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Abstract
In the present paper, the existence of nontrivial solutions of impulsive fractional
differential equations with Dirichlet boundary conditions is studied. We apply Morse
theory coupled with local linking arguments to solve the topic, and we prove the
existence of at least one nontrivial solution for the impulsive fractional differential
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1 Introduction
Fractional calculus is a powerful tool for describing the genetic properties and memory
processes of various materials [1–3]. Fractional differential equations (FDEs) have been
widely used in the field of medical, physical, economic and technological sciences in recent
times. Though fractional differential equations containing Riemann–Liouville fractional
derivatives or Caputo fractional derivatives have got more and more attentions, the fixed
point theorems, coincidence degree theory and monotone iteration methods are still the
main approaches. For the critical point theory, we refer to [4–6] and the references therein.

In [7], the fractional boundary-value problems considered by Jiao and Zhou is listed as
follows:

⎧
⎨

⎩

– 1
2

d
dt (0D–β

t + tD–β

T )u′(t) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1.1)

where β ∈ [0, 1), 0D–β
t and tD–β

T are the left and right Riemann–Liouville fractional deriva-
tives respectively. F : [0, T]×RN → R (with N ≥ 1) is a suitable given function and ∇F(t, x)
is the gradient of F with respect to x. In this paper, the sufficient conditions for the exis-
tence of solutions are obtained by using the least action principle and the mountain path
theorem. Since then, the variational methods have been applied to study fractional differ-
ential equations; see [7–10].
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The problem (1.1) arose from the phenomenon of advection dispersion and was first
scrutinized by Ervin and Loop in [11]. From then on, the existence and multiplicity of so-
lutions for the above problem (1.1) or related problems were further studied by the authors
in [12–15] with the critical point theory.

The impulsive differential equations originated from the real world problems to describe
the dynamics of processes in which sudden, discontinuous jumps occur. Due to their sig-
nificance, many researchers established the solvability of impulsive differential equations.
If you are interested in the general theory and applications of such equations, please refer
to [16–18] and the references therein.

Up to now, there are few papers that use variational methods and critical point theory
to study the fractional boundary-value problems with impulses [19–24].

In [22], the authors use variational methods and critical point theory to study the fol-
lowing fractional differential systems with impulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

tD
αi
T (ai(t)c

0Dαi
t ui(t)) = λFui (t, u) + hi(ui(t)), 0 < t < T , t �= tj,

�(tD
αi–1
T (c

0Dαi
t ui)(tj) = Iij(ui(tj)), j = 1, 2, . . . , m,

ui(0) = ui(T) = 0, 1 ≤ i ≤ N .

In [23], the authors have considered the following boundary-value problems of impul-
sive fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– 1
2

d
dt (0D–βi

t + tD
–βi
T )u′

i(t)

= ai(t)ui(t) + Fui (t, u(t)), 1 ≤ i ≤ N , t �= tj, a.e. t ∈ [0, T],

�(Dαi
t ui)(tj) = Iij(ui(tj)), tj ∈ (0, T), j = 1, 2, . . . , l,

ui(0) = ui(T) = 0, 1 ≤ i ≤ N ,

(1.2)

where u = (u1, . . . , uN ), |u| =
√

∑N
i=1 u2

i , βi ∈ [0, 1), αi = 1 – βi
2 ∈ ( 1

2 , 1] for 1 ≤ i ≤ N , 0D–βi
t ,

tD
–βi
T are the left and right Riemann–Liouville fractional integrals of order βi, c

0Dαi
t and

c
t Dαi

T are the left and right Caputo fractional derivative of order ai, ai ∈ L∞[0, T], 0 = t0 <
t1 < t2 < · · · < tl < tl+1 = T , Iij ∈ C([0, T], R), F : [0, T]×RN → R is measurable, continuously
differentiable, Fui denotes the partial derivative of F with respect to ui for 1 ≤ i ≤ N , and

(
Dαi

t ui
)
(tj) =

1
2
{

0Dαi–1
t

(c
0Dαi

t ui
)

