
Guo Boundary Value Problems         (2020) 2020:15 
https://doi.org/10.1186/s13661-020-01326-3

R E S E A R C H Open Access

On weak solutions to a generalized
Camassa–Holm equation with solitary wave
Yunxi Guo1*

*Correspondence:
matyunxiguo@126.com
1Department of Mathematics, Zunyi
Normal University, Zunyi, China

Abstract
A generalized Camassa–Holm equation proposed by Novikov is considered. The
existence and uniqueness of a positive weak solution for the equation is established
by using a classical method.

MSC: 35D05; 35G25; 35L05; 35Q35

Keywords: Existence; Weak solution; A generalized Camassa–Holm equation

1 Introduction
Recently, Novikov [22] proposed the following integrable quasi-linear scalar evolution
equation of order 2:

(
1 – ε2∂2

x
)
ut = ∂x(2 – ε∂x)(1 + ε∂x)u2, (1)

where ε �= 0 is a real constant.
Letting v(t, x) = u(εt, εx), one can transform Eq. (1) into the following form:

ut – utxx = ∂x(2 – ∂x)(1 + ∂x)u2. (2)

It was shown in [22] that Eq. (2) possesses a hierarchy of local higher symmetries. Equation
(2) is regarded as a generalized Camassa–Holm equation [22]. In [17], Li and Yin establish
the local existence and uniqueness of strong solutions for Eq. (2) in nonhomogeneous
Besov spaces by using the Littlewood–Paley theory. Under some assumptions, a blow-
up criterion and a global existence result for the equation are also presented in [17]. The
well-posedness of (2) is studied in [11] for the periodic and the nonperiodic cases in the
sense of Hadamard. In addition, nonuniform dependence is proved by using the method
of approximate solutions and well-posedness estimates. To the best of our knowledge, up
to now the weak solutions for Eq. (2) have not been investigated yet.

The equation closest to the relevant problem (2) is the Degasperis–Procesi equation,

(
1 – ∂2

x
)
ut = –4uux + 3uxuxx + uuxxx. (3)
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Degasperis, Holm and Hone [12] proved the formal integrability of Eq. (2) by constructing
a Lax pair. They showed that it has a bi-Hamiltonian structure and there is an infinite se-
quence of conserved quantities. Since the Degasperis–Procesi equation was born, much
attention has been attracted by the study its dynamics. Yin proved local well-posedness of
Eq. (2) on the line [24] and on the circle [25]. In addition, the precise blow-up scenario and
blow-up structure for the equation were derived in [24, 25]. Lenells [16] classified all weak
traveling wave solutions. Matsuno [20] obtained multisolutions of Eq. (2). Escher et al. [13]
investigated the blow-up phenomena and global weak solutions for Degasperis–Procesi
equation. In a different direction, Coclite and Karlsen [3–5], and Lundmark [19] initiated
a study of discontinuous solutions (shock wave) to the Degasperis–Procesi equation (2).
It is shown in [2] that a new blow-up quantity along the characteristics is established for
the Degasperis–Procesi equation (2). The other equations related to Eq. (2), such as the
Camassa–Holm equation, the Novikov equation and the Modified Camassa–Holm equa-
tion with cubic nonlinearity, can be found in [1, 6–10, 14, 15, 18, 22, 23] and the references
therein.

Inspired by the ideas from [13, 26], in this paper, we investigate the weak solutions for
the following Cauchy problem:

⎧
⎨

⎩
ut – utxx = ∂x(2 – ∂x)(1 + ∂x)u2,

u(0, x) = u0(x).
(4)

More precisely, we focus on the existence and uniqueness of positive weak solutions to the
problem (4) using the method from [11] under the condition y0 = u0 – u0xx ∈M+. One of
the difficult issues in our proof is how to prove that there is a subsequence of {un} which
converges pointwise a.e. to a function u ∈ H1

loc(R+ × R) that satisfies (4) in the sense of
distributions, and how to show that u ∈ Cw(R+; H1(R)), the space of continuous functions
from R+ with values in H1(R) when the latter space is equipped with its weak topology.
Luckily, using y0 = u0 – u0xx > 0 and the estimate ‖u(t, ·)‖L∞(R) ≤ 3

2‖u0‖2
L3(R)t + ‖u0‖L∞ , we

successfully overcome the problems.

