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Abstract
In this paper, we discuss third-order full nonlinear singularly perturbed vector
boundary value problems. We first present the existence of solutions for the nonlinear
vector boundary value problems without perturbation by using the upper and lower
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solution pair, as well as analysis technique. Some known results are extended.
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1 Introduction
In the past few decades, nonlinear boundary value problems (BVPs) and singularly per-
turbed boundary value problems (SPBVPs) have been studied widely [1–11]. For example,
Zhao [5] discussed the existence and asymptotic estimates of the solutions for a third-
order boundary value problem with perturbation. Du et al. [9] were concerned with a
more generalized third-order singularly perturbed differential equations with multi-point
boundary conditions and obtained the existence and uniqueness as well as the asymptotic
estimates of solutions. Lodhi and Mishra [12] discussed second order singularly perturbed
nonlinear boundary value problems by using the quintic B-spline method. Recently, the
geometric singular perturbation theory has also received a great deal of interests in study-
ing the Burgers–KdV equation [13], the vector-disease model [14], the perturbed BBM
equation [15], the perturbed Camassa–Holm equation [16] and the perturbed shallow
water wave model [17] etc.

However, the boundary value problems in the above-mentioned references are all scalar
and little work has been published for vector systems [18–20]. Motivated by the above
work, in this article, we discuss the singular perturbations of third-order nonlinear differ-
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ential system

εx′′′(t) + F
(
t, x(t), x′(t), x′′(t), ε

)
= 0, 0 ≤ t ≤ 1, 0 < ε � 1, (1.1)

with full nonlinear multi-point boundary value conditions

⎧
⎪⎨

⎪⎩

x(0, ε) = 0,
G(x′(0, ε), x′′(0, ε), x(ξ1, ε), x(ξ2, ε), . . . , x(ξm–2, ε)) = A,
H(x′(1, ε), x′′(1, ε), x(η1, ε), x(η2, ε), . . . , x(ηn–2, ε)) = B,

(1.2)

where x = (x1, x2, . . . , xN )T , F(t, x, x′, x′′, ε) = (f1, f2, . . . , fN )T ∈ RN , fi = fi(t, x, x′, x′′, ε) ∈ R,
G(x′(0, ε), x′′(0, ε), x(ξ1, ε), . . . , x(ξm–2, ε)) = (g1, g2, . . . , gN )T ∈ RN , gi = gi(x′(0, ε), x′′(0, ε),
x(ξ1, ε), . . . , x(ξm–2, ε)) ∈ R, H(x′(1, ε), x′′(1, ε), x(η1, ε), . . . , x(ηn–2, ε)) = (h1, h2, . . . , hN )T ∈
RN , hi = hi(x′(1, ε), x′′(1, ε), x(η1, ε), . . . , x(ηn–2, ε)) ∈ R, i = 1, 2, . . . , N , A = (A1, A2, . . . , AN )T ,
B = (B1, B2, . . . , BN )T ∈ RN , 0 < ξ1 < ξ2 < · · · < ξm–2 < 1, 0 < η1 < η2 < · · · < ηn–2 < 1, ε is a
small positive parameter.

In order to study SPBVP (1.1), (1.2), we need to study the following nonlinear unper-
turbed vector multi-point boundary value problem:

x′′′(t) + F
(
t, x(t), x′(t), x′′(t)

)
= 0, 0 ≤ t ≤ 1, (1.3)

⎧
⎪⎨

⎪⎩

x(0) = 0,
G(x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)) = A,
H(x′(1), x′′(1), x(η1), x(η2), . . . , x(ηn–2)) = B.

(1.4)

The remaining part of this paper is organized as follows. In Sect. 2, we present some
definitions and lemmas. In Sect. 3, we obtain the existence of solutions for BVP (1.3), (1.4)
by using the differential inequality technique and topological degree theory. Furthermore,
we give the existence and asymptotic estimates of solutions of SPBVP (1.1), (1.2). In Sect. 4,
we establish the uniqueness result of SPBVP (1.1), (1.2).

2 Preliminaries
For the simplicity, for ∀x = (x1, . . . , xN )T , y = (y1, . . . , yN )T ∈ RN , we denote x � y (x ≺ y), if
and only if xi ≤ yi (xi < yi), i = 1, 2, . . . , N . Similarly, we can define x 	 y (x 
 y). We use the
norm ‖x‖ = (

∑N
i=1 x2

i ) 1
2 , for ∀x = (x1, . . . , xN ) ∈ RN .

Definition 1 The vector function F(t, x1, x2, x3) ∈ RN is increasing in x1, if for ∀y1 	 x1,
such that

F(t, y1, x2, x3) 	 F(t, x1, x2, x3).

The vector function G(x1, x2, . . . , xm) ∈ RN is increasing in xk , k = 1, 2, . . . , m, if, for ∀yk 	
xk ,

G(x1, x2, . . . , xk–1, yk , xk+1, . . . , xm) 	 G(x1, x2, . . . , xk–1, xk , xk+1, . . . , xm).

The vector function H(x1, x2, . . . , xn) ∈ RN is decreasing in xj, j = 1, 2, . . . , n, if, for ∀yj 	 xj,

H(x1, x2, . . . , xj–1, yj, xj+1, . . . , xn) � H(x1, x2, . . . , xj–1, xj, xj+1, . . . , xn).
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Similarly, we define the case that G(x1, x2, . . . , xm) is decreasing in xk , k = 1, 2, . . . , m.
H(x1, x2, . . . , xn) is increasing in xj, j = 1, 2, . . . , n.

Definition 2 We define a function δ as follows:

δ(z1, z2, z3) =

⎧
⎪⎨

⎪⎩

z1, z2 ≺ z1,
z2, z1 � z2 � z3,
z3, z2 
 z3,

(2.1)

where zv = (zv1, zv2, . . . , zvN )T ∈ RN , v = 1, 2, 3, z1 � z3.