– tD
αi–1
T

(c
t Dαi

T ui
)}

(tj),

�
(
Dαi

t ui
)
(tj) =

1
2
{

0Dαi–1
t

(c
0Dαi

t ui
)

– tD
αi–1
T

(c
t Dαi

T ui
)}(

t+
j
)

–
1
2
{

0Dαi–1
t

(c
0Dαi

t ui
)

– tD
αi–1
T

(c
t Dαi

T ui
)}(

t–
j
)
,

{
0Dαi–1

t
(c

0Dαi
t ui

)
– tD

αi–1
T

(c
t Dαi

T ui
)}(

t+
j
)

= lim
t→t+

j

{
0Dαi–1

t
(c

0Dαi
t ui

)
– tD

αi–1
T

(c
t Dαi

T ui
)}

(t),

{
0Dαi–1

t
(c

0Dαi
t ui

)
– tD

αi–1
T

(c
t Dαi

T ui
)}(

t–
j
)

= lim
t→t–

j

{
0Dαi–1

t
(c

0Dαi
t ui

)
– tD

αi–1
T

(c
t Dαi

T ui
)}

(t),

for j = 1, . . . , l, 1 ≤ i ≤ N .
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On the other hand, in recent years, Morse theory has been used to discuss the exis-
tence of solutions of differential equations [25, 26]. However, to the best of our knowledge,
Morse theory is rarely applied to the impulsive fractional boundary-value problems.

In [27], based on Morse theory coupled with local linking arguments, the authors stud-
ied the following impulsive fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

0Dα
t u(t)) + k(t)u(t) = f (t, u), 0 < t < T , t �= tj,

�(tDα–1
T (c

0Dαi
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

Motivated by the work above, we will investigate the existence of at least one nontrivial
weak solution of problem (1.2) by Morse theory. Compared with the research in [23], the
method of this paper is different.

To investigate problem (1.2), we make the following assumptions.
(I0) Iij ∈ C([0, T], R), Iij(0) = 0, Iij(ui)ui ≥ 0 and there exist constants aj, bj > 0 and cj,γj ∈

[0, 1), such that |Iij(u)| ≤ aj|ui|γj , lim|ui|→0
|Ij(ui)|
|ui|cj = bj, i = 1, . . . , N , j = 1, . . . , l;

(I1) there exists θ1 ≥ 1 such that θ1I∗
ij (u) ≥ I∗

ij(ζ1ui), ∀ui ∈ R and ζ1 ∈ [0, 1], where

I∗
ij (u) := 2

∫ ui

0
Iij(s) ds – Iij(ui)ui.

We introduce the following conditions on the nonlinearity function Fui (t, u):
(F0) Fui (t, 0) = 0, lim|u|→0 sup |F(t,u)|

|u|2 <
∑N

i=1
Γ 2(αi+1)

2T2αi | cos(παi)| uniformly for t ∈ (0, T),
and there are constants C > 0, r, r0, γ with γ ∈ (1, maxj∈{1,2,...,l}{γj + 1}) such that

F(t, u) ≥ C|ui|γ , r ≤ |ui| ≤ r0 a.e. t ∈ [0, T];

(F1) there exists θ2 ≥ 1 such that θ2F∗(t, u) ≥ F∗(t, ζ2u), ∀(t, u) ∈ [0, T] × R, ζ2 ∈ [0, 1],
where F∗(t, u) := Fui (t, u)ui – 2F(t, u);

(F2) Fui (t, u)ui ≥ 0, ∀(t, u) ∈ [0, T] × R; lim|u|→∞
Fui (t,u)

u = +∞ uniformly for t ∈ (0, T);
(F3) lim|u|→∞ |F(t,u)|

|u|2 = +∞ uniformly for t ∈ (0, T).

Theorem 1.1 Assume that (I0), (I1), (F0), (F1), (F2) hold. Then problem (1.2) has at least
one nontrivial weak solution.

Theorem 1.2 Assume that (I0), (I1), (F0), (F1), (F3) are satisfied. Then problem (1.2) has
at least one nontrivial weak solution.

