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Abstract
In this paper, we approximate the solution of fractional Bagley–Torvik equation by
using the exponential spline function and the shifted Grünwald difference operator.
The proposed methods reduce to the system of algebraic equations. The
convergence analysis of the methods has been discussed. The numerical examples
are presented to illustrate the applications of the methods and to compare the
computed results with the other methods.
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1 Introduction
Fractional calculus is an old topic in mathematical analysis, which goes back to Leibniz
(1695) and Euler (1730) (see [15, 16]). In recent years, the numerical solution of frac-
tional equations has become a popular topic in applied sciences control and engineering.
Bagley–Torvik equation appears in the modeling of the motion of a rigid plate submerged
in a Newtonian fluid [6]. Existence and uniqueness theorem for Bagley–Torvik equation
with Dirichlet boundary condition is given in [5]. In this article, the exponential spline will
be employed to obtain the approximate solution of Bagley–Torvik equation with Caputo
derivative

u′′(x) + ηDαu(x) + μu(x) = f (x), m – 1 ≤ α ≤ m, x ∈ [a, b], (1)

subject to boundary conditions

u(a) – ω1 = u(b) – ω2 = 0. (2)

Here, Dα is the Caputo derivative, f (x) is a continuous function, ωi (i = 1, 2), η, μ are real
constants, and m = 1 or 2. In general, it is difficult to solve most of the fractional differen-
tial equations analytically. Therefore, numerical methods to find an approximate solution
and qualitative behaviors of the solution for fractional differential equation have been in-
vestigated by authors in [1–9, 11, 14, 19–25, 27–29], and some references therein. The
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reproducing kernel method is employed for the fractional order differential equations in
[1–3]. In [21], numerical solution of boundary value problem of fractional Bagley–Torvik
equation is given in the reproducing kernel space. In [14], the authors study the numerical
approach based on operational matrices of fractional differential equations with a hybrid
of block-pulse functions and Chebyshev polynomials. The existence of positive and neg-
ative solutions and properties of their derivatives for the generalized Bagley–Torvik frac-
tional differential equation is given in [24]. Numerical solution of the fractional Bagley–
Torvik equation arising in fluid mechanics based on Taylor matrix method is given in [11].
In [29] the numerical solutions for fractional boundary value problem have been found by
cubic spline polynomials. The numerical scheme for solving two-point fractional Bagley–
Torvik equation using the Chebyshev collocation method has been solved in [22]. In [23]
the Bagley–Torvik equation as a prototype fractional differential equation with two deriva-
tives is investigated by means of homotopy perturbation method. The numerical solution
to the Bagley–Torvik equation by exponential integrators is discussed in [9]. Also Ado-
mian decomposition method for solving the initial value problem of Bagley–Torvik equa-
tion is discussed in [19], fractional linear multistep method and a predictor-corrector
method of Adams type based on finite difference methods for initial value problem of
Bagley–Torvik equation are discussed in [8]; Legendre operational matrix method for
fractional differential equation is applied in [20]; and a combination of collocation points
and first-order Bessel functions, which is called Bessel-collocation method for boundary
value problem of Bagley–Torvik equation, is discussed in [27]. Quadratic spline solution
for boundary value problem of fractional order is applied in [28], and an exponential spline
technique for solving fractional boundary value problem is employed in [4].

The first aim of the present work is to explore exponential spline interpolation with mul-
tiple parameters and to produce the error of approximate exponential spline. The second
aim is to introduce a new approximate technique to find solutions of fractional boundary
value problem, and we demonstrate the convergence analysis for this technique.

In [10], the authors tried to approximate the solution of nonlinear fractional differential
pantograph equations by sinc interpolation. At first, they have transformed the problem
into a nonlinear integral equation with some delay terms and the kernel of this integral
equation is weakly singular for the case 0 < α < 1, thus the solution is weakly singular and
the numerical methods cannot achieve high accuracy in approximating solutions. The
main advantage of our algorithm is that it can be used directly without using assumption
or transformation formulae.

This paper is organized into four sections. In Sect. 2, we describe basic definitions
and the nonpolynomial spline method to approximate the solutions of fractional Bagley–
Torvik equation. Convergence analysis is proved in Sect. 3. In Sect. 4, the numerical exam-
ples are given to illustrate the applications of the method, and also the computed results
are compared with another known method in [4, 9, 17, 21, 28, 29].

2 Basic definitions and description of the methods
In this section, we recall some definitions and properties of the fractional calculus theory,
which are used in this paper. There are several definitions of a fractional derivative of order
α > 0, such as Riemann–Liouville, Grunwald–Letnikov, and Caputo. In the present work,
Caputo and Grunwald–Letnikov fractional derivatives are used for the formulation of the
problem.
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Definition 1 Let u(x) be a function defined on (a, b), then the Riemann–Liouville frac-
tional derivative is of the following form [5]:

RDα
(
u(x)

)
=

1
Γ (m – α)

dm

dxm

∫ x

a
(x – t)m–α–1u(t) dt, α > 0, m – 1 < α < m,

where Γ is the gamma function.

Definition 2 The left Riemann–Liouville fractional integral [5]

D–α
a+ u(x) =

1
Γ (α)

∫ x

a
(x – t)α–1u(t) dt, α > 0,

D–α
b– u(x) =

1
Γ (α)

∫ b

x
(t – x)α–1u(t) dt, α > 0.

Definition 3 Let u(x) be a function defined on (a, b), then the Caputo fractional derivative
is of the following form [5]:

Dα
(
u(x)

)
=

1
Γ (m – α)

∫ x

a
(x – t)m–α–1u(m)(t) dt, α > 0, m – 1 < α < m. (3)

Definition 4 The Grunwald definition for the fractional derivative is defined in the fol-
lowing form [5]:

Aα
h,p

(
u(x)

)
= lim

1
hα

∞∑

k=0

gα,ku
(
x – (k – p)h

)
, (4)

where Aα
h,p(u(x)) =R Dα(u(x)) + O(h) and gα,k = Γ (k–α)

Γ (–α)Γ (k+1) .

