖G‖q‖ω‖p

∫ 1

0
f (s, 1) ds

≤ A‖u‖λ2 ,

where A = γ ‖G‖q‖ω‖p
∫ 1

0 f (s, 1) ds.

If ( 1
A )

1
λ2–1 ≤ 1, setting r∗

1 = ( 1
A )

1
λ2–1 , then ‖Tu‖ ≤ ‖u‖, ∀u ∈ K , ‖u‖ = r∗

1 .

If ( 1
A )

1
λ2–1 > 1, we have A < 1. Letting r∗∗

1 = 1, similarly we have ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ,
‖u‖ = r∗∗

1 .
Set r1 = max{r∗

1 , r∗∗
1 }. Then we obtain ‖Tu‖ ≤ ‖u‖, ∀u ∈ K , ‖u‖ = r1.

Moreover, by Remark 1.2, there exists R > r1 for u ≥ R such that

f (t, u(t))
u(t)

≥ min
t∈J0

f (t, u(t))
u(t)

≥ N , t ∈ J0,

that is, f (t, u(t)) ≥ Nu(t), t ∈ J0, u ≥ R, where N > 0 satisfies

N ≥ 1
ζθ mint∈J0

∫ 1–θ

θ
H(t, s) ds

.

So, for u ∈ K with ‖u‖ = R, we get

‖Tu‖ ≥ min
t∈J0

(Tu)(t) ≥ min
t∈J0

∫ 1–θ

θ

H(t, s)ω(s)f
(
s, u(s)

)
ds

≥ min
t∈J0

∫ 1–θ

θ

H(t, s)ζNu(s) ds



Ma and Zhang Boundary Value Problems        (2019) 2019:173 Page 13 of 18

≥ Nζ min
t∈J0

∫ 1–θ

θ

H(t, s)‖u‖θ ds

≥ Nζθ min
t∈J0

∫ 1–θ

θ

H(t, s) ds‖u‖
≥ ‖u‖.

Thus, ‖Tu‖ ≥ ‖u‖, ∀u ∈ K , ‖u‖ = R.
Lemma 2.5 yields that T admits at least one fixed point u∗ such that r1 ≤ ‖u∗‖ ≤ R. Since

u∗(t) ≥ ‖u∗‖θ ≥ r1θ > 0, 0 < t < 1, we see that u∗ is a positive solution of problem (1.1).
Moreover, for any u∗ ∈ K , we have u∗(s) ≤ ‖u∗‖, s ∈ J ′, and then, for λ ∈ {λ2,λ3}, we get

∫ 1

0

∣
∣
(
u∗)′′(s)

∣
∣ds =

∫ 1

0
ω(s)f

(
s, u∗(s)

)
ds

≤
∫ 1

0
ω(s)f

(
s,

∥
∥u∗∥∥)

ds

≤ ∥
∥u∗∥∥λ

∫ 1

0
ω(s)f (s, 1) ds

< +∞,

that is, u∗ is absolutely integrable on J ′. This shows that (u∗)′(0+) and (u∗)′(1–) exist, then
u∗ ∈ C1[0, 1]. The proof above shows that u∗ ∈ C1[0, 1] is a positive solution of (1.1). This
completes the proof of Theorem 3.1. �

The following corollary handles the case p = ∞.

Corollary 3.1 Assume that (H1)–(H5) hold. Then problem (1.1) admits a u ∈ C1[0, 1] pos-
itive solution if and only if

0 <
∫ 1

0
ω(s)f (s, 1) ds < +∞.

Proof Let ‖G‖1‖ω‖∞ replace ‖G‖q‖ω‖p and repeat the argument of Theorem 3.1. Then
we can complete the proof of Corollary 3.1. �

At last, we analyze the case of p = 1.

Corollary 3.2 Assume that (H1)–(H5) hold. Then problem (1.1) has a u ∈ C1[0, 1] positive
solution if and only if

0 <
∫ 1

0
ω(s)f (s, 1) ds < +∞.

Proof Let 1
4‖ω‖1 replace ‖G‖q‖ω‖p and repeat the argument of Theorem 3.1. Then we

can complete the proof of Corollary 3.2. �

The following theorem only considers the case of p > 1.
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Theorem 3.2 Assume f (t, u) = h1(t, u) + h2(t, u), where h1(t, u) and h2(t, u) satisfy (H4),
and the other main hypothesis is also needed

0 < γ ‖G‖q‖ω‖p

∫ 1

0
f (s, 1) ds < 1.

Then problem (1.1) admits at least two C1[0, 1] positive solutions if and only if

0 <
∫ 1

0
ω(s)f (s, 1) ds < +∞.