Notations The space of all infinitely differentiable functions φ(t, x) with compact support
in [0, +∞)×R is denoted by C∞

0 . Let 1 ≤ p < +∞ and Lp = Lp(R) be the space of all measur-
able functions h(t, x) such that ‖h‖P

LP =
∫
R

|h(t, x)|p dx < ∞. We define L∞ = L∞(R) with the
standard norm ‖h‖L∞ = infm(e)=0 supx∈R\e |h(t, x)|. For any real number s, let Hs = Hs(R) de-
note the Sobolev space with the norm defined by ‖h‖Hs = (

∫
R

(1 + |ξ |2)s|ĥ(t, ξ )|2 dξ ) 1
2 < ∞,

where ĥ(t, ξ ) =
∫
R

e–ixξ h(t, x) dx.
We denote by ∗ the convolution. Let ‖ · ‖X denote the norm of Banach space X and 〈·, ·〉

denote the H1(R), H–1(R) duality bracket. Let M(R) be the space of Radon measures on
R with bounded total variation and M+(R) be the subset of positive measures. Finally,
we write BV(R) for the space of functions with bounded variation, V (f ) being the total
variation of f ∈ BV(R).

2 Preliminaries
Throughout this paper, let {ρn}n≥1 denote the mollifiers

ρn(x) :=
(∫

R

ρ(ξ ) dξ

)–1

nρ(nx), x ∈ R, n ≥ 1,
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where ρ ∈ C∞
c (R) is defined by

ρ(x) :=

⎧
⎨

⎩
e

1
x2–1 for |x| < 1,

0 for |x| ≥ 1.

Thus, we get
∫

R

ρn(x) dx = 1, ρn ≥ 0, x ∈R, n ≥ 1.

Note that if G(x) := 1
2 e–|x|, x ∈ R. Then (1 – ∂2

x )–1f = G ∗ f for all f ∈ L2(R) and G ∗ (u –
uxx) = u. Using this identity, we rewrite problem (4) in the form

⎧
⎨

⎩
ut – utxx – 4uux + 6uxuxx + 2uuxxx = 2u2

x + 2uuxxx, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R,
(5)

which is equivalent to
⎧
⎨

⎩
ut – 2uux – ∂xG ∗ [u2 + (u2)x] = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R.
(6)

Next, we give some useful results.

Lemma 2.1 Let f : R→R be uniformly continuous and bounded. If μ ∈M(R), then

[ρn ∗ (f μ) – (ρn ∗ f )(ρn ∗ μ)] −→
n→∞

0 in L1(R).

Lemma 2.2 Let f : R→R be uniformly continuous and bounded. If g ∈ L∞(R), then

[ρn ∗ (fg) – (ρn ∗ f )(ρn ∗ g)] −→
n→∞

0 in L∞(R).

Lemma 2.3 Let T > 0. If f , g ∈ L2((0, T); H1(R)) and df
dt , dg

dt ∈ L2((0, T); H–1(R)), then f , g
are a.e. equal to a function continuous from [0, T] into L2(R) and

〈
f (t), g(t)

〉
–

〈
f (s), g(s)

〉
=

∫ t

s

〈
d(f (τ ))

dτ
, g(τ )

〉
dτ +

∫ t

s

〈
d(g(τ ))

dτ
, f (τ )

〉
dτ

for all s, t ∈ [0, T].

Lemma 2.4 Assume that u(t, ·) ∈ W 1,1(R) is uniformly bounded in W 1,1(R) for all t ∈R+.
Then for a.e. t ∈R+

d
dt

∫

R

|ρn ∗ u|dx =
∫

R

(ρn ∗ ut) sgn(ρn ∗ u) dx

and

d
dt

∫

R

|ρn ∗ ux|dx =
∫

R

(ρn ∗ uxt) sgn(ρn ∗ ux) dx.
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Lemmas 2.1–2.4 can be found in [11].

3 Global weak solution
Lemma 3.1 Let u0 ∈ L3(R) ∩ Hs(R), s > 3

2 and y0 = (1 – ∂2
x )u0 ≥ 0 for all x ∈ R. Then the

solutions of problem (6) exist globally in time. Moreover, if y(t, ·) = u – uxx, then, for all
t ∈R+,

(i) y(t, ·) ≥ 0, u(t, ·) ≥ 0, |ux(t, ·)| ≤ u(t, ·) and ‖u(t, ·)‖L∞(R) ≤ 3
2‖u0‖2

L3(R)t + ‖u0‖L∞

on R.
(ii) ‖u‖H1 ≤ ‖u0‖H1 exp[ 3

2‖u0‖2
L3(R)t

2 + 2‖u0‖L∞ t].