Definition 5 The weighted and shifted Grünwald difference operator is as follows [25].
Let u(x) ∈ L1(R), ∞Dα+2

x (u(x)), and its Fourier transform belongs to L1(R),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aDα
h,p,qu(x) = ϑ

hα

∑[ x–a
h ]+p

k=0 gα,ku(x – (k – p)h)

+ (1–ϑ)
hα

∑[ x–a
h ]+q

k=0 gα,ku(x – (k – q)h) + O(h2),

bDα
h,p,qu(x) = ϑ

hα

∑[ b–x
h ]+p

k=0 gα,ku(x + (k – p)h)

+ (1–ϑ)
hα

∑[ b–x
h ]+q

k=0 gα,ku(x + (k – q)h) + O(h2),

(5)

where x ∈ R, ϑ ∈ [0, 1], also p and q (p �= q) are integers and symmetric.

Let us consider a mesh with nodal points xi on [a, b] such that

� : a = x0 < x1 < x2 < · · · < xn–1 < xn = b,

where h = b–a
n , xi = a + ih for i = 0(1)n.

Let u(x) be the exact solution of (1) and Si be an approximation to ui = u(xi) obtained
by the exponential spline function Qi(x) ∈ C∞[a, b] passing through the points (xi, Si) and
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(xi+1, Si+1). Then in each subinterval the parametric spline segment Qi(x) has the following
form (see [12, 18, 26]):

Qi(x) =
4∑

k=1

aik ekβ(x–xi), (6)

where β is a free parameter of the spline functions which can be real or pure imaginary
and which will be used to raise the accuracy of the method, see [26].

To derive the coefficients aik , k = 1, 2, 3, 4, of equation (6), we first define

⎧
⎨

⎩
Qi(xi) = ui, Q(2)

i (xi) = Mi,

Qi(xi+1) = ui+1, Q(2)
i (xi+1) = Mi+1.

(7)

By algebraic manipulation we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1 = e–θ (5e3θ Mi – 7e4θ Mi – 5eθ Mi+1 + 7Mi+1 – 80e3θ τ 2ui

+ 28e4θ τ 2ui + 80eθ τ 2ui+1 – 28τ 2ui+1),

ρ2 = –e–2θ (8e3θ Mi – 7e4θ Mi – 7e5θ Mi + 7eθ Mi+1 – 8e2θ Mi+1

+ 7Mi+1 – 128e3θ τ 2ui + 7e4θ τ 2ui + 7e5θ τ 2ui – 7eθ τ 2ui+1

+ 128e2θ τ 2ui+1 – 7τ 2ui+1),

ρ3 = e–2θ (e2θ Mi + e3θ Mi – 4e4θ Mi – eθ Mi+1 – e2θ Mi+1

+ 4Mi+1 – 16e2θ τ 2ui – 16e3θ τ 2ui + 4e4θ τ 2ui

+ 16eθ τ 2ui+1 + 16e2θ τ 2ui+1 – 4τ 2ui+1),

ρ4 = –e–2θ (3e2θ Mi – 5e3θ Mi – 3eθ Mi+1 + 5Mi+1 – 27e2θ τ 2ui

+ 5e3θ τ 2ui + 27eθ τ 2ui+1 – 5τ 2ui+1),

ρ5 = 3(eθ – 1)(–18eθ + 7e2θ + 7)τ 2,

ai1 =
ρ1

ρ5
, ai2 =

ρ2

ρ5
, ai3 =

ρ3

ρ5
, ai4 =

ρ4

ρ5
, (8)

where θ = hβ . Applying the continuity of the first derivative of Q′
i(x) = Q′

i–1(x) at x = xi for
i = 1, . . . , n – 1, we get the following consistency relation:

h2(α1Mi–1 + α2Mi + α3Mi+1) = α4ui+1 + α5ui + α6ui–1, (9)

where

α1 =
2e–2θ (eθ – 1)2

3θ2 , α2 =
4(eθ + 1)(eθ – 1)2

3θ2 ,

α3 =
2e3θ (eθ – 1)2

3θ2 , α4 =
2
3

e–2θ
(
–11eθ + 16e2θ + 1

)
,

α5 =
2
3
(
eθ + 1

)(
–28eθ + 11e2θ + 11

)
, α6 =

2
3

e3θ
(
–11eθ + e2θ + 16

)
.

For the development of consistency relations between the exponential spline approx-
imation and its derivatives at the nodal points, we consider the following four rela-
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tions:
⎧
⎨

⎩
Qi(xi) = ui, Q′

i(xi) = mi,

Qi(xi+1) = ui+1, Q′
i(xi+1) = mi+1.

(10)

After a simple calculation, we obtain the values of coefficients, and using the second-order
derivative continuity at the knots xi, for i = 1, . . . , n – 1, we get

h(β1mi–1 + β2mi + β3mi+1) = (β4ui–1 + β5ui + β6ui+1), (11)

where

β1 = –2e–2θ , β2 = –4
(
eθ + 1

)
,

β3 = –2e3θ , β4 =
2e–2θ (4eθ – 1)θ

eθ – 1
,

β5 = 10
(
eθ + 1

)
θ , β6 =

2e3θ (eθ – 4)θ
eθ – 1

.

In the limiting case, when θ → 0, relations (9) and (11) reduce into the ordinary cubic
spline relation:

⎧
⎨

⎩

h2

6 [Mi–1 + 4Mi + Mi+1] = ui+1 – 2ui + ui–1, i = 1, . . . , n – 1, (I)

–2h(mi–1 + 4mi + mi+1) = (6ui–1 – 6ui+1), i = 1, . . . , n – 1. (II)
(12)

The proposed differential Eq. (1) in the mesh point (xi) may be discretized by

Mi = fi – ηDα
t ui – μui, i = 1, . . . , n – 1. (13)

Lemma 1 The local truncation error xi associated with equations (9) and (11) for i =
1, . . . , n – 1 in the limiting case when θ → 0 is given by

∣∣u′′
i – Q′′

i
∣∣ =

h2

12
Q(4)

i + O
(
h4), (14)

∣∣Q′′
i – u′′

i
∣∣ =

h2

12
u(4)

i + O
(
h4), (15)