Definition 3 ([20]) F(t, x, y, z) is said to satisfy Nagumo condition with respect to z, for
(t, x, y, z) ∈ [0, 1] × R3N , if F(t, x, y, z) satisfies one of the following conditions:

(i) There exist nondecreasing functions Φi ∈ C([0, +∞), (0, +∞)), i = 1, 2, . . . , N , such
that

∣
∣fi(t, x, y, z)

∣
∣ ≤ Φi

(|zi|
)

and
∫ +∞

0

s ds
Φi(s)

= +∞.

(ii) There exist nondecreasing functions Φ ∈ C([0, +∞), (0, +∞)), such that

∥
∥F(t, x, y, z)

∥
∥ ≤ Φ

(‖z‖) and
s2

Φ(s)
= +∞, s → +∞.

Definition 4 ([10, 20]) A vector function α(t) = (α1(t), . . . ,αN (t))T ∈ C3([0, 1], RN ) is called
a lower solution of BVP (1.3), (1.4), if for i = 1, 2, . . . , N ,

α′′′
i (t) + fi

(
t, xαi (t), x′

αi
(t), x′′

αi
(t)

) ≥ 0, 0 ≤ t ≤ 1,

and

αi(0) ≤ 0,

gi
(
α′(0),α′′(0),α(ξ1), . . . ,α(ξm–2)

) ≤ Ai,

hi
(
α′(1),α′′(1),α(η1), . . . ,α(ηn–2)

) ≤ Bi.

Similarly, a vector function β(t) = (β1(t), . . . ,βN (t))T ∈ C3([0, 1], RN ) is called an upper so-
lution of BVP (1.3), (1.4), if for i = 1, 2, . . . , N ,

β ′′′
i (t) + fi

(
t, xβi (t), x′

βi
(t), x′′

βi
(t)

) ≤ 0, 0 ≤ t ≤ 1,

and

βi(0) ≥ 0,

gi
(
β ′(0),β ′′(0),β(ξ1), . . . ,β(ξm–2)

) ≥ Ai,

hi
(
β ′(1),β ′′(1),β(η1), . . . ,β(ηn–2)

) ≥ Bi,
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where

xαi = (x1, . . . , xi–1,αi, xi+1, . . . , xN ),

x′
αi

=
(
x′

1, . . . , x′
i–1,α′

i , x′
i+1, . . . , x′

N
)
,

x′′
αi

=
(
x′′

1, . . . , x′′
i–1,α′′

i , x′′
i+1, . . . , x′′

N
)
,

xβi , x′
βi

, x′′
βi

are defined analogously.

Similar to [10, 20], we have Lemma 2.1 and we omit the proof.

Lemma 2.1 Assume that ρs(t, ε) = diag(ρs1(t, ε), . . . ,ρsN (t, ε)) ∈ C([0, 1]×[0, ε0], RN×N ), s =
1, 2, 3, ρ3i(t, ε) ≥ 0, (t, ε) ∈ [0, 1] × [0, ε0] and there exists β(t, ε) = (β1(t, ε), . . . ,βN (t, ε))T ∈
C3([0, 1] × [0, ε0], RN ), such that β ′(t, ε) 
 0 and

εβ ′′′(t, ε) + ρ1(t, ε)β ′′(t, ε) + ρ2(t, ε)β ′(t, ε) + ρ3(t, ε)β(t, ε) ≺ 0, 0 ≤ t ≤ 1, (2.2)
⎧
⎪⎨

⎪⎩

β(0, ε) 	 0,
P1β

′(0, ε) + Q1β
′′(0, ε) +

∑m–2
k=1 μkβ(ξk , ε) 
 0,

P2β
′(1, ε) + Q2β

′′(1, ε) +
∑n–2

j=1 νjβ(ηj, ε) 
 0,
(2.3)

where Pl = diag(pl1, pl2, . . . , plN ), Ql = diag(ql1, ql2, . . . , qlN ), l = 1, 2, μk = diag(μk1, . . . ,μkN ),
νj = diag(νj1, . . . ,νjN ) satisfy q1i ≤ 0, q2i ≥ 0, μki ≤ 0, νji ≤ 0, i = 1, 2, . . . , N , k = 1, 2, . . . , m–2,
j = 1, 2, . . . , n – 2.

Then the singularly perturbed boundary value problem

εx′′′(t, ε) + ρ1(t, ε)x′′(t, ε) + ρ2(t, ε)x′(t, ε) + ρ3(t, ε)x(t, ε) = 0, 0 ≤ t ≤ 1, (2.4)
⎧
⎪⎨

⎪⎩

x(0, ε) = 0,
P1x′(0, ε) + Q1x′′(0, ε) +

∑m–2
k=1 μkx(ξk , ε) = 0,

P2x′(1, ε) + Q2x′′(1, ε) +
∑n–2

j=1 νjx(ηj, ε) = 0,
(2.5)

has only a zero solution.

3 Existence results
3.1 Existence result of the modified problem
Assume that α(t) = (α1(t), . . . ,αN (t))T , β(t) = (β1(t), . . . ,βN (t))T ∈ C3([0, 1], RN ), α(t) �
β(t), α′(t) � β ′(t), 0 ≤ t ≤ 1. We define the modified function as

F̄
(
t, x, x′, x′′) = F

(
t, x̄, x̄′, x̄′′) – ω

(
x′), (3.1)

where

x̄(t) = δ
(
xαi (t), x(t), xβi (t)

)
, (3.2)

x̄′(t) = δ
(
x′

αi
(t), x′(t), x′

βi
(t)

)
, (3.3)

x̄′′(t) = δ
(
–D, x′′(t), D

)
, (3.4)
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D = (D1, . . . , DN )T ∈ RN is a positive constant vector, such that

Di > max
t∈I

{
2Mi,

∣∣α′′
i (t)

∣∣,
∣∣β ′′

i (t)
∣∣} and

∫ Di

2Mi

s ds
Φi(s)

> 2Mi, (3.5)

Mi > max
t∈I

{∣∣α′
i(t)

∣∣,
∣∣β ′

i (t)
∣∣}, i = 1, 2, . . . , N . (3.6)

ω(x′) is continuous and bounded, satisfying

ω
(
x′)

⎧
⎪⎨

⎪⎩

≺ 0, x′ ≺ α′,
= 0, α′ � x′ � β ′,

 0, x′ 
 β ′,

(3.7)

where ω = (ω1,ω2, . . . ,ωN )T , and such a function ω(·) can be easily obtained. For example,
similar to [21], let ω(x′) = x′ – x̄′.