Proof The proof of (i) may be found in [17]. Now, we prove (ii).
Multiplying the first equation of problem (6) by u and integrating by parts, we find

1
2

d
dt

∫

R

(
u2 + u2

x
)

dx =
∫

R

u3
x dx –

∫

R

2uu2
x dx,

≤ 2‖ux‖L∞
∫

R

(
u2 + u2

x
)

dx, (7)

which yields

‖u‖2
H1 ≤ ‖u0‖2

H1 e4
∫ t

0 ‖ux‖L∞ dτ

≤ ‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖u0‖L∞ t
]
, (8)

where the Gronwall inequality and (i) were used. This proves (ii) and completes the proof
of the lemma. �

Theorem 3.1 Let u0 ∈ H1(R) ∩ L3(R), and y0 = (u0 – u0xx) ∈ M+(R). Then problem (6)
has a unique solution u ∈ W 1,∞(R+ ×R) ∩ L∞

loc(R+; H1(R)) with initial value u0 and such
that (u – uxx) ∈M+, a.e. t ∈R+ is uniformly bounded on R.

Proof We split the proof of Theorem 3.1 in two parts.
Let u0 ∈ H1(R) and y0 = u0 – u0,xx ∈M+(R). Note that u0 = G ∗ y0. Thus, for ϕ ∈ L∞(R),

we have

‖u0‖L1(R) = ‖G ∗ y0‖L1(R) = sup
‖ϕ‖L∞(R)≤1

∫

R

ϕ(x)(G ∗ y0)(x) dx

= sup
‖ϕ‖L∞(R)≤1

∫

R

ϕ(x)
∫

R

G(x – ξ )y0(ξ ) dξ dx

= sup
‖ϕ‖L∞(R)≤1

∫

R

(G ∗ ϕ)(ξ )y0(ξ ) dξ

= sup
‖ϕ‖L∞(R)≤1

‖G ∗ ϕ‖L∞(R)‖y0‖M(R)

≤ sup
‖ϕ‖L∞(R)≤1

‖G‖L1(R)‖ϕ‖L∞(R)‖y0‖M(R) = ‖y0‖M(R). (9)

Let us define un
0 := ρn ∗ u0 ∈ H∞(R) for n ≥ 1. Obviously, we get

un
0 → u0 in H1(R) for n → ∞
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and

∥
∥un

0
∥
∥

H1(R) = ‖ρn ∗ u0‖H1(R) = ‖ρn ∗ u0‖L2 +
∥
∥ρn ∗ u′

0
∥
∥

L2 ≤ ‖u0‖H1(R),
∥
∥un

0
∥
∥

L∞(R) =
∥
∥G ∗ yn

0
∥
∥

L∞(R) ≤ ∥
∥yn

0
∥
∥

L1(R) ≤ ‖y0‖M,
∥∥un

0
∥∥

L3(R) = ‖ρn ∗ u0‖L3(R) ≤ ‖ρn‖L1‖u0‖L3 ≤ ‖u0‖L3 .

(10)

Note that, for all n ≥ 1,

yn
0 := un

0 – un
0,xx = ρn ∗ (y0) ≥ 0.

Referring to the proof of (9), we have

∥∥yn
0
∥∥

L1(R) ≤ ‖y0‖M(R), n ≥ 1.

From Lemma 3.1, we know that there exists a global strong solution,

un = un(·, un
0
) ∈ C

(
[0,∞); Hs(R)

) ∩ C1([0,∞); Hs–1(R)
)
, s ≥ 3

2
,

and un(t, x) – un
xx(t, x) ≥ 0 for all (t, x) ∈R+ ×R.

Note that for all (t, x) ∈R+ ×R

(
un)2 =

∫ x

–∞
2unun

x dξ ≤
∫

R

[(
un)2 +

(
un

x
)2]dξ =

∥∥un∥∥2
H1 . (11)

From Lemma 3.1 and (10), we obtain

∥∥un
x
∥∥2

L∞(R) ≤ ∥∥un∥∥2
L∞(R) ≤ ∥∥un∥∥2

H1(R)

≤ ∥
∥un

0
∥
∥2

H1 exp
[
3
∥
∥un

0
∥
∥2

L3 t2 + 4
∥
∥un

0
∥
∥

L∞ t
]

≤ ‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
. (12)

From the Hölder inequality, Lemma 3.1 and (10), for all t ≥ 0 and n ≥ 1, we have

∥
∥2un(t)un

x(t)
∥
∥

L2(R) ≤ 2
∥
∥un(t)

∥
∥

L∞(R)

∥
∥un

x(t)
∥
∥

L2(R) ≤ 2
∥
∥un∥∥2

H1(R)

≤ 2
∥∥un

0
∥∥2

H1 exp
[
3
∥∥un

0
∥∥2

L3 t2 + 4
∥∥un

0
∥∥

L∞ t
]

≤ 2‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
. (13)

Using the Young inequality, we get

∥∥∂xG ∗ [(
un)2 +

((
un)2)

x

]∥∥
L2(R)