∣
∣u′

i – Q′
i
∣
∣ =

h4

180
Q(5)

i + O
(
h5), (16)

∣∣Q′
i – u′

i
∣∣ =

h4

180
u(5)

i + O
(
h5). (17)

Proof The above expressions can be obtained by expanding the terms Mi+1, Mi–1, mi+1,
mi–1, ui+1, and ui–1 about the points xi in relations (12) using Taylor series respectively.
Moreover,

⎧
⎨

⎩
u′′

i = Q′′
i + h2

12 Q(4)
i + h4

240 Q(6)
i – h6

6048 Q(8)
i + O(h7), i = 1, . . . , n – 1, (I)

Q′′
i = u′′

i – h2

12 u(4)
i + h4

360 u(6)
i + 17h6

60480 u(8)
i + O(h7), i = 1, . . . , n – 1. (II)

(18)
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In a similar manner, we get

⎧
⎨

⎩
u′

i = Q′
i + h4

180 Q(5)
i + h6

1512 Q(7)
i – h8

14,400 Q(9)
i + O(h9), i = 1, . . . , n – 1, (III)

Q′
i = u′

i – h4

180 u(5)
i + h6

1512 u(7)
i + h8

25,920 u(8)
i + O(h9), i = 1, . . . , n – 1. (IV)

(19)

�

2.1 Cubic and exponential splines method for approximate fractional
Bagley–Torvik equation

In this section, we give some methods to approximate Dα(u(x))|x=xi by using spline func-
tion.

Method I. The discrete approximation of the Caputo fractional derivative Dα(u(x)) can
be obtained by a cubic spline (in the limiting case when θ → 0, the relations of exponential
spline reduce into ordinary cubic spline relation) formula as follows (see [12] and [13]):

Mi + ηDα
(
u(x)

)|x=xi + μui = fi, i = 1, 2, 3, . . . , n – 1. (20)

Using the Caputo fractional derivative for 1 < α < 2, we get

Dα
(
u(x)

)|x=xi =
1

Γ (2 – α)

∫ xi

0
(xi – η)1–αu′′(η) dη. (21)

Using a piecewise technique, the following equation is obtained using equation (21) and
Lemma 1:

Dα
(
u(x)

)|x=xi =
1

Γ (2 – α)

i∑

j=1

∫ jh

(j–1)h

(
Q′′(η) + O

(
h2))(xi – η)1–α dη. (22)

Since (xi –η)1–α does not change sign on [(j – 1)h, jh], by the weighted mean value theorem
for integrals and by applying to each integration of the last summation, we get

∫ jh

(j–1)h

(
Q′′(η) + O

(
h2))(xi – η)1–α dη =

(
Q′′(η) + O

(
h2))

∫ jh

(j–1)h
(xi – η)1–α dη,

where η ∈ [(j – 1)h, jh]. After simple calculations, equations (6), (10), and (22) become

Dα
(
u(x)

)|x=xi

=
1

Γ (3 – α)

i∑

j=1

(
–

6(ηj – xi)(–hmj – hmj+1 – 2uj + 2uj+1)
h3

–
2(2hmj + hmj+1 + 3uj – 3uj+1)

h2 O
(
h2)

)
(
(xi – jh + h)2–α – (xi – jh)2–α

)

=
1

Γ (3 – α)

i∑

j=1

(
(xi – jh + h)2–α – (xi – jh)2–α

)
(

6(xi – jh)
h2 –

4
h

)
mj

+
1

Γ (3 – α)

i∑

j=1

(
(xi – jh + h)2–α – (xi – jh)2–α

)(6(xi – jh)
h2 –

2
h

)
mj+1
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+
1

Γ (3 – α)

i∑

j=1

(
(xi – jh + h)2–α – (xi – jh)2–α

)(12(xi – jh)
h3 –

6
h

)
uj

+
1

Γ (3 – α)

i∑

j=1

(
(xi – jh + h)2–α – (xi – jh)2–α

)(–12(xi – jh)
h3 –

6
h2

)
uj+1

+
1

Γ (m – α + 1)

i∑

j=1

(
(xi – jh + h)2–α – (xi – jh)2–α

)(
O

(
h2)). (23)

Using [12] and [13], we have ‖Q′′ – u′′‖∞ = O(h2). Also we obtain the following relation
for i = 1, 2, . . . , n – 1:

Mi +
η

Γ (3 – α)

i∑

j=1

aijmj +
η

Γ (3 – α)

i∑

j=1

bijmj+1

+
η

Γ (3 – α)

i∑

j=1

cijuj +
η

Γ (3 – α)

i∑

j=1

dijuj+1 + μui

= fi, i = 1, 2, 3, . . . , n – 1. (24)

aij =
(
(xi – jh + h)2–α – (xi – jh)2–α

)
(

6(xi – jh)
h2 –

4
h

)
,

bij+1 =
(
(xi – jh + h)2–α – (xi – jh)2–α

)(6(xi – jh)
h2 –

2
h

)
,

cij =
(
(xi – jh + h)2–α – (xi – jh)2–α

)(12(xi – jh)
h3 –

6
h

)
,

dij+1 =
(
(xi – jh + h)2–α – (xi – jh)2–α

)(–12(xi – jh)
h3 –

6
h2

)
,

where ain = cin = bi1 = di1 = 0 for i = 1, 2, . . . , n. Also we approximate ui by ûi and mi by m̂i

such that ûi and m̂i for i = 1, 2, . . . , n satisfy system (11). We get

M̂i +
η

Γ (m – α + 1)

( i∑

j=1

aijm̂j +
i∑

j=1

bij ˆmj+1 +
i∑

j=1

cijûj +
i∑

j=1

dij ˆuj+1

)

+ μûi = fi, i = 1, 2, 3, . . . , n. (25)

Finally, we approximate the exact solution ui by the natural cubic spline function Q̂i(x)
for i = 1, 2, . . . , n. In the matrix notation, we get

M̂ +
η

Γ (m – α + 1)
(Am̂ + Bm̂ + CÛ + DÛ) + μÛ = F , (26)

where A = (aij), B = (bij), C = (cij), and D = (dij). Now, the values M̂i and m̂i are determined
as the solutions of linear systems (12)(I) and (12)(II). We approximate m̂0 = –3û0+4û1–û2

2h ,
m̂n = 3ûn–2–4ûn–1–ûn

2h , and also, by using boundary conditions, we approximate M̂i for i = 0, n.
We need the following lemma.
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Lemma 2 The matrices W and Z are obtained with the help of systems (9) and (11) in-
vertible.