2 Preliminaries
As discussed in [23], we can transfer problem (1.2) to the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt { 1

2 0Dαi–1
t (c

0Dαi
t ui(t)) – 1

2 tD
αi–1
T (c

t Dαi
T ui(t))} + ai(t)ui(t) + Fui (t, u(t)) = 0,

1 ≤ i ≤ N , t �= tj, a.e., t ∈ [0, T],

�(Dαi
t ui)(tj) = Iij(ui(tj)), tj ∈ (0, T), j = 1, 2, . . . , l,

ui(0) = ui(T) = 0, 1 ≤ i ≤ N ,

(2.1)
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The problem (1.2) is equivalent to problem (2.1). Therefore, a solution of problem (2.1)
corresponds to a solution of the BVP (1.2).

A variational structure is established to transform the existence of solutions to prob-
lem (2.1) into the existence of corresponding functional critical points. We construct the
following appropriate function spaces.

Let us recall that, for any fixed t ∈ [0, T] and 1 ≤ p ≤ ∞,

‖u‖∞ = max
t∈[0,T]

∣
∣u(t)

∣
∣, ‖u‖Lp =

(∫ T

0

∣
∣u(s)

∣
∣p ds

) 1
p

.

For αi ∈ [0, 1), 1 ≤ i ≤ N , we define the fractional derivative spaces Eαi
0 by the closure of

C∞
0 ([0, T], RN ) with ui(0) = ui(T) under the norm

‖ui‖αi =
(∫ T

0

∣
∣c
0Dαi

t ui(t)
∣
∣2 dt +

∫ T

0

∣
∣ui(t)

∣
∣2 dt

) 1
2

, ∀ui ∈ Eαi
0 .

Obviously, the fractional derivative space Eαi
0 is the space of functions ui ∈ L2(0, T) hav-

ing αi-order Caputo left and right fractional derivatives and Riemann–Liouville left and
right fractional derivatives, c

0Dαi
t ui, c

t Dαi
T ui, 0Dαi

t ui, tD
αi
T ui ∈ L2(0, T) and ui(0) = ui(T) = 0.

Definition 2.1 ([23]) We denote u = (u1, . . . , uN ), ui ∈ Eαi
0 , (i = 1, . . . , N ) this being a weak

solution of the problem (2.1) if the following identity:

N∑

i=1

∫ T

0

{

–
1
2
[c

0Dαi
t ui(t)c

t Dαi
T vi(t) + c

t Dαi
T ui(t)c

0Dαi
t vi(t)

]
– ai(t)ui(t)vi(t)

}

dt

+
N∑

i=1

l∑

j=1

Iij
(
ui(tj)

)
vi(tj) –

N∑

i=1

∫ T

0
Fui

(
t, u(t)

)
vi(t) dt = 0

holds for all ∀vi ∈ Eαi
0 .

Consider the functional Φ : Eα1
0 × · · · × EαN

0 → R defined by

Φ(u) =
N∑

i=1

∫ T

0

{

–
1
2

c
0Dαi

t ui(t)c
t Dαi

T ui(t) –
1
2

ai(t)u2
i (t)

}

dt –
∫ T

0
F
(
t, u(t)

)
dt

+
N∑

i=1

l∑

j=1

∫ ui(tj)

0
Iij(s) ds.

From (I0) and (F0), we can infer that Φ is continuous, differentiable and for all u =
(u1, . . . , uN ), v = (v1, . . . , vN ), ui, vi ∈ Eαi

0 (i = 1, . . . , N ), and we have

〈
Φ ′(u), v

〉
=

N∑

i=1

∫ T

0

{

–
1
2
[c

0Dαi
t ui(t)c

t Dαi
T vi(t) + c

t Dαi
T ui(t)c

0Dαi
t vi(t)

]
– ai(t)ui(t)vi(t)

}

dt

+
N∑

i=1

l∑

j=1

Iij
(
ui(tj)

)
vi(tj) –

N∑

i=1

∫ T

0
Fui

(
t, u(t)

)
vi(t) dt. (2.2)
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Then, the critical point of Φ is the weak solution of (2.1).