Furthermore, we define

Ḡ
(
x′(t), x′′(t), x(ξ1), . . . , x(ξm–2)

)

= δ
(
α′(t), x′(t) + A – G

(
x′(t), x′′(t), x(ξ1), . . . , x(ξm–2)

)
,β ′(t)

)
, (3.8)

H̄
(
x′(t), x′′(t), x(η1), . . . , x(ηn–2)

)

= δ
(
α′(t), x′(t) + B – H

(
x′(t), x′′(t), x(η1), . . . , x(ηn–2)

)
,β ′(t)

)
. (3.9)

Then we consider the following modified problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′′′(t) + F̄(t, x(t), x′(t), x′′(t)) = 0,
x(0) = 0,
x′(0) = Ḡ(x′(0), x′′(0), x(ξ1), . . . , x(ξm–2)),
x′(1) = H̄(x′(1), x′′(1), x(η1), . . . , x(ηn–2)).

(3.10)

Lemma 3.1 Assume that
(i) (α(t),β(t)) is a lower solution-upper solution pair of BVP (1.3), (1.4), such that

α′
i(t) ≤ β ′

i(t), 0 ≤ t ≤ 1, i = 1, 2, . . . , N .

(ii) For (t, x, y, z) ∈ [0, 1] × R3N , F(t, x, y, z) ∈ C([0, 1] × R3N , RN ) is continuous and
increasing with respect to x, and F(t, x, y, z) satisfies Nagumo condition with respect
to z.

Then BVP (3.10) has a solution x(t) = (x1(t), . . . , xN (t))T ∈ C3([0, 1], RN ), such that

αi(t) ≤ xi(t) ≤ βi(t), α′
i(t) ≤ x′

i(t) ≤ β ′
i (t), 0 ≤ t ≤ 1; (3.11)

∣∣x′′
i (t)

∣∣ ≤ Di, i = 1, 2, . . . , N , (3.12)

where D = (D1, . . . , DN )T ∈ RN is concerned by (3.5), (3.6).
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Proof First, we prove that (3.10) has a solution x(t) = (x1(t), . . . , xN (t))T ∈ C3([0, 1], RN ).
We consider the following differential systems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′′′(t) = –λF̄(t, x(t), x′(t), x′′(t)) =: Ψ (t),
x(0) = 0,
x′(0) = λḠ(x′(0), x′′(0), x(ξ1), . . . , x(ξm–2)) =: Ψ ∗(0),
x′(1) = λH̄(x′(1), x′′(1), x(η1), . . . , x(ηn–2)) =: Ψ ∗(1),

(3.13)

where λ ∈ [0, 1]. From the representations of F̄, Ḡ, H̄, we see that x′′′(t), x′(0) and x′(1) in
(3.13) are bounded. Thus x′′(t), x′(t), x(t), 0 ≤ t ≤ 1 are bounded. Consider the set

Ω =
{

x(t) ∈ RN :
∥
∥x(s)(t)

∥
∥ < K , s = 0, 1, 2, K is some sufficiently

large positive constant, t ∈ [0, 1]
}

.

Then Ω is a bounded open set. BVP (3.13) can be equal to the following integral equation:

x(t) = c1 + c2t + c3t2 +
∫ t

0

∫ t2

0

∫ t1

1
Ψ (s) ds dt1 dt2 =: Tλx, (3.14)

where Tλ is an integral operator with a parameter λ, and (c1, c2, c3) ∈ RN × RN × RN is
determined as

⎧
⎪⎨

⎪⎩

c1 = 0,
c2 = Ψ ∗(0),
c2 + 2c3 = Ψ ∗(1) –

∫ 1
0

∫ t1
1 Ψ (s) ds dt1.

Let W(λ, x) = (I – Tλ)(x), thus W : [0, 1] × Ω̄ → RN is continuous, where I is identical
mapping. Let wλ(x) = W(λ, x), ∀x ∈ ∂Ω , due to K is sufficiently large, we have

∥
∥wλ(x)

∥
∥ = ‖x – Tλx‖ ≥ ‖x‖ – ‖Tλx‖ = K – ‖Tλx‖ > 0, ∀λ ∈ [0, 1].

Thus, 0 /∈ wλ(∂Ω). According to the homotopy invariance theorem of topological degree,
deg(wλ,Ω , 0) keeps constant, in particular, deg(w1,Ω , 0) = deg(w0,Ω , 0). Noticing that 0 ∈
Ω , by the normality of topological degree, we have

deg
(
w0(x),Ω , 0

)
= deg(x – T0x,Ω , 0) = deg(x,Ω , 0) = 1

and

deg
(
w1(x),Ω , 0

)
= deg(x – T1x,Ω , 0) = deg(x – T0x,Ω , 0) = 1.

Hence, by the solvability theorem of topological degree, w1(x) = 0 has at least one so-
lution. That is to say, x(t) = T1x has solutions x(t), it is clear that there exists some
x(t) ∈ C3([0, 1], RN ) satisfying (3.10).

Next, we prove that every solution x(t) of BVP (3.10) satisfies (3.11). First of all, we prove

α′
i(t) ≤ x′

i(t) ≤ β ′
i (t), 0 ≤ t ≤ 1, i = 1, 2, . . . , N , (3.15)
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if α′
i(t) ≤ x′

i(t), i = 1, 2, . . . , N , is not true, then there exist some i ∈ {1, 2, . . . , N} and ζ ∈ [0, 1],
such that

max
0≤t≤1

(
α′

i(t) – x′
i(t)

)
= α′

i(ζ ) – x′
i(ζ ) > 0.