Proof The values M̂i are determined as the solutions of the following linear system:

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

1 0 0 0 . . . . . . 0 0 0 0
1 10 1 0 . . . . . . 0 0 0 0
0 1 10 1 . . . . . . 0 0 0 0
...

...
. . .

. . .
. . .

. . . . . .
...

...
...

...
...

...
. . .

. . .
. . . . . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
0 0 0 0 . . . . . . 1 10 1 0
0 0 0 0 . . . . . . 0 1 10 1
0 0 0 0 . . . . . . 0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

M̂0

M̂1

M̂2
...
...
...
...

M̂n–2

M̂n–1

M̂n

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=
12
h2

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

û0
û0 – 2û1 + û2
û1 – 2û2 + û3

...

...

...

...
ûn–3 – 2ûn–2 + ûn–1
ûn–2 – 2ûn–1 + ûn

ûn

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

. (27)

Also the values m̂i are determined as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . . . . 0 0 0 0
1 10 1 0 . . . . . . 0 0 0 0
0 1 10 1 . . . . . . 0 0 0 0
...

...
. . . . . . . . . . . . . . .

...
...

...
...

...
...

. . .
. . .

. . . . . .
...

...
...

...
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

...
. . . . . . . . . . . . . . .

...
...

0 0 0 0 . . . . . . 1 10 1 0
0 0 0 0 . . . . . . 0 1 10 1
0 0 0 0 . . . . . . 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

m̂0
m̂1
m̂2

...

...

...

...
m̂n–2
m̂n–1
m̂n

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=
24
h

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

–3û0+4û1–û2
48

û2 – û0
û3 – û1

...

...

...

...
ûn–1 – ûn–3
ûn – ûn–2

3ûn–2–4ûn–1–ûn
48

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

. (28)

Also, for determining the values M̂i and m̂i, in the limiting case when θ → 0, by using
relations (12), the matrices W and Z are strictly diagonally-dominant matrices, then the
matrices W and Z are invertible. Hence,

⎧
⎨

⎩
h2W M̂ = RÛ , M̂ = 1

h2 W –1RÛ ,

hZm̂ = SÛ , m̂ = 1
h Z–1SÛ .

(29)

Therefore, from (26) and (29) we obtain
(

h2W –1R +
η

h
(
AZ–1S + BZ–1S + C + D

)
+ μI

)
Û = F . (30)

�

Method II. Suppose that Mj = Q′′(xj) is approximated u′′(xj) in the subintervals [(j –
1)h, jh] for i = 1, 2, 3, . . . , n – 1 and j = 1, 2, . . . , i. Also, by using equation (23), the follow-
ing recurrence relation is obtained:

Dα
(
u(x)

)|x=xi =
h2–α

Γ (3 – α)

i∑

j=1

M̂j
(
(i – j + 1)2–α – (i – j)2–α

)
+ O

(
h2).
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Bagley–Torvik equation (1)–(2) for 1 < α < 2 can be discretized as follows:

M̂i +
ηh2–α

Γ (3 – α)

i∑

j=1

(
(i – j + 1)2–α – (i – j)2–α

)
M̂j + μûi

= fi, i = 1, 2, 3, . . . , n. (31)

Finally, we approximate the exact solution ui by the natural cubic spline function Q̂i(x)
for i = 1, 2, . . . , n. In the matrix notation, we get

M̂ + ηh2–α(ρM̂) + μÛ = F , (32)

where ρ = 1
Γ (3–α)

∑i
j=1((i – j + 1)2–α – (i – j)2–α).

Hence, from (29) and (32) we also obtain

1
h2 W –1RÛ + ηh2–α

(
ρ

1
h2 W –1RÛ

)
+ μÛ = F . (33)

Method III. In this section, we approximate the exact solution by use of the Caputo frac-
tional derivative for 0 < α < 1 as follows:

Dα
(
u(x)

)|x=xi =
1

Γ (1 – α)

∫ xi

0
(xi – η)–αu′(η) dη. (34)

Using a piecewise technique, equation (34) becomes

Dα
(
u(x)

)|x=xi =
1

Γ (1 – α)

i∑

j=1

∫ jh

(j–1)h

(
Q′(η) + O

(
h3))(xi – η)–α dη. (35)

Since (xi – η)–α does not change sign on [(j – 1)h, jh], by the weighted mean value theorem
for integrals and by applying to each integration of the last summation, we get

∫ jh

(j–1)h

(
Q′(η) + O

(
h3))(xi – η)–α dη =

(
Q′(η) + O

(
h3))

∫ jh

(j–1)h
(xi – η)–α dη. (36)

After simple calculations, from equations (34) and (36) we get

Dα
(
u(x)

)|x=xi =
1

Γ (2 – α)

i∑

j=1

(
Q′(jh) + O

(
h3))((xi – jh + h)1–α – (xi – jh)1–α

)

=
1

Γ (2 – α)

i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)(
ai1τeθ (j–i))

+
1

Γ (2 – α)

i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)(
2ai2τe2θ (j–i))

+
1

Γ (2 – α)

i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)(
3ai3τe3θ (j–i))



Emadifar and Jalilian Boundary Value Problems         (2020) 2020:20 Page 10 of 20

+
1

Γ (2 – α)

i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)(
4ai4τe4θ (j–i))

+
1

Γ (2 – α)

i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)(
O

(
h3)), (37)

where aik for i = 1, 2, 3, 4 are given in relation (8).
The values Mj, j = 0, 1, 2, . . . , n, are determined by using (9) with natural boundary con-

ditions M0 = Q′′(a) = Mn = Q′′(b) = 0; in consequence, we approximate ui by ûi and Mi by
M̂i so that ûi and M̂i for i = 1, 2, . . . , n – 1 satisfy system (9). We get

M̂i +
ηh

Γ (2 – α)