Lemma 2.2 ([7]) Let 1
2 < α ≤ 1 and 1 < p < ∞, for all u ∈ Eα

0 , one has

‖u‖Lp ≤ Tα

Γ (α + 1)
∥
∥c

0Dα
t u

∥
∥

Lp . (2.3)

Moreover, if α > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤ Tα–1/p

Γ (α)((α – 1)q + 1)
1
q

∥
∥c

0Dα
t u

∥
∥

Lp . (2.4)

It is easy to verify that the norm ‖ui‖αi = (
∫ T

0 |c0Dαi
t ui(t)|2 dt +

∫ T
0 |ui(t)|2 dt) 1

2 is equivalent
to ‖ui‖αi = (

∫ T
0 |c0Dαi

t ui(t)|2 dt) 1
2 , ∀ui ∈ Eαi

0 . In the following, we will consider the fractional
derivative spaces Eαi

0 with respect to the norm ‖ui‖αi = (
∫ T

0 |c0Dαi
t ui(t)|2 dt) 1

2 .

Lemma 2.3 ([23]) For αi ∈ [ 1
2 , 1), 1 ≤ i ≤ N , one has

N∑

i=1

‖ui‖p
Lp ≤ Ap

N∑

i=1

‖ui‖p
αi

,
N∑

i=1

‖ui‖2
∞ ≤ B

N∑

i=1

‖ui‖2
αi

,

where Ap = max{ Tpαi
Γ p(αi+1) , 1 ≤ i ≤ N}, B = max{ T2αi–1

Γ 2(αi)(2αi–1) , 1 ≤ i ≤ N}.

Lemma 2.4 ([23]) Let 1
2 < αi ≤ 1 for 1 ≤ i ≤ N . Assume the sequence {xn} converges weakly

to x in Eαi
0 . Then xn → x strongly in C([0, T], R), i.e., ‖xn – x‖∞ → 0, as n → ∞.

Lemma 2.5 ([23]) Let 1
2 < αi ≤ 1 for 1 ≤ i ≤ N . For any ui ∈ Eαi

0 , one has

N∑

i=1

∣
∣cos(παi)

∣
∣‖ui‖2

αi
≤

N∑

i=1

–
∫ T

0

c
0Dαi

t ui(t)c
t Dαi

T ui(t) dt ≤
N∑

i=1

1
| cos(παi)| ‖ui‖2

αi
.

In the sequel, we denote X = Eα1
0 × · · ·× EαN

0 , then X is a reflexive and separable Banach
space with the norm

‖u‖X =
∥
∥(u1, . . . , uN )

∥
∥

X =
N∑

i=1

‖ui‖αi =
N∑

i=1

(∫ T

0

∣
∣c
0Dαi

t ui(t)
∣
∣2 dt

) 1
2

.

Definition 2.6 The sequence {u(k)} ⊂ X is said to be a C sequence of the functional Φ if
for u(k) = (u(k)

1 , . . . , u(k)
i , . . . , u(k)

N ), 1 ≤ k < ∞, c ∈ R, one has Φ(u(k)) → c, ‖u(k)‖X → +∞ and
〈Φ ′(u(k)), u(k)〉 → 0, as k → ∞. The functional Φ satisfies the C-condition if ever the C
sequence of Φ has a convergent subsequence.

Let E be a real Banach space and Φ ∈ C1[E, R), Q = {u ∈ E : Φ ′(u) = 0}.

Definition 2.7 ([28]) For c ∈ R, we define u as an isolated critical point of Φ with Φ(u) = c,
and define U as a neighborhood of u such that Φ has the only u as a critical point in U .
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We call

Cq(Φ , u) := Hq
(
Φc ∩ U ,Φc ∩ U\{u}),

(
q ∈ N := {0, 1, 2, . . .})

the qth critical group of Φ at u, where Φc := {u ∈ E : Φ(u) ≤ c} is the c-sublevel set, and
Hq is the singular relative homology group with coefficients in an Abelian group G.

Lemma 2.8 ([28]) If Q = {0}, then Cq(Φ ,∞) = Cq(Φ , 0), ∀q ∈ N . It follows that if
Cq(Φ ,∞) �= Cq(Φ , 0) for some q ∈ N , then Φ must have a nontrivial critical point.