Obviously, from the boundary conditions of BVP (3.10), we know ζ �= 0, 1. Thus

α′′
i (ζ ) – x′′

i (ζ ) = 0, (3.16)

α′′′
i (ζ ) – x′′′

i (ζ ) ≤ 0. (3.17)

From conditions (i), (ii) and (2.1), (3.1)–(3.5), (3.7), (3.16), Definition 2 and the fact that
x(t) is a solution of (3.10), we have

α′′′
i (ζ ) – x′′′

i (ζ ) ≥ –fi
(
ζ , xαi (ζ ), x′

αi
(ζ ), x′′

αi
(ζ )

)
+ f̄i

(
ζ , x(ζ ), x′(ζ ), x′′(ζ )

)

= –fi
(
ζ , xαi (ζ ), x′

αi
(ζ ), x′′

αi
(ζ )

)
+ fi

(
ζ , x̄(ζ ), x̄′(ζ ), x̄′′(ζ )

)
– ωi

(
x′(ζ )

)

= –fi
(
ζ , xαi (ζ ), x′

αi
(ζ ), x′′(ζ )

)
+ fi

(
ζ , x̄(ζ ), x′

αi
(ζ ), x′′(ζ )

)
– ωi

(
x′(ζ )

)

≥ 0 – ωi
(
x′(ζ )

)
> 0,

it is contradictory to (3.17), hence we obtain α′
i(t) ≤ x′

i(t), 0 ≤ t ≤ 1.
Similarly, we could prove that x′

i(t) ≤ β ′
i (t), 0 ≤ t ≤ 1.

Thus, (3.15) is true. According to condition (i) and Definition 4, we have αi(0) ≤ xi(0) ≤
βi(0), by integrating the inequalities (3.15) on [0, t], we obtain

αi(t) ≤ xi(t) ≤ βi(t), 0 ≤ t ≤ 1.

Finally, we prove (3.12) holds. We suppose that |x′′
i (t)| ≤ Di is not true. Then there exists

σ ∈ [0, 1], such that x′′
i (σ ) > Di, or x′′

i (σ ) < –Di. Suppose that the first case holds. From
(3.5), (3.6) and F(t) is continuous, there exists ς ∈ [0, 1] such that

x′′
i (ς ) =

x′
i(1) – x′

i(0)
1 – 0

≤ β ′
i (1) – α′

i(0) ≤ 2Mi < Di.

Because x′′(t) is continuous and x′′
i (σ ) > Di, there exists some subinterval [a, b] (or [b, a]) ⊂

[0, 1] such that

x′′
i (a) = 2Mi, x′′

i (b) = Di,

2Mi < x′′
i (t) < Di, ∀t ∈ [a, b]

(
or [b, a]

)
.

From condition (ii) and Definition 3, one has

∣∣
∣∣

∫ b

a

x′′
i (s)x′′′

i (s)
Φi(x′′

i (s))
ds

∣∣
∣∣ ≤

∣∣
∣∣

∫ b

a
x′′

i (s) ds
∣∣
∣∣ =

∣
∣x′

i(b) – x′
i(a)

∣
∣ ≤ 2Mi.

On the other hand, from (3.5) and (3.6), we know that

∣∣∣
∣

∫ b

a

x′′
i (s)x′′′

i (s)
Φi(x′′

i (s))
ds

∣∣∣
∣ =

∣∣∣
∣

∫ Di

2Mi

s ds
Φi(s)

∣∣∣
∣ =

∫ Di

2Mi

s ds
Φi(s)

> 2Mi.
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This inequality is contradictory to the above one. So we show that x′′
i (σ ) > Di is not true.

Similarly, we can prove that x′′
i (σ ) < –Di is not true too. Therefore, (3.12) holds. �

3.2 Existence result of BVP (1.3), (1.4)
Theorem 3.1 Assume that conditions (i), (ii) in Lemma 3.1 hold and

(iii) G(x1, x2, . . . , xm) is continuous and decreasing with respect to x2, . . . , xm;
H(y1, y2, . . . , yn) is continuous and increasing in y2 and decreasing with respect to
y3, . . . , yn.

Then BVP (1.3), (1.4) has a solution x(t) = (x1(t), . . . , xN (t))T ∈ C3([0, 1], RN ) satisfying
inequalities (3.11) and (3.12).

Proof From (2.1), (3.1)–(3.4), (3.7) and Lemma 3.1, there exists a solution x(t) of the mod-
ified BVP (3.10) satisfying (1.3), (3.11) and (3.12).

Now we show the solution x(t) satisfying the boundary conditions (1.4). From the
boundary conditions of (3.10), it is easy to get x(0) = 0.

First, we prove

G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)
= A. (3.18)

Case 1. Suppose that α′(0) � x′(0) + A – G(x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)) � β ′(0).
By (2.1), (3.8) and (3.10), we obtain

x′(0) = Ḡ
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)

= x′(0) + A – G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)
.

Thus (3.18) holds.
Case 2. Suppose that α′(0) 
 x′(0) + A – G(x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)). By (2.1),

(3.8) and (3.10), we obtain

x′(0) = Ḡ
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)
= α′(0). (3.19)

Then

G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

) 
 A. (3.20)

According to (3.11), (3.19) and condition (iii), we know

G
(
α′(0),α′′(0),α(ξ1), . . . ,α(ξm–2)

) 	 G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)
.

Therefore,

G
(
α′(0),α′′(0),α(ξ1), . . . ,α(ξm–2)

) 
 A. (3.21)

From condition (i), it is easy to see that (3.21) is contradictory to Definition 4. Therefore,
(3.20) is not true.
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Case 3. Suppose that x′(0) + A – G(x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)) 
 β ′(0). By (2.1),
(3.8) and (3.10), we obtain

x′(0) = Ḡ
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)

= β ′(0). (3.22)

So

G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

) ≺ A. (3.23)

In view of (3.11), (3.22) and condition (iii), we know

G
(
β ′(0),β ′′(0),β(ξ1), . . . ,β(ξm–2)

) � G
(
x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)

)
,

thus,

G
(
β ′(0),β ′′(0),β(ξ1), . . . ,β(ξm–2)

) ≺ A. (3.24)

By condition (i), it is easy to see that (3.24) is also contradictory to Definition 4. Therefore,
(3.23) is not true too. Thus, we show that (3.18) holds.