≤ ∥
∥∂xG ∗ (

un)2∥∥
L2(R) +

∥
∥∂xG ∗ (

un)2
x

∥
∥

L2(R)

≤ ‖∂xG‖L2(R)
∥∥(

un)2∥∥
L1(R) + ‖∂xG‖L2(R)

∥∥((
un)2)

x

∥∥
L1(R)

≤ 2‖∂xG‖L2(R)
∥∥un∥∥2

H1(R)
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≤ 2‖∂xG‖L2(R)
∥∥un

0
∥∥2

H1 exp
[
3
∥∥un

0
∥∥2

L3 t2 + 4
∥∥un

0
∥∥

L∞ t
]

≤ 2‖∂xG‖L2(R)‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
, (14)

where ‖∂xG‖L2(R) is bounded.
Applying (13)–(14) and problem (6), we have

∥∥∥
∥

d
dt

un
∥∥∥
∥

L2(R)

≤ 2
(
1 + ‖∂xG‖L2(R)

)‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
. (15)

For fixed T > 0, from (12) and (15), we deduce

∫ T

0

∫

R

([
un(t, x)

]2 +
[
un

x(t, x)
]2 +

[
un

t (t, x)
]2)dx dt ≤ M, (16)

where M is a positive constant depending only on ‖Gx‖L2(R), ‖u0‖H1(R), ‖u0‖L3(R), ‖y0‖M(R)

and T . It follows that the sequence {un}n≥1 is uniformly bounded in the space H1((0,
T) ×R). Thus, we can extract a subsequence such that

unk ⇀ u, weakly in H1((0, T) ×R
)

for nk → ∞, (17)

and

unk → u, a.e. on (0, T) ×R for nk → ∞, (18)

for some u ∈ H1((0, T) ×R). From Lemma 3.1 and (10), for fixed t ∈ (0, T), we see that the
sequence unk

x (t, ·) ∈ BV(R) satisfies

V
[
unk

x (t, x)
]

=
∥
∥unk

xx (t, ·)∥∥L1(R) ≤ ∥
∥unk (t, ·)∥∥L1(R) +

∥
∥ynk (t, ·)∥∥L1(R)

≤ 2
∥∥unk

0 (t, ·)∥∥L1(R) ≤ 2
∥∥u0(t, ·)∥∥L1(R) ≤ 2

∥∥y0(t, ·)∥∥M(R)

and

∥∥unk
x (t, ·)∥∥L∞ ≤ ∥∥unk

∥∥
L∞(R) ≤ ∥∥unk

∥∥
H1(R) ≤ ‖u0‖H1(R).

Applying Helly’s theorem [21], we infer that there exists a subsequence, denoted again
{unk

x (t, ·)}, which converges at every point to some function ν(t, ·) of finite variation with

V
(
ν(t, ·)) ≤ 2‖y0‖M(R).

From (18), we get, for almost all t ∈ (0, T), unk
x (t, ·) → ux(t, ·) in D′(R). It follows that ν(t, ·) =

ux(t, ·) for a.e. t ∈ (0, T). Therefore, we have

unk
x (t, ·) → ux(t, ·) a.e. on (0, T) ×R for nk → ∞, (19)
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and for a.e. t ∈ (0, T),

V
[
ux(t, ·)] =

∥∥uxx(t, ·)∥∥M(R) = 2‖u0‖L1 ≤ 2‖y0‖M(R). (20)

By Lemma 3.1 and (12), we have

∥∥(
un)2 +

((
un)2)

x

∥∥
L2(R) ≤ ∥∥(

un)2∥∥
L2(R) +

∥∥((
un)2)

x

∥∥
L2

≤ ∥
∥un∥∥

L∞
∥
∥un∥∥

L2(R) + 2
∥
∥un

x
∥
∥

L∞
∥
∥un∥∥

L2

≤ ∥∥un∥∥2
H1(R) + 2

∥∥un∥∥2
H1(R)

= 3
∥
∥un∥∥2

H1(R)

≤ 3‖u0‖2
H1 exp

[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
.