Proof We first prove that the operator

(Tu)(t) =
∫ 1

0
H(t, s)ω(s)f

(
s, u(s)

)
ds

=
∫ 1

0
H(t, s)ω(s)

[
h1

(
s, u(s)

)
+ h2

(
s, u(s)

)]
ds

admits at least two fixed points in K .
Choosing J1 = [ξ1,η1] ⊂ J , τ1 = mint∈J1 h1(t, 1) and taking a constant l > 1 such that lθ > 1,

for ‖u‖ > 1, u ∈ K , t ∈ J1, we obtain

lu(t) ≥ lθ‖u‖ > lθ > 1, h1
(
t, u(t)

) ≥ lλ2–λ1 u(t)λ2 h1(t, 1).

Consequently,

(Tu)(t) ≥
∫ η1

ξ1

H(t, s)ω(s)
[
h1

(
s, u(s)

)
+ h2

(
s, u(s)

)]
ds

≥
∫ η1

ξ1

G(t, s)ω(s)
[
h1

(
s, u(s)

)
+ h2

(
s, u(s)

)]
ds

≥ θλ2τ1l(λ2–λ1)ζ

∫ η1

ξ1

G(ξ1, s) ds‖u‖λ2

≥ A‖u‖λ2 ,

where A = θλ2τ1l(λ2–λ1)ζ
∫ η1
ξ1

G(ξ1, s) ds.
Due to ‖u‖ > 1, λ2 > 1, there exists arbitrarily large R2 > 1 such that

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ,‖u‖ = R2.

When ‖u‖ < 1, taking J2 = [ξ2,η2] ⊂ J and τ2 = mint∈J2 h2(t, 1), we also get that

(Tu)(t) ≥
∫ η2

ξ2

G(t, s)ω(s)
[
h1

(
s, u(s)

)
+ h2

(
s, u(s)

)]
ds

≥ θλ4τ2ζ

∫ η2

ξ2

G(ξ2, s) ds‖u‖λ4

≥ A1‖u‖λ4 ,

where A1 = θλ4τ2ζ
∫ η2
ξ2

G(ξ2, s) ds.
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Similarly, due to ‖u‖ < 1, λ4 < 1, there exists arbitrarily small r2 < 1 such that

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ,‖u‖ = r2.

Moreover, because of u ∈ K , ‖u‖ = 1 and u(t) ≤ ‖u‖ = 1 ≤ 1, we can obtain

h1
(
t, u(t)

)
+ h2

(
t, u(t)

) ≤ u(t)λ2 h1(t, 1) + u(t)λ3 h2(t, 1) ≤ [
h1(s, 1) + h2(s, 1)

]
.

Accordingly,

(Tu)(t) ≤
∫ 1

0
γ G(s, s)ω(s)

[
h1

(
s, u(s)

)
+ h2

(
s, u(s)

)]
ds

≤ γ ‖G‖q‖ω‖p

∫ 1

0

[
h1(s, 1) + h2(s, 1)

]
ds

< 1 = ‖u‖. (3.1)

That is, ‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂Ω = {u ∈ K : ‖u‖ = 1}.
Consequently, Lemma 2.5 yields that the operator T admits at least two fixed points

u1(t) and u2(t) in K , and u1(t) �= u2(t) by (3.1).
On the other hand, the proof of necessity is similar to that of Theorem 3.1, so we omit

it here. The proof of Theorem 3.2 is complete. �

4 Remarks and comments
In this section, we provide some remarks and comments related to problem (1.1).

Remark 4.1 The proof of Theorems 3.1–3.2 is directly inspired by Theorem 1.1 of [63],
but there are no papers analyzing sharp conditions of positive solution for second-order
boundary value problems with integral boundary conditions, particularly under the case
ω is Lp-integrable.

Remark 4.2 In general, it is difficult to analyze sharp conditions of positive solutions for
nonlinear second-order differential equations (see, e.g., [1–28] and their references).

Remark 4.3 Similar to the proof of Theorems 3.1–3.2, one can prove sharp conditions of
positive solution for the following problems:

⎧
⎨

⎩

u′′(t) + ω(t)f (t, u(t)) = 0,

u(0) =
∫ 1

0 g(t)u(t) dt, u(1) = 0,
(4.1)

⎧
⎨

⎩

u′′(t) + ω(t)f (t, u(t)) = 0,

u(0) = 0, u(1) =
∫ 1

0 g(t)u(t) dt,
(4.2)

where J = (0, 1), ω ∈ Lp[0, 1] for some 1 ≤ p ≤ +∞, f ∈ C(J × R+, R+), R+ = [0, +∞) (here,
f may be singular at t = 0 and/or 1), g ∈ L1[0, 1].
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