Similar to the above argument, we could prove that

H
(
x′(1), x′′(1), x(η1), x(η2), . . . , x(ηn–2)

)
= B.

Thus x(t) is a solution of BVP (1.3), (1.4) and satisfies (3.11), (3.12). �

3.3 Existence result of SPBVP (1.1), (1.2)
Theorem 3.2 Assume that

(i) The reduced problem of SPBVP (1.1), (1.2)
{

F(t, x, x′, x′′, 0) = 0,
x(0) = 0, G(x′(0), x′′(0), x(ξ1), x(ξ2), . . . , x(ξm–2)) = A,

(3.25)

has a reduced solution v(t) = (v1(t), . . . , vN (t))T ∈ C3([0, 1], RN ). For
i = 1, 2, . . . , N , vi(t) satisfies

fi
(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), 0

)
= fi

(
t, xvi (t, 0), x′

vi
(t, 0), x′′

vi
(t, 0), 0

)
= 0,

vi(0) = 0, gi
(
v′(0), v′′(0), v(ξ1), v(ξ2), . . . , v(ξm–2)

)
= Ai;

(ii) Let ε0 be a sufficiently small constant, fi(t, x, x′, x′′, ε), i = 1, 2, . . . , N , is continuously
differentiable and satisfies Nagumo condition on [0, 1] × R3N × [0, ε0] and there
exist some positive constants li, ri, ci, i = 1, 2, . . . , N , such that

0 < fixi (t, x, y, z, ε) ≤ li, fiyi (t, x, y, z, ε) ≤ –ri < 0,

fizi (t, x, y, z, ε) ≤ 0,
∣
∣fiε(t, x, y, z, ε)

∣
∣ ≤ ci,

where fixi =
∂fi(t, x, y, z)

∂xi
, the others are defined analogously.
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(iii) G(x1, . . . , xm) is continuous and increasing in x1 and decreasing with respect to
x2, . . . , xm; H(y1, . . . , yn) is continuous and increasing with respect to y1, y2 and
decreasing with respect to y3, . . . , yn. And there exist some vectors
Ms = (Ms1, Ms2, . . . , MsN )T 
 0, s = 1, 2, . . . , 6, such that v′′(0) ≺ –M1, v′′(1) 
 M2,
and

gi
(
v′(0), M1, M5, . . . , M5

) ≤ Ai ≤ gi
(
v′(0), –M1, M3, . . . , M3

)
, (3.26)

hi
(
v′(1), –M2, M6, . . . , M6

) ≤ Bi ≤ hi
(
v′(1), M2, M4, . . . , M4

)
. (3.27)

Then SPBVP (1.1), (1.2) has a solution x(t, ε) = (x1(t, ε), . . . , xN (t, ε))T such that

∣∣xi(t, ε) – vi(t)
∣∣ ≤ T1ieλ1it + T2ieλ2i(t–1) + T3iε, i = 1, 2, . . . , N , (3.28)

where Tκ = diag(Tκ1, Tκ2, . . . , TκN ), Tκi (κ = 1, 2, 3, i = 1, 2, . . . , N ) are positive
numbers. ε is sufficiently small, λ1i, λ2i are two roots of equation ελ3 – riλ + li = 0,
such that

–2
√

ri

ε
< λ1i < –

√
ri

ε
,

1
2

√
ri

ε
< λ2i <

√
ri

ε
. (3.29)

Proof From condition (i), there exists a positive constant vector M∗ = (M∗
1, M∗

2, . . . , M∗
N )T ,

such that |v′′′
i (t)| ≤ M∗

i , i = 1, 2, . . . , N , since v(t) ∈ C3([0, 1], RN ). Then the equation ελ3 –
riλ + li = 0 has three different real roots λ1i, λ2i, and λ3i, since

1
4

(
li

ε

)2

+
1

27

(
–

ri

ε

)3

=
1
ε2

(
l2
i
4

–
r3

i
27ε

)
< 0.

Furthermore, for i = 1, 2, . . . , N , the estimates of λ1i, λ2i are given in (3.29) and have the
estimate of λ3i satisfies

li

ri
< λ3i <

li + ri

ri
. (3.30)

To construct the upper and lower solutions, we define

γi(t, ε) = ε
1
2

[
d1i

λ1i
eλ1it +

d2i

λ2i
eλ2i(t–1)

]
+

d3i

λ3i

[
2eλ3it – 1

]
, (3.31)

where

d1i = –
M1i + |v′′

i (0)| + 1
λ1iε

1
4

, d2i =
M2i + |v′′

i (1)| + 1
λ2iε

1
2

, d3i =
λ3i(ci + M∗

i + 1)
li

ε
1
5 .

Then we have

γ ′
i (t, ε) = ε

1
2
[
d1ieλ1it + d2ieλ2i(t–1)] + 2d3ieλ3it ,

γ ′′
i (t, ε) = ε

1
2
[
d1iλ1ieλ1it + d2iλ2ieλ2i(t–1)] + 2d3iλ3ieλ3it ,

γ ′′′
i (t, ε) = ε

1
2
[
d1iλ

2
1ie

λ1it + d2iλ
2
2ie

λ2i(t–1)] + 2d3iλ
2
3ie

λ3it .
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In view of d1i > 0, d2i > 0, d3i > 0, we obtain

γ ′
i (t, ε) > 0, γ ′′′

i (t, ε) > 0, 0 ≤ t ≤ 1, ε > 0.