Note that, for fixed t ∈ (0, T), the sequence {(un)2 + ((un)2)x}n≥1 is uniformly bounded
in L2(R). Therefore, it has a subsequence {(unk )2 + ((unk )2)x}nk≥1 which converges weakly
in L2(R). From (18), we infer that the weak L2(R)-limit is {(u)2 + (u2)x}. It follows from
Gx ∈ L2(R) that

∂xG ∗ ((
unk

)2 +
((

unk
)2)

x

) → ∂xG ∗ (
u2 +

(
u2)

x

)
for nk → ∞. (21)

From (18), (19) and (21), we see that u solves Eq. (6) in D′((0, T) ×R).
For fixed T > 0, noticing that unk

t is uniformly bounded in L2(R) as t ∈ [0, T) and
‖unk (t)‖H1(R) is uniformly bounded for all t ∈ [0, T) and n ≥ 1, we infer that the family
t → unk ∈ H1(R) is weakly equicontinuous on [0,T]. An application of the Arzela–Ascoli
theorem shows that {unk } has a subsequence, denoted again {unk }, which converges weakly
in H1(R), uniformly in t ∈ [0, T). The limit function is u. T being arbitrary, we see that u
is locally and weakly continuous from [0,∞) into H1(R), i.e., u ∈ Cw,loc(R+; H1(R)).

Since for a.e. t ∈ R+, unk (t, ·) ⇀ u(t, ·) weakly in H1(R), from Lemma 3.1, we get

∥∥u(t, ·)∥∥L∞(R) ≤ ∥∥u(t, ·)∥∥H1(R) ≤ lim inf
nk→∞

∥∥unk (t, ·)∥∥H1(R)

≤ ‖u0‖H1 exp
[
3‖u0‖2

L3 t2 + 4‖y0‖Mt
]
. (22)

Inequality (22) shows that

u ∈ L∞
loc(R+ ×R) ∩ L∞

loc
(
R+; H1(R)

)
.

From (10), for t ∈R+, we obtain

∥
∥un

x(t, ·)∥∥L∞ ≤ ∥
∥un∥∥

L∞(R) ≤ ‖u0‖H1(R).

Combining with (18), we have

ux ∈ L∞(R+ ×R). (23)
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Finally, we prove (u(t, ·) – uxx(t, ·)) ∈ M+ is uniformly bounded on R and u(t, x) ∈
W 1,∞(R+ ×R).

We have

L1(R) ⊂ (
L∞)∗ ⊂ (

C0(R)
)∗ = M(R).

From (20), we get for a.e. t ∈R+

∥∥u(t, ·) – uxx(t, ·)∥∥M(R) ≤ ∥∥u(t, ·)∥∥L1(R) +
∥∥uxx(t, ·)∥∥M(R)

≤ ‖u0‖L1(R) + 2‖y0‖M(R) ≤ 3‖y0‖M(R).

The above inequality implies that, for a.e. t ∈ R+, (u(t, ·) – uxx(t, ·)) ∈ M(R) is uniformly
bounded on R. For fixed T ≥ 0, applying (17) and (18), we have

[unk (t, ·) – unk
xx (t, ·)] → [

u(t, ·) – uxx(t, ·)] in D′(R) for n → ∞.

Since (unk (t, ·) – unk
xx (t, ·)) ≥ 0 for all (t, x) ∈ R+ × R, we obtain, for a.e. t ∈ R+, (u(t, ·) –

uxx(t, ·)) ∈M+(R).
Note that u(t, x) = G ∗ (u(t, x) – uxx(t, x)). Then we get

∣∣u(t, x)
∣∣ =

∣∣G ∗ (
u(t, x) – uxx(t, x)

)∣∣ ≤ ‖G‖L∞(R)
∥∥u(t, x) – uxx(t, x)

∥∥
M(R)

≤ 3‖y0‖M(R).

Combining with (23), it implies that u(t, x) ∈ W 1,∞(R+ ×R).
This completes the proof of the existence of Theorem 3.1.
Next, we present the uniqueness proof of Theorem 3.1.
Let u, v ∈ W 1,∞(R+ ×R) ∩ L∞

loc(R+; H1(R)) be two global weak solutions of problem (6)
with the same initial data u0. Assume that (u(t, ·)–uxx(t, ·)) ∈M+(R) and (v(t, ·)–vxx(t, ·)) ∈
M+(R) are uniformly bounded on R+ and set

N := sup
t∈R+

{∥∥u(t, ·) – uxx(t, ·)∥∥M(R) +
∥∥v(t, ·) – vxx(t, ·)∥∥M(R)

}
.