(
(eθ – 1)2(7eθ – 3)

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

) i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)
M̂j

+
ηh

Γ (2 – α)

(
2e–2θ (eθ – 1)2

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

) i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)
M̂j+1

+
η

hΓ (2 – α)

(
2(46eθ – 29e2θ + 7e3θ – 18)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

) i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)
ûj

+
η

hΓ (2 – α)

(
–

2e–2θ (–11eθ + 16e2θ + 1)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

) i∑

j=1

(
(xi – jh + h)1–α – (xi – jh)1–α

)
ûj+1

+ μûi = fi + O
(
h2), i = 1, 2, . . . , n – 1. (38)

This implies that

M̂i +
ηh2–α

Γ (2 – α)

(
(eθ – 1)2(7eθ – 3)

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

) i∑

j=1

(λ̇ij)M̂j

+
ηh2–α

Γ (2 – α)

(
2e–2θ (eθ – 1)2

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

) i∑

j=1

(λ̈ij+1)M̂j+1

+
ηh–α

Γ (2 – α)

(
2(46eθ – 29e2θ + 7e3θ – 18)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

) i∑

j=1

(λ̃ij)ûj

+
ηh–α

Γ (2 – α)

(
–

2e–2θ (–11eθ + 16e2θ + 1)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

) i∑

j=1

(λ̄ij+1)ûj+1

+ μûi = fi + O
(
h2), i = 1, 2, . . . , n – 1, (39)

where λ̇ = (λ̇ij) = λ̈ = (λ̈ij) = λ̃ = (λ̃ij) = λ̄ = (λ̄ij) = ((i– j+1)1–α –(i– j)1–α) for i = 1, 2, . . . , n–1
such that (λ̇i0) = (λ̇in) = (λ̈i0) = (λ̈i1) = (λ̃i0) = (λ̃in) = (λ̄i0) = (λ̄i1) = 0. In the matrix notation,
we get

M̂ +
ηh2–α

Γ (2 – α)

(
(eθ – 1)2(7eθ – 3)

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

)
(λ̇)M̂

+
ηh2–α

Γ (2 – α)

(
2e–2θ (eθ – 1)2

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

)
(λ̈)M̂
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+
ηh–α

Γ (2 – α)

(
2(46eθ – 29e2θ + 7e3θ – 18)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

)
(λ̃)Û

+
ηh–α

Γ (2 – α)

(
–

2e–2θ (–11eθ + 16e2θ + 1)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

)
(λ̄)Û

+ μÛ = F + O
(
h2), (40)

(
I + h2–αΠ1 + h2–αΠ2

)
M̂ +

(
h–αΠ3 + h–αΠ4 + μI

)
Û = F , (41)

where M̂ = (M̂1, M̂1, . . . , M̂n)t , Û = (û1, û2, . . . , ûn)t , and F = (f1, f2, . . . , fn)t . By using (29) and
(41), we have

(
I + h2–αΠ1 + h2–αΠ2

) 1
h2 W –1RÛ +

(
h–αΠ3 + h–αΠ4 + μI

)
Û = F (42)

such that

Π1 =
η

Γ (2 – α)

(
(eθ – 1)2(7eθ – 3)

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

)
(λ̇),

Π2 =
η

Γ (2 – α)

(
2e–2θ (eθ – 1)2

3(eθ – 1)(–18eθ + 7e2θ + 7)θ

)
(λ̈),

Π3 =
η

Γ (2 – α)

(
2(46eθ – 29e2θ + 7e3θ – 18)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

)
(λ̃),

Π4 =
η

Γ (2 – α)

(
–

2e–2θ (–11eθ + 16e2θ + 1)θ
3(eθ – 1)(–18eθ + 7e2θ + 7)

)
(λ̄).

2.2 The weighted and shifted Grünwald difference operator and exponential
spline function

Method IV. In this section, we would like to develop a numerical method based on the
methods in references [4, 25, 29], and [28]. Also we investigate the convergence analysis of
this method. Let U = (ui), S = (si), C = (ci), T = (ti), and E = (ei) = U – S = U – Qi(x) be (n –
1)-dimensional column vectors. We used the weighted and shifted Grünwald difference
operator and exponential spline function. By using consistency relation (12)(I) and using
the boundary condition, we get the system of algebraic equations

NS = h2BM + C, (43)

where

N =

⎧
⎪⎪⎨

⎪⎪⎩

–2 i = j = 1, 2, . . . , n – 1,

–1 |i – j| = 1,

0 otherwise,

B =

⎧
⎪⎪⎨

⎪⎪⎩

4
6 i = j = 1, 2, . . . , n – 1,
1
6 |i – j| = 1,

0 otherwise,

(44)

C =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

–S0 + h2

6 M0

0
...
0

–Sn + h2

6 Mn

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (45)
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We assume that F = (f1, f2, f3, . . . , fn–1)t , S = (s1, s2, s3, . . . , sn–1)t

M = F – μS – h–α
(
(G1 + G2)S + G3 + G4

)
, (46)

where

G1 = ηϑ

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
gα,0 0
gα,1 gα,0 0
gα,2 gα,1 gα,0 0

...
...

...
. . . . . .

gα,n–3 gα,n–4 . . . . . . gα,0 0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, (47)

G2 = η(1 – ϑ)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

gα,0

gα,1 gα,0

gα,2 gα,1 gα,0
...

...
. . . . . .

gα,n–2 gα,n–3 . . . gα,1 gα,0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (48)

G3 = ηϑω1

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

gα,0

gα1

gα,2
...

gα,n–3

gα,n–2

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

, G4 = η(1 – ϑ)ω1

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

gα,1

gα2

gα,3
...

gα,n–2

gα,n–1

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

. (49)

Substituting equation (46) into equation (43), we obtain

NS + h2–αBG1S + h2–αBG2S + μh2BS

= h2BF – h2–αBG3 – h2–αBG4 + C (50)

and

NU + h2–αBG1U + h2–αBG2U + μh2BU

= h2BF – h2–αBG3 – h2–αBG4 + C + T . (51)

Now the error equation can be written as follows:

NE + h2–αBG1E + h2–αBG2E + μh2BE = T . (52)

In order to get a bound on ‖E‖ (the infinite norm), we need the following lemma.