For sufficiently small ε > 0, we have

γi(0, ε) = ε
1
2

(
d1i

λ1i
+

d2i

λ2i
e–λ2i

)
+

d3i

λ3i

= –
M1i + |v′′

i (0)| + 1
λ2

1i
ε

1
4 +

M2i + |v′′
i (1)| + 1

λ2
2i

e–λ2i +
ci + M∗

i + 1
li

ε
1
5

> –
M1i + |v′′

i (0)| + 1
ri

ε
5
4 +

M2i + |v′′
i (1)| + 1

ri
εe–

√
ri
ε +

ci + M∗
i + 1

li
ε

1
5

> 0

since γ ′
i (s, ε) > 0, we have γi(t, ε) = γi(0, ε) +

∫ t
0 γ ′

i (s, ε) ds > 0, for 0 ≤ t ≤ 1.
Similarly, we obtain

γ ′′
i (0, ε) = ε

1
2
(
d1iλ1i + d2iλ2ie–λ2i

)
+ 2d3iλ3i

> –
(
M1i +

∣∣v′′
i (0)

∣∣ + 1
)
ε

1
4 +

(
M2i +

∣∣v′′
i (1)

∣∣ + 1
)
ε

–
√

ri
ε +

2li(ci + M∗
i + 1)

r2
i

ε
1
5

> 0.

Thus, γ ′′
i (t, ε) = γ ′′

i (0, ε) +
∫ t

0 γ ′′′
i (s, ε) ds > 0, for 0 ≤ t ≤ 1, since γ ′′′

i (s, ε) > 0.
Define functions β(t, ε), α(t, ε) as

β(t, ε) = v(t) + γ (t, ε), α(t, ε) = v(t) – γ (t, ε),

where

γ (t, ε) =
(
γ1(t, ε),γ2(t, ε), . . . ,γN (t, ε)

)T .

Hence

βi(t, ε) = vi(t) + γi(t, ε), αi(t, ε) = vi(t) – γi(t, ε), i = 1, 2, . . . , N .

For (t, ε) ∈ [0, 1] × [0, ε0], we have

αi(t, ε) ≤ βi(t, ε), α′
i(t, ε) ≤ β ′

i (t, ε),

α′′
i (t, ε) ≤ β ′′

i (t, ε), αi(0, ε) ≤ 0 ≤ βi(0, ε),

and

εβ ′′′
i (t, ε) + fi

(
t, xβi (t, ε), x′

βi
(t, ε), x′′

βi
(t, ε), ε

)

= εβ ′′′
i (t, ε) + fi

(
t, xβi (t, ε), x′

βi
(t, ε), x′′

βi
(t, ε), ε

)
– fi

(
t, xβi (t, ε), x′

βi
(t, ε), x′′

vi
(t, ε), ε

)

+ fi
(
t, xβi (t, ε), x′

βi
(t, ε), x′′

vi
(t, ε), ε

)
– fi

(
t, xβi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), ε

)
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+ fi
(
t, xβi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), ε

)
– fi

(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), ε

)

+ fi
(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), ε

)
– fi

(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), 0

)

+ fi
(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), 0

)

= εβ ′′′
i (t, ε) +

∫ 1

0
fizi

(
t, xβi (t, ε), x′

βi
(t, ε), x′′

vi+θ (βi–vi)(t, ε), ε
)

dθ · γ ′′
i (t, ε)

+
∫ 1

0
fiyi

(
t, xβi (t, ε), x′

vi+θ (βi–vi)(t, ε), x′′
vi

(t, ε), ε
)

dθ · γ ′
i (t, ε)

+
∫ 1

0
fixi

(
t, xvi+θ (βi–vi)(t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), ε

)
dθ · γi(t, ε)

+
∫ 1

0
fiε

(
t, xvi (t, ε), x′

vi
(t, ε), x′′

vi
(t, ε), θε

)
dθ · ε

≤ ε
(
v′′′

i (t) + γ ′′′
i (t, ε)

)
– riγ

′
i (t, ε) + liγi(t, ε) + ciε

≤ ε
(
ci + M∗

i
)

+
ε

1
2 d1i

λ1i
eλ1it

(
ελ3

1i – riλ1i + li
)

+
ε

1
2 d2i

λ2i
eλ2i(t–1)(ελ3

2i – riλ2i + li
)

+
2d3i

λ3i
eλ3it

(
ελ3

3i – riλ3i + li
)

–
lid3i

λ3i

= ε
(
ci + M∗

i
)

–
lid3i

λ3i

= –ε
1
5
[(

1 + ci + M∗
i
)

–
(
ci + M∗

i
)
ε

4
5
]

< 0,

i.e.

εβ ′′′
i (t, ε) + fi

(
t, xβi (t, ε), x′

βi
(t, ε), x′′

βi
(t, ε), ε

) ≤ 0.

Similarly, from the expression of β ′
i (t, ε), we obtain β ′

i (0, ε) = v′
i(0) + γ ′

i (0, ε) ≥ v′
i(0), and

β ′
i (1, ε) ≥ v′

i(1). From condition (iii), there exists εi1 > 0, for 0 < ε ≤ εi1, one has β ′′
i (0, ε) <

–M1i, since γ ′′
i (0, ε) > 0 is sufficient small. Furthermore, there exists εi2 > 0, for 0 < ε ≤ εi2,

we have β ′′
i (1, ε) ≥ M2i. Then there exists ε̃ik > 0, for 0 < ε ≤ ε̃ik (k = 1, 2, . . . , m – 2), we

have

βi(ξk , ε) = vi(ξk) + ε
1
2

[
d1i

λ1i
eλ1iξk +

d2i

λ2i
eλ2i(ξk –1)

]
+

d3i

λ3i

[
2eλ3iξk – 1

]

≤ vi(ξk) –
ε

5
4

4ri

(
M1i +

∣∣v′′
i (0)

∣∣ + 1
)
e–2

√
ri
ε ξk +

ε
1
2

4ri

(
M2i +

∣∣v′′
i (1)

∣∣ + 1
)
e

1
2

√
ri
ε (ξk –1)

+
ci + M∗

i + 1
li

(
2e

li+ri
ri

ξi – 1
)
ε

1
5

≤ vi(ξk) + 1 ≤ ∣
∣vi(ξk)

∣
∣ + 1 := m̃ik , k = 1, 2, . . . , m – 2.