From the assumption, we know that N < ∞. Then, for all (t, x) ∈R+ ×R,

∣∣u(t, x)
∣∣ =

∣∣G ∗ (
u(t, x) – uxx(t, x)

)∣∣

≤ ‖G‖L∞(R)
∥∥u(t, x) – uxx(t, x)

∥∥
M(R) ≤ N

2
(24)

and

∣
∣ux(t, x)

∣
∣ =

∣
∣Gx ∗ (

u(t, x) – uxx(t, x)
)∣∣

≤ ‖Gx‖L∞(R)
∥
∥u(t, x) – uxx(t, x)

∥
∥
M(R) ≤ N

2
. (25)

Similarly

∣∣v(t, x)
∣∣ ≤ N

2
,

∣∣vx(t, x)
∣∣ ≤ N

2
, (t, x) ∈ R+ ×R. (26)
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Following the same procedure as in (9), we may also get

∥∥u(t, x)
∥∥

L1 =
∥∥G ∗ (

u(t, x) – uxx(t, x)
)∥∥

L1(R)

≤ ‖G‖L1(R)
∥∥u(t, x) – uxx(t, x)

∥∥
M(R) ≤ N , (27)

∥∥ux(t, x)
∥∥

L1(R) =
∥∥Gx ∗ (

u(t, x) – uxx(t, x)
)∥∥

L1(R)

≤ ‖Gx‖L1(R)
∥∥u(t, x) – uxx(t, x)

∥∥
M(R) ≤ N , (28)

and for all (t, x) ∈R+ ×R

∥∥v(t, x)
∥∥

L1(R) ≤ N ,
∥∥vx(t, x)

∥∥
L1(R) ≤ N . (29)

We define

w(t, x) := u(t, x) – v(t, x), (t, x) ∈R+ ×R.

Convoluting Eq. (6) for u and v with ρn, we get, for a.e. t ∈R+ and all n ≥ 1,

ρn ∗ ut + ρn ∗ (–2uux) + ρn ∗ ∂xG ∗ [
u2 +

(
u2)

x

]
= 0 (30)

and

ρn ∗ vt + ρn ∗ (–2vvx) + ρn ∗ ∂xG ∗ [
v2 +

(
v2)

x

]
= 0. (31)

Subtracting (31) from (30) and using Lemma 2.4, integration by parts shows that for a.e.
t ∈R+ and all n ≥ 1

d
dt

∫

R

|ρn ∗ w|dx =
∫

R

(ρn ∗ wt) sgn(ρn ∗ w) dx

= 2
∫

R

(ρn ∗ wux) sgn(ρn ∗ w) dx

+ 2
∫

R

(ρn ∗ vwx) sgn(ρn ∗ w) dx

+
∫

R

(
ρn ∗ ∂xG ∗ w(u + v)

)
sgn(ρn ∗ w) dx

– 2
∫

R

(ρn ∗ ∂xG ∗ wxu) sgn(ρn ∗ w) dx

– 2
∫

R

(ρn ∗ ∂xG ∗ wvx) sgn(ρn ∗ w) dx. (32)

Using (24)–(26) and the Young inequality to the first term on the right-hand of (32) yields

∣
∣∣∣

∫

R

(
ρn ∗ (wux)

)
sgn(ρn ∗ w) dx

∣
∣∣∣

≤
∫

R

∣
∣(ρn ∗ (wux)

)∣∣dx
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≤
∫

R

|ρn ∗ w||ρn ∗ ux|dx +
∫

R

∣∣ρn ∗ (wux) – (ρn ∗ w)(ρn ∗ ux)
∣∣dx

≤ ‖ρn ∗ ux‖L∞
∫

R

|ρn ∗ w|dx

+
∫

R

∣∣ρn ∗ (wux) – (ρn ∗ w)(ρn ∗ ux)
∣∣dx

≤ ‖ρn‖L1‖ux‖L∞
∫

R

|ρn ∗ w|dx

+
∫

R

∣
∣ρn ∗ (wux) – (ρn ∗ w)(ρn ∗ ux)

∣
∣dx

≤ N
2

∫

R

|ρn ∗ w|dx +
∫

R

∣∣ρn ∗ (wux) – (ρn ∗ w)(ρn ∗ ux)
∣∣dx. (33)

Similarly, we obtain

∣∣
∣∣

∫

R

(
ρn ∗ (wxv)

)
sgn(ρn ∗ w) dx

∣∣
∣∣

≤
∫

R

∣
∣(ρn ∗ (wxv)

)∣∣dx

≤
∫

R

|ρn ∗ wx||ρn ∗ v|dx +
∫

R

∣∣ρn ∗ (wxv) – (ρn ∗ wx)(ρn ∗ v)
∣∣dx

≤ N
2

∫

R

|ρn ∗ wx|dx +
∫

R

∣
∣ρn ∗ (wxv) – (ρn ∗ wx)(ρn ∗ v)

∣
∣dx (34)

and

∣∣
∣∣

∫

R

(
ρn ∗ ∂xG ∗ [

w(u + v)
])

sgn(ρn ∗ w) dx
∣∣
∣∣

≤
∫

R

∣∣(ρn ∗ G ∗ [
wx(u + v)