Lemma 3 Assume A to be an (n–1)× (n–1) matrix with ‖A‖∞ < 1, then the matrix (I –A)
is invertible in addition to ‖(I – A)–1‖∞ ≤ 1

1–‖A‖∞ .
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From equation (52), it can be written that

E =
(
I + h2–αN–1BG1 + h2–αN–1BG2 + μh2N–1B

)–1N–1T . (53)

Using the above lemma and (53), we get

‖E‖ ≤ ‖N–1‖‖T‖
1 – ‖N–1‖(h2–α‖B‖‖G1‖ + h2–α‖B‖‖G2‖ + |μ|h2‖B‖)

, (54)

provided that ‖N–1‖(h2–α‖B‖‖G1‖ + h2–α‖B‖‖G2‖ + |μ|h2‖B‖) < 1. Also from equation
(18) we have ‖T‖ = 1

12 h4P4, where

Max
∣∣u(4)(ηi)

∣∣ = P4 (xi < ηi < xi+1)

and ‖B‖ = 1. It was shown in [29], where ‖G1‖ ≤ 2|η|ϑ , ‖G2‖ ≤ 2|η|(1 – ϑ) for 0 < α < 1
and ‖G1‖ ≤ 4|η|ϑ , ‖G2‖ ≤ 4|η|(1 –ϑ) for 1 < α < 2. Also in [18] it was shown that ‖N–1‖ ≤
(b–a)2

8h2 .
By substituting the values of ‖B‖, ‖G1‖, ‖G2‖, and ‖N–1‖ in equation (54), we get

‖E‖ ≤ (b – a)2h2P4

12[8 – (b – a)2(2|η|h–αϑ + 2|η|h–α(1 – ϑ) + |μ|)]
≤ κ1h2+α ≡ O

(
h2+α

)
, (55)

provided (b – a)2(2|η|h–αϑ + 2|η|h–α(1 – ϑ) + |μ|) < 8 for 0 < α < 1 and 0 ≤ ϑ ≤ 1.

Theorem 1 Let Q�(x,β) = Q(x) ∈ C∞[a, b] be the unique nonpolynomial spline which in-
terpolates u(x) with relations (9) and (11). Then the following error estimates hold for cubic
spline (in the limiting case when θ → 0):

∣∣e(xi + τh)
∣∣ ≤ h4

384
φ4, Max(xi<ηi<xi+1)

∣∣u(4)(ηi)
∣∣ = φ4. (56)

Proof See [13] and [18]. Now, by using [13] we approximate ui by cubic spline Q̂i where

⎧
⎪⎪⎨

⎪⎪⎩

|Qi(x) – Q̂i(x)| ≡ O(h4),

|Q′
i(x) – Q̂′

i(x)| ≡ O(h3),

|Q′′
i (x) – Q̂′′

i (x)| ≡ O(h2),

(57)

and

Q̂i(x) =
4∑

k=1

âik ekβ(x–xi). (58)

We known that û0, ûn, M̂0, and M̂n are known from boundary conditions. The notations
M̂ = (M̂0, M̂1, M̂2, . . . , M̂n–1, M̂n)T , Û = (̂u0, û1, û2, . . . , ûn–1, ûn)T , and by using (12)(II), we
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get m̂ = (m̂0, m̂1, m̂2, . . . , m̂n–1, m̂n)T , and also Dα(u(x))|x=xi , i = 0, 1, 2, . . . , n, are taken from
(5). Therefore, by using (57) and (55), we get

‖U – Ŝ‖∞ ≤ ‖U – S‖∞ + ‖S – Ŝ‖∞ ≤ κ1h2+α + κ1h4 ≡ O
(
h2+α

)
.

It follows ‖E‖ → 0 as h → 0. Therefore the convergence of this method has been estab-
lished. �

3 Convergence analysis
In this section, we discuss the convergence analysis of exponential spline Method III. Con-
vergence analyses of Method I and Method II are similar. So, first we write equation (41)
in the points of xi, i = 1, 2, . . . , n – 1:

⎧
⎨

⎩
F(xi, u(xi), u′′(xi)) = 0, i = 0, 1, 2, . . . , n,

u(x0) = ω1, u(xn) = ω2.
(59)

Now, using the results obtained in (18), we have

⎧
⎨

⎩
F(xi, Q(xi), Q′′(xi)) = 0, i = 0, 1, 2, . . . , n,

Q(x0) = ω1, Q(xn) = ω2.
(60)

Equations (60) construct a nonlinear system, which can be solved by Newton’s iterations
method. Let u(x) be the exact solution of the problem and Q(x) ∈ C∞[0, T] be the ex-
ponential spline approximation to u(x) satisfied in Q(xi) = u(xi), i = 1, 2, . . . , n – 1, and
Q′′(xi) = u′′(xi), i = 0, n. We should approximate the error ‖u(x) – Q(x)‖. Let us assume
that Q̂(x) is the computed spline approximation to Q(x). To estimate ‖u(x) – Q(x)‖, we
will estimate ‖u(x) – Q̂(x)‖ and ‖Q̂(x) – Q(x)‖ separately.

Lemma 4 Let Q̂(x) be the unique spline interpolation to Q(x), and also suppose that partial
derivatives of F exist and | ∂F

∂u | ≤ k1, | ∂F
∂u′′ | ≤ k2 for some constants k1 and k2. Then, for 0 ≤

i ≤ n, we have

∣∣F
(
ti, Q(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q̂′′(xi)

)∣∣ ≤ O
(
h2). (61)

Proof For 1 ≤ i ≤ n – 1, we get

F
(
xi, Q(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q̂′′(xi)

)

= F
(
xi, Q(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q′′(xi)

)

+ F
(
xi, Q̂(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q̂′′(xi)

)
.

Now, using the mean value theorem for two parts of the above relation, there exist ξi and
νi such that

F
(
xi, Q(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q′′(xi)

)
=

∂F
∂u

(ξi)
(
Q(xi) – Q̂(xi)

)
,
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F
(
xi, Q̂(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q̂′′(xi)

)
=

∂F
∂u′′ (νi)

(
Q′′(xi) – Q̂′′(xi)

)
.