Similarly there exists ε̂ij > 0, for 0 < ε ≤ ε̂ij (j = 1, 2, . . . , n – 2), we have

βi(ηj, ε) ≤ ∣∣vi(ηj)
∣∣ + 1 := m̂ij, j = 1, 2, . . . , n – 2.
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Let

M3i = max
k=1,2,...,m–2

{m̃ik}, M4i = max
j=1,2,...,n–2

{m̂ij},

ε0 = min
i=1,2,...,N

{
εi1, εi2, min

k=1,2,...,m–2
{̃εik}, min

j=1,2,...,n–2
{̂εij}

}
.

For 0 < ε ≤ ε0, we have β ′(0, ε) 	 v′(0), β ′(1, ε) 	 v′(1), β ′′(0, ε) ≺ –M1, β ′′(1, ε) 	 M2,
β(ξk , ε) � M3, β(ηj, ε) � M4, k = 1, 2, . . . , m – 2, j = 1, 2, . . . , n – 2. Here Ms = (Ms1, Ms2, . . . ,
MsN )T , s = 1, 2, . . . , 6. From condition (iii), we have

gi
(
β ′(0, ε),β ′′(0, ε),β(ξ1, ε), . . . ,β(ξm–2, ε)

)
> gi

(
v′(0), –M1, M3, . . . , M3

)

≥ Ai,

hi
(
β ′(1, ε),β ′′(1, ε),β(η1, ε), . . . ,β(ηm–2, ε)

) ≥ hi
(
v′(1), M2, M4, . . . , M4

)

≥ Bi.

Thus β(t, ε) = (β1(t, ε), . . . ,βN (t, ε))T is an upper solution of SPBVP (1.1), (1.2). Similarly,
we could show α(t, ε) = (α1(t, ε), . . . ,αN (t, ε))T is a lower solution of SPBVP (1.1), (1.2).
From Theorem 3.1, SPBVP (1.1), (1.2) has a solution x(t, ε) = (x1(t, ε), . . . , xN (t, ε))T satis-
fying

α(t, ε) � x(t, ε) � β(t, ε), 0 ≤ t ≤ 1,

and the inequality (3.28) holds on [0, 1] × [0, ε0]. �

4 Uniqueness result of SPBVP (1.1), (1.2)
Theorem 4.1 Assume that all conditions of Theorem 3.2 hold, and for i = 1, 2, . . . , N , the
following inequalities hold:

p̄1i +

(m–2∑

k=1

μ̄ki

)
ri

li

(
2e

li+ri
ri – 1

)
> 0, (4.1)

2
(

p̄2i +
q̄2ili

ri

)
e

ri
li +

( n–2∑

j=1

ν̄ji

)
ri

li

(
2e

li+ri
ri – 1

)
> 0, (4.2)

where

p̄1i =
∫ 1

0
giz1i

(
x′

1(0, ε) + θx′
0(0, ε), x′′

1(0, ε), τx1(t, ε)
)

dθ ,

p̄2i =
∫ 1

0
hiz1i

(
x′

1(1, ε) + θx′
0(1, ε), x′′

1(1, ε),ρx1(t, ε)
)

dθ ,

q̄2i =
∫ 1

0
hiz2i

(
x′

1(1, ε), x′′
1(1, ε) + θx′′

0(1, ε),ρx1(t, ε)
)

dθ ,

μ̄ki =
∫ 1

0
giz(k+2)i

(
x′

1(0, ε), x′′
1(0, ε), τx1(t, ε) + θx0(ξk , ε)

)
dθ , k = 1, 2, . . . , m – 2,

ν̄ji =
∫ 1

0
hiz(j+2)i

(
x′

1(1, ε), x′′
1(1, ε),ρx1(t, ε) + θx0(ηj, ε)

)
dθ , j = 1, 2, . . . , n – 2,
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τx1(t, ε) :=
(
x1(ξ1, ε), x1(ξ2, ε), . . . , x1(ξm–2, ε)

)
,

ρx1(t, ε) :=
(
x1(η1, ε), x1(η2, ε), . . . , x1(ηn–2, ε)

)
,

τx1(t, ε) + θx0(ξk , ε) :=
(
x1(ξ1, ε), . . . , x1(ξk , ε) + θx0(ξk , ε), . . . , x1(ξm–2, ε)

)
,

ρx1(t, ε) + θx0(ηj, ε) :=
(
x1(η1, ε), . . . , x1(ηj, ε) + θx0(ηj, ε), . . . , x1(ηn–2, ε)

)
,

gizki =
∂gi(z1, z2, . . . , zm)

∂zki
, k = 1, 2, . . . , m,

hizji =
∂hi(z1, z2, . . . , zn)

∂zji
, j = 1, 2, . . . , n,

and li, ri, i = 1, 2, . . . , N are given in Theorem 3.2. Then SPBVP (1.1), (1.2) has a unique
solution.

Proof From Theorem 3.2, for SPBVP (1.1), (1.2) there exist solutions. In order to show the
uniqueness of the solutions, we only need to show (1.1), (1.2) has at most one solution. If
the assertion is not true, then SPBVP (1.1), (1.2) has two different solutions x1(t, ε), x2(t, ε).
Let

y(t, ε) = x2(t, ε) – x1(t, ε),

then y(t, ε) is a solution of the boundary value problem

εx′′′(t, ε) + ρ̄1(t, ε)x′′(t, ε) + ρ̄2(t, ε)x′(t, ε) + ρ̄3(t, ε)x(t, ε) = 0, 0 ≤ t ≤ 1, (4.3)
⎧
⎪⎨