]∣∣dx

+
∫

R

∣∣(ρn ∗ G ∗ [
w(u + v)x

]∣∣dx

≤ 1
2

∫

R

∣
∣ρn ∗ [

wx(u + v)
]∣∣dx +

1
2

∫

R

∣
∣ρn ∗ [

w(ux + vx)
]∣∣dx

≤ N
2

∫

R

|ρn ∗ wx|dx +
N
2

∫

R

|ρn ∗ w|dx

+
∫

R

∣
∣ρn ∗ (

wx(u + v)
)

– (ρn ∗ wx)
[
ρn ∗ (u + v)

]∣∣dx

+
∫

R

∣
∣ρn ∗ [

w(u + v)x
]

– (ρn ∗ w)
[
ρn ∗ (u + v)x

]∣∣dx. (35)

For the last term on the right-hand side of (32), we have

∣
∣∣∣

∫

R

(
ρn ∗ ∂xG ∗ (wxu)

)
sgn(ρn ∗ w) dx

∣
∣∣∣

≤
∫

R

∣
∣ρn ∗ ∂xG ∗ (wxu)

∣
∣dx
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≤ ‖∂xG‖L1(R)

∫

R

∣∣ρn ∗ (wxu)
∣∣dx

≤ N
∫

R

|ρn ∗ wx|dx +
∫

R

(
∣
∣ρn ∗ (wxu) – (ρn ∗ wx)(ρn ∗ u)

∣
∣dx (36)

and
∣∣
∣∣

∫

R

(
ρn ∗ ∂xG ∗ (wvx)

)
sgn(ρn ∗ w) dx

∣∣
∣∣

≤
∫

R

∣∣ρn ∗ ∂xG ∗ (wvx)
∣∣dx

≤ ‖∂xG‖L1(R)

∫

R

∣∣ρn ∗ (wvx)
∣∣dx

≤ N
∫

R

|ρn ∗ w|dx +
∫

R

∣
∣ρn ∗ (wvx) – (ρn ∗ w)(ρn ∗ vx)

∣
∣dx. (37)

From (33)–(37), for a.e. t ∈R+ and all n ≥ 1, we find

d
dt

∫

R

|ρn ∗ w|dx ≤ 2N
∫

R

|ρn ∗ w|dx

+ 2N
∫

R

|ρn ∗ wx|dx + Rn(t), (38)

where
⎧
⎨

⎩
Rn(t) → 0 as t → ∞,

|Rn(t)| ≤ K , n ≥ 1, t ∈ R+,
(39)

where K is a positive constant depending on N and the H1(R)-norms of u(0) and v(0).
In the same way, convoluting Eq. (6) for u and v with ρn,x and using Lemma 2.4, we see

that for a.e. t ∈ R+ and all n ≥ 1

d
dt

∫

R

|ρn ∗ wx|dx =
∫

R

(ρn ∗ wxt) sgn(ρn,x ∗ w) dx

= 2
∫

R

(
ρn ∗ wx(ux + vx)

)
sgn(ρn,x ∗ w) dx

+ 2
∫

R

(ρn ∗ vxxw) sgn(ρn,x ∗ w) dx

+ 2
∫

R

(ρn ∗ uwxx) sgn(ρn,x ∗ w) dx

–
∫

R

(ρn ∗ ∂xxG ∗ [(
u2 – v2) +

(
u2)

x –
(
v2)

x

]
sgn(ρn,x ∗ w) dx. (40)

Using the identity ∂2
x (G ∗ g) = G ∗ g – g for g ∈ L2(R) and the Young inequality, we estimate

the fourth term of the right-hand side of (40):
∣
∣∣∣

∫

R

(ρn ∗ ∂xxG ∗ [(
u2 – v2) +

(
u2)

x –
(
v2)

x

]
dx

∣
∣∣∣

≤
∫

R

∣
∣(ρn ∗ G ∗ [(

u2 – v2) +
(
u2)

x –
(
v2)

x

]∣∣dx
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+
∫

R

∣∣(ρn ∗ [(
u2 – v2) +

(
u2)

x –
(
v2)

x

]∣∣dx

≤ (‖G‖L1(R) + 1
)∫

R

∣
∣(ρn ∗ [

w(u + v) + 2uwx + 2wvx
]∣∣dx

≤ 2
∫

R

∣∣(ρn ∗ [
w(u + v)

]∣∣dx + 4
∫

R

∣∣(ρn ∗ [uwx + wvx
)
]
∣∣dx

≤ 4N
∫

R

|ρn ∗ w|dx + 2N
∫

R

|ρn ∗ wx|dx + Rn. (41)

Using (24)–(26) and the Young inequality to the first term on the right-hand of (40) gives
rise to