Using relation (57), we have |Q(xi) – Q̂(xi)| ≡ O(h4), |Q′′(xi) – Q̂′′(xi)| ≡ O(h2), and taking
the absolute value, we obtain

∣
∣F

(
xi, Q(xi), Q′′(xi)

)
– F

(
xi, Q̂(xi), Q̂′′(xi)

)∣∣

≤ k1
∣
∣Q(xi) – Q̂(xi)

∣
∣ + k2

∣
∣Q′′(xi) – Q̂′′(xi)

∣
∣

≤ k1O
(
h4) + k2O

(
h2) ≡ O

(
h2). (62)

�

Theorem 2 Let u(x) ∈ C2[0, T] be the exact solution (1) and Q(x) be the exponential spline
approximation to u(x), then we have

∥
∥u(x) – Q(x)

∥
∥ ≤ O

(
h2).

Proof Since Q̂(x) is an interpolation to u(x), thus there is a finite constant �1 independent
of h that we get

∥∥u(x) – Q̂(x)
∥∥ ≤ �1h2 ≡ O

(
h2),

where �1 is a finite constant. Now, using the triangular inequality and Lemma 1, we can
obtain the results as follows:

∥∥u(x) – Q(x)
∥∥ ≤ ∥∥u(x) – Q̂(x)

∥∥ +
∥∥Q̂(x) – Q(x)

∥∥ ≡ O
(
h2).

We can prove the convergence analysis for Method I and Method II in the same man-
ner. �

4 Numerical results
In this section, we have implemented our methods for solving some of the Bagley–
Torvik differential equations with different values of h = 1

8 , 1
16 , 1

32 , 1
64 , 1

128 , 1
256 , 1

512 , 1
1024 , and

α = 0, 0.2, 0.3, 0.4, 0.5, 0.9. The maximum absolute errors in solutions of the methods are
tabulated in tables. We compute the absolute error for examples and compare them with
the methods in [4, 9, 17, 21, 28, 29]. The convergence order (C.O.) is obtained by

C.O. = log2
E(h)
E( h

2 )
, (63)

where E(h) is the maximum absolute error. Numerical results can be derived by using
MATHEMATICA 9.

Example 1 Consider the following boundary value problem [29]:

u′′(x) + ηDαu(x) + μu(x) = f (x), u(0) = u(1) = 0, x ∈ [0, 1],
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Table 1 Observed maximum absolute errors of Example 1 by usingMethod IV with η = 0.5, μ = 1

n α = 0 α = 0.3 C.O. α = 0.5 C.O.

8 2.77× 10–17 5.70× 10–5 1.72× 10–4

16 4.16× 10–17 1.02× 10–5 2.48 3.10× 10–5 2.47
32 1.11× 10–16 2.12× 10–6 2.27 6.22× 10–6 2.32
64 8.32× 10–17 4.32× 10–7 2.29 1.32× 10–6 2.24

Table 2 Observed maximum absolute errors of Example 1 in reference [29]

n α = 0 α = 0.3 α = 0.5

8 7.33× 10–3 6.85× 10–3 6.39× 10–3

16 2.09× 10–3 1.93× 10–3 1.73× 10–3

32 5.34× 10–4 5.38× 10–4 4.95× 10–4

64 1.44× 10–4 1.52× 10–4 1.37× 10–4

128 4.02× 10–5 4.23× 10–5 3.69× 10–5

Table 3 Observed maximum absolute errors of Example 1 by usingMethod III with η = 0.5, μ = 1

n α = 0 α = 0.3 α = 0.5 α = 0.9

8 1.19× 10–3 1.46× 10–3 6.62× 10–3 8.86× 10–3

16 2.74× 10–4 2.57× 10–4 1.05× 10–3 2.01× 10–3

32 4.38× 10–5 5.89× 10–5 3.40× 10–4 4.47× 10–4

Table 4 Observed maximum absolute errors of Example 2 by usingMethod IV

n α = 0 α = 0.2 C.O. α = 0.4 C.O.

8 4.92× 10–4 4.71× 10–4 3.68× 10–4

16 3.89× 10–5 9.69× 10–5 2.28 6.29× 10–5 2.55
32 2.75× 10–6 2.22× 10–5 2.17 1.23× 10–5 2.35

where

f (x) = 4x2(5x – 3) + ηx4 – α

(
120

Γ (6 – α)
x –

24
Γ (5 – α)

)
+ μx4(x – 1),

the exact solution is given by the relation u(x) = x4(x – 1). The maximum absolute errors of
Method III and Method IV are presented in Tables 1 and 3, and also compare the computed
results with the method [29] in Table 2.

Example 2 Consider the following boundary value problem:

D–αu′′(x) + u(x) = x6(1 – x2) +
(

720
Γ (5 + α)

x4+α –
40,320

Γ (7 + α)

)
x6+α ,

u(0) = u(1) = 0, x ∈ [0, 1],

where the exact solution is given by the relation u(x) = x6(1 – x2). The maximum absolute
errors of Method III and Method IV are presented in Tables 7 and 4. Also compare the
computed results with the methods [28] and [4] in Tables 5 and 6.

Example 3 Consider the following Bagley–Torvik fractional boundary value problem:

u′′(x) + D
3
2 u(x) + u(x) = x3 + 5x +

8x 3
2√
π

, x ∈ [0, 1], u(0) = u(1) = 0,
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Table 5 Observed maximum absolute errors of Example 2 in reference [28]

n α = 0 α = 0.2 α = 0.4

8 9.29× 10–2 1.06× 10–1 1.43× 10–1

16 2.57× 10–2 2.91× 10–2 4.11× 10–2

32 7.15× 10–3 8.05× 10–3 1.10× 10–2

64 1.85× 10–3 2.21× 10–3 3.06× 10–3

Table 6 Observed maximum absolute errors of Example 2 in reference [4]