⎪⎩

x(0, ε) = 0,
P̄1x′(0, ε) + Q̄1x′′(0, ε) +

∑m–2
k=1 μ̄kx(ξk , ε) = 0,

P̄2x′(1, ε) + Q̄2x′′(1, ε) +
∑n–2

j=1 ν̄jx(ηi, ε) = 0,
(4.4)

where ρ̄s(t, ε) = diag(ρ̄s1(t, ε), . . . , ρ̄sN (t, ε)), s = 1, 2, 3, P̄1 = diag(p̄11, p̄12, . . . , p̄1N ), P̄2 =
diag(p̄21, p̄22, . . . , p̄2N ), Q̄1 = diag(q̄11, q̄12, . . . , q̄1N ), Q̄2 = diag(q̄21, q̄22, . . . , q̄2N ), μ̄k =
diag(μ̄k1, . . . , μ̄kN ), ν̄j = diag(ν̄j1, . . . , ν̄jN ), k = 1, 2, . . . , m – 2, j = 1, 2, . . . , n – 2,

ρ̄1i(t, ε) =
∫ 1

0
fix′′

i

(
t, x1(t, ε), x′

1(t, ε), x′′
1(t, ε) + θy′′(t, ε), ε

)
dθ ,

ρ̄2i(t, ε) =
∫ 1

0
fix′

i

(
t, x1(t, ε), x′

1(t, ε) + θy′(t, ε), x′′
1(t, ε), ε

)
dθ ,

ρ̄3i(t, ε) =
∫ 1

0
fixi

(
t, x1(t, ε) + θy(t, ε), x′

1(t, ε), x′′
1(t, ε), ε

)
dθ ,

q̄1i =
∫ 1

0
giz2i

(
x′

1(0, ε), x′′
1(0, ε) + θx′′

0(0, ε), τx1(t, ε)
)

dθ .

From conditions (ii), (iii) in Theorem 3.2, we obtain ρ̄si ∈ C([0, 1]× [0, ε0], R), s = 1, 2, 3 and
ρ̄1i(t, ε) ≤ 0, ρ̄2i(t, ε) ≤ –ri < 0, 0 ≤ ρ̄3i(t, ε) ≤ li, (t, ε) ∈ [0, 1] × [0, ε0], and q̄1i ≤ 0, q̄2i ≥ 0,
μ̄ki ≤ 0, ν̄ji ≤ 0, i = 1, 2, . . . , N , k = 1, 2, . . . , m – 2, j = 1, 2, . . . , n – 2. That is, ρ̄s(t, ε), s = 1, 2, 3,
Q̄1, Q̄2, μ̄k , ν̄j, satisfy Eq. (2.4) and boundary conditions (2.5).
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Define

φi(t, ε) =
2eλ3it – 1

λ3i
–

2λ3ieλ1it

λ2
1i

.

It is obvious that φi(t, ε) > 0, φ′
i(t, ε) > 0, φ′′

i (t, ε) ≥ 0, and

εφ′′′
i (t, ε) + ρ̄1i(t, ε)φ′′

i (t, ε) + ρ̄2i(t, ε)φ′
i(t, ε) + ρ̄3i(t, ε)φi(t, ε)

≤ εφ′′′
i (t, ε) – riφ

′
i(t, ε) + liφi(t, ε)

=
2
λ3i

eλ3it
(
ελ3

3i – riλ3i + li
)

–
2λ3i

λ2
1i

eλ1it
(
ελ3

1i – riλ1i + li
)

–
li

λ3i

= –
li

λ3i
< 0.

For 0 < ε ≤ ε0, from (4.1), (4.2), we have

p̄1iφ
′
i(0, ε) + q̄1iφ

′′
i (0, ε) +

m–2∑

k=1

μ̄kiφi(ξki, ε)

= 2p̄1i

(
1 –

λ3i

λ1i

)
+

m–2∑

k=1

μ̄ki

(
2eλ3iξki – 1

λ3i
–

2λ3ieλ1iξki

λ2
1i

)

≥ p̄1i +
m–2∑

k=1

μ̄ki
ri

li

(
2e

li+ri
ri

ξki – 1
)

≥ p̄1i +

(m–2∑

k=1

μ̄ki

)
ri

li

(
2e

li+ri
ri – 1

)
> 0,

p̄2iφ
′
i(1, ε) + q̄2iφ

′′
i (1, ε) +

n–2∑

j=1

ν̄jiφi(ηj, ε)

≥ 2
(

p̄2i +
q̄2ili

ri

)
e

ri
li +

n–2∑

j=1

ν̄ji
ri

li

(
2e

li+ri
ri

ηji – 1
)

≥ 2
(

p̄2i +
q̄2ili

ri

)
e

ri
li +

( n–2∑

j=1

ν̄ji

)
ri

li

(
2e

li+ri
ri – 1

)
> 0.

Then Φ(t, ε) = (φ1(t, ε), . . . ,φN (t, ε))T satisfies the conditions in Lemma 2.1. Hence SPBVP
(4.3), (4.4) has only a zero solution, which contradicts x1(t, ε) �= x2(t, ε). Therefore, SPBVP
(1.1), (1.2) has a unique solution. �

Remark 4.1 If we take N = 1, we find that SPBVP (1.1), (1.2) becomes the singularly per-
turbed boundary value problem (3), (4) in [10]. It is notable that our results agree well with
the corresponding ones in [10].



Lin et al. Boundary Value Problems         (2020) 2020:14 Page 16 of 17

Remark 4.2 If we choose N = 1, m = n, and take the nonlinear boundary functions g , h to
occur in the following linear functions:

g(x1, x2, . . . , xn) = ax1 – bx2 +
n∑

i=3

αixi,

h(y1, y2, . . . , yn) = cy1 + dy2 +
n∑

j=3

βjyj,

then SPBVP (1.1), (1.2) becomes the singularly perturbed boundary value problem (1.1),
(1.2) in [9].

Remark 4.3 If we choose the nonlinear boundary functions G, H to be the following linear
functions:

G = P1x′(0, ε) – P2x′′(0, ε), H = Q1x′(1, ε) – Q2x′′(1, ε),

then SPBVP (1.1), (1.2) becomes the singularly perturbed boundary value problem (1), (2)
in [20]. In this paper, we get the existence and uniqueness of solutions. We also discuss
the asymptotic estimates of solutions.
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