2
∫

R

(
ρn ∗ wx(ux + vx)

)
sgn(ρn,x ∗ w) dx

≤ 2
∫

R

∣
∣ρn ∗ wx(ux + vx)

∣
∣dx

≤ 2
∫

R

|ρn ∗ wx|
∣
∣ρn ∗ (ux + vx)

∣
∣dx

+ 2
∫

R

∣∣ρn ∗ wx(ux + vx) – (ρn ∗ wx)
(
ρn ∗ (ux + vx)

)∣∣dx

≤ 2N
∫

R

|ρn ∗ wx|dx + Rn. (42)

To treat the second term of the right-hand side of (40), we note that
∣
∣∣∣2

∫

R

(ρn ∗ vxxw) sgn(ρn,x ∗ w) dx
∣
∣∣∣ ≤ 2

∫

R

∣∣(ρn ∗ w)(ρn ∗ vxx)
∣∣dx

+ 2
∫

R

∣
∣(ρn ∗ vxxw) – (ρn ∗ w)(ρn ∗ vxx)

∣
∣dx. (43)

Applying Lemma 2.1, the second expression of right-hand of (43) can be estimated by
a function Rn(t) belonging to (39). Making use of the Hölder inequality and (9), for a.e.
t ∈R+ and all n ≥ 1, we have

∫

R

∣
∣(ρn ∗ w)(ρn ∗ vxx)

∣
∣dx ≤ ‖ρn ∗ w‖L∞(R)‖ρn ∗ vxx‖L1(R)

≤ ‖ρn ∗ w‖W 1,1(R)‖vxx‖M(R). (44)

It follows from (43) and (44) that
∣∣∣
∣2

∫

R

(ρn ∗ vxxw) sgn(ρn,x ∗ w) dx
∣∣∣
∣ ≤ 2N

∫

R

|ρn ∗ w|dx

+ 2N
∫

R

|ρn ∗ wx| + Rn(t). (45)

Now, we deal with the third term on the right-hand side of (40)

2
∫

R

(ρn ∗ uwxx) sgn(ρn,x ∗ w) dx

= 2
∫

R

(ρn ∗ u)(ρn ∗ wxx) sgn(ρn,x ∗ w) dx
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+ 2
∫

R

[
(ρn ∗ uwxx) – (ρn ∗ u)(ρn ∗ wxx)

]
sgn(ρn,x ∗ w) dx

≤ 2
∫

R

(ρn ∗ u)
∂

∂x
|ρn ∗ wx|dx

+ 2
∫

R

∣
∣(ρn ∗ uwxx) – (ρn ∗ u)(ρn ∗ wxx)

∣
∣dx

= 2
∫

R

(ρn ∗ ux)|ρn ∗ wx|dx + Rn. (46)

Therefore, (46) implies that for a.e. t ∈R+ and all n ≥ 1

∣∣
∣∣2

∫

R

(ρn ∗ uwxx) sgn(ρn,x ∗ w) dx
∣∣
∣∣ ≤ N

∫

R

|ρn ∗ wx|dx + Rn. (47)

From (41), (42), (45) and (47), for a.e. t ∈R+ and all n ≥ 1, we deduce

d
dt

∫

R

|ρn ∗ wx|dx ≤ 6N
∫

R

|ρn ∗ w|dx

+ 7N
∫

R

|ρn ∗ wx|dx + Rn. (48)

Combining with (38) and (48), we find

d
dt

∫

R

(|ρn ∗ w| + |ρn ∗ wx|
)

dx ≤ 8N
∫

R

|ρn ∗ w|dx

+ 9N
∫

R

|ρn ∗ wx|dx + Rn

≤ 9N
∫

R

(|ρn ∗ w| + |ρn ∗ wx|
)

dx + Rn. (49)

It follows from the Gronwall inequality that for a.e. t ∈R+ and all n ≥ 1

∫

R

(|ρn ∗ w| + |ρn ∗ wx|
)

dx ≤
[∫ t

0
Rn(s) ds

+
∫

R

(|ρn ∗ w| + |ρn ∗ wx|
)
(0, x) dx

]
e9Nt . (50)

Fix t > 0 and let n → ∞ in (50). Since w = u – v ∈ W 1,1(R) and Eq. (39) holds, making use
of Lebesgue’s dominated convergence theorem yields

∫

R

(|w| + |wx|
)

dx ≤
[∫

R

(|w| + |wx|
)
(0, x) dx

]
e9Nt . (51)

Note that w(0) = wx(0) = 0, therefore, we obtain u(t, x) = v(t, x) for a.e. (t, x) ∈R+ ×R. This
completes the proof of the theorem. �
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