n α = 0 α = 0.2 α = 0.4

8 1.5× 10–2 1.7× 10–2 2.05× 10–2

16 5.6× 10–3 7.9× 10–3 1.14× 10–2

32 4.5× 10–3 6.6× 10–3 9.80× 10–3

Table 7 Observed maximum absolute errors of Example 2 by usingMethod III

n α = 0 α = 0.4 α = 0.9

8 3.86× 10–3 6.48× 10–3 8.58× 10–3

16 9.88× 10–4 1.16× 10–3 1.89× 10–3

32 1.95× 10–5 2.60× 10–4 8.65× 10–4

Table 8 The numerical solutions ofMethod I for different n values with exact solution for Example 3

x n = 10 n = 20 n = 40 Exact Solutions

0.1 –0.0999839029648408 –0.0991780129777646 –0.09902563129364461 –0.09900000000
0.2 –0.1929496573590681 –0.1921404327629765 –0.19201920290616248 –0.19200000000
0.3 –0.2737783729484617 –0.2731115210232273 –0.27301499021665854 –0.27300000000
0.4 –0.3366319163396341 –0.3360891417690852 –0.33601185443796866 –0.33600000000
0.5 –0.3755082480342222 –0.3750708830494593 –0.37500935812857605 –0.37500000000
0.6 –0.3844011689404432 –0.3840554682536743 –0.38400728559367271 –0.38400000000
0.7 –0.3573069005124369 –0.3570421354342761 –0.35700551447130562 –0.35700000000
0.8 –0.2882213997500855 –0.2880303912577806 –0.28800396865039084 –0.28800000000
0.9 –0.1711547289079775 –0.1710197837825782 –0.17100259741188184 –0.17100000000

Table 9 The numerical solutions for different n values with exact solution for Example 3 in [21]

x n = 10 n = 20 n = 40 Exact Solutions

0.1 –0.0989868450 –0.0989087970 –0.0989662744 –0.09900000000
0.2 –0.1915262280 –0.1918109570 –0.1919429930 –0.19200000000
0.3 –0.2722913010 –0.2727620400 –0.2729317000 –0.27300000000
0.4 –0.3351934350 –0.3357462050 –0.3359286851 –0.33600000000
0.5 –0.3741958950 –0.3747551070 –0.3749319383 –0.37500000000
0.6 –0.3832752590 –0.3837831780 –0.3839400733 –0.38400000000
0.7 –0.3564138890 –0.3568261360 –0.3569520382 –0.35700000000
0.8 –0.2875962800 –0.2878801690 –0.2879668795 –0.28800000000
0.9 –0.1708055150 –0.1709411180 –0.1709835662 –0.17100000000

the exact solution is given by u(x) = x3 – x. The numerical solutions are computed by
Methods I and IV. In order to compare the solutions with [21] in Table 9, we have taken
n = 10, 20, and 40 in Table 8. The absolute error and the order of convergence for n =
4, 8, 16, 32, 64, 128, 256, and 512 are given in Table 10.



Emadifar and Jalilian Boundary Value Problems         (2020) 2020:20 Page 18 of 20

Table 10 Observed maximum absolute errors of Example 3

n Method I Method IV

4 5.09× 10–3 8.71× 10–2

8 1.27× 10–3 4.54× 10–2

16 2.67× 10–4 2.25× 10–2

32 4.93× 10–5 1.11× 10–2

64 8.09× 10–6 5.45× 10–3

128 1.24× 10–6 2.68× 10–3

256 1.84× 10–7 1.32× 10–3

512 2.84× 10–8 6.56× 10–5

Table 11 Observed maximum absolute errors of Example 4 for γ = 3

n Method I Method II [9] [17]

8 8.91× 10–2 4.83× 10–2 1.76× 10–1 2.77× 10–1

16 2.14× 10–2 2.32× 10–2 9.09× 10–2 1.50× 10–1

32 5.26× 10–3 1.13× 10–2 4.62× 10–2 7.76× 10–2

64 1.62× 10–3 5.48× 10–3 2.33× 10–2 3.94× 10–2

128 4.73× 10–4 2.69× 10–3 1.17× 10–2 1.98× 10–2

256 1.46× 10–4 1.32× 10–3 5.85× 10–3 9.96× 10–3

512 4.46× 10–5 6.55× 10–4 2.93× 10–3 4.49× 10–3

1024 1.38× 10–5 3.26× 10–4 – –

Table 12 Observed maximum absolute errors of Example 4 for γ = 4

n Method I Method II [9] [17]

8 1.77× 10–2 7.02× 10–2 1.57× 10–2 4.76× 10–1

16 4.31× 10–3 3.49× 10–2 3.91× 10–3 2.31× 10–1

32 1.06× 10–3 1.72× 10–2 9.77× 10–4 1.13× 10–1

64 3.20× 10–4 8.40× 10–3 2.44× 10–4 5.58× 10–2

128 9.57× 10–5 4.11× 10–3 6.10× 10–5 2.77× 10–2

256 2.94× 10–5 2.02× 10–3 1.53× 10–5 1.38× 10–2

512 8.98× 10–6 9.99× 10–4 3.81× 10–6 6.90× 10–3

1024 2.77× 10–6 4.94× 10–4 – –

Example 4 Consider the following Bagley–Torvik fractional boundary value problem:

u′′(x) + D
3
2 u(x) + u(x) = γ (γ – 1)xγ –2 +

Γ (γ + 1)
Γ (γ – 1

2 )
xγ – 3

2 + xγ ,

x ∈ [0, 1], u(0) = 0, u′(0) = 0.

The exact solution is given by u(x) = xγ . The absolute errors are compared with the
methods [9] and [17]. In order to compare the solutions with [9], we have taken n =
8, 16, 32, 64, 128, 256, 512, 1024 and γ = 3, 4 in Tables 11 and 12.

5 Conclusion
Computational methods for solving the fractional Bagley–Torvik equation were proposed.
The fractional differential equation term in the fractional Bagley–Torvik equation was
discretized using the exponential spline function and the shifted Grünwald difference op-
erator. Also we obtain the four numerical schemes based on the exponential spline. The
convergence analyses of the shifted Grünwald difference and the exponential spline are
discussed. The feasibility of the numerical algorithms was illustrated with four examples,
and the approximated results were compared with the methods in [4, 9, 17, 21, 28, 29].
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