Lemma 2.9 ([29]) Let 0 be a critical point of Φ with Φ(0) = 0. Suppose that Φ has a local
linking at 0 with respect to E = V ⊕ W , k = dim V < ∞, that is, there exists ρ > 0 small such
that

Φ(u) ≤ 0, ∀u ∈ V ,‖u‖ ≤ ρ and Φ(u) > 0, ∀u ∈ W , 0 < ‖u‖ ≤ ρ.

Then Ck(Φ , 0) � 0, hence 0 is a homological nontrivial point of Φ .

3 Proofs of main results
Lemma 3.1 Assume that (I0), (F0), (F2) hold, then Φ satisfies the C-condition.

Proof Assume {u(k)} is a C sequence in X, where u(k) = (u(k)
1 , . . . , u(k)

i , . . . , u(k)
N ).

First, we address the boundedness of C sequence {u(k)}.
Assume that C sequence {u(k)} is unbounded. Up to a subsequence we have

Φ
(
u(k)) → c,

∥
∥u(k)∥∥

X → +∞,
〈
Φ ′(u(k)), u(k)〉 → 0, k → ∞, c ∈ R. (3.1)

Set v(k)
i := ‖u(k)

i ‖–1
αi

u(k)
i (t) ∈ Eαi

0 \{0}, then ‖v(k)
i ‖αi = 1 for all n ∈ N , where v0 = (v01, . . . ,

v0i, . . . , v0N ), v(k) = (v(k)
1 , . . . , v(k)

i , . . . , v(k)
N ), 1 ≤ i ≤ n, 1 ≤ k < ∞. By Lemma 2.4, we have

v(k)
i → v0i in Lp([0, T]

)
, v(k)

i → v0i a.e. t ∈ [0, T].

Obvious v0i �= 0, set Σ1 := {t ∈ [0, T] : v(t) �= 0} and Σ2 := [0, T]\Σ1. Then [0, T] = Σ1 ∪Σ2

and Σ1 ∩ Σ2 = ∅. So meas(Σ1) > 0. By (3.1), we obtain

N∑

i=1

∫ T

0

{
–c

0Dαi
t u(k)

i (t)c
t Dαi

T u(k)
i (t) – ai(t)

(
u(k)

i
)2(t)

}
dt +

N∑

i=1

l∑

j=1

Iij
(
u(k)

i (tj)
)
u(k)

i (tj)

–
N∑

i=1

∫ T

0
Fu(k)

i

(
t, u(t)

)
u(k)

i (t) dt =
〈
Φ ′(u), u

〉
= o(1). (3.2)

Combining (I0) and ‖u(k)‖X → +∞, as k → ∞, we can derive

lim
k→∞

∑N
i=1

∑l
j=1 Iij(u(k)

i (tj))u(k)
i (tj)

∑N
i=1

1
| cos(παi)| ‖u(k)

i ‖2
αi

→ 0. (3.3)
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From (F2), (3.2), (3.3) and Lemma 2.5, we have

1 = lim
k→∞

∑N
i=1

∫ T
0 {–c

0Dαi
t u(k)

i (t)c
t Dαi

T u(k)
i (t) – ai(t)(u(k)

i )2(t)}dt – o(1)
∑N

i=1
∫ T

0 {–c
0Dαi

t u(k)
i (t)c

t Dαi
T u(k)

i (t) – ai(t)(u(k)
i )2(t)}dt

≥ lim
k→∞

∑N
i=1

∫ T
0 {–c

0Dαi
t u(k)

i (t)c
t Dαi

T u(k)
i (t) – ai(t)(u(k)

i )2(t)}dt – o(1)
∑N

i=1
1

| cos(παi)| ‖u(k)
i ‖2

αi

≥ lim
k→∞

∫

∑
2

∑N
i=1 Fu(k)

i
(t, u(t))u(k)

i (t) dt
∑N

i=1
1

| cos(παi)| |u
(k)
i |2

∣
∣v(k)

i (t)
∣
∣2 dt

+ lim
k→∞

∫

∑
1

∑N
i=1 Fu(k)

i
(t, u(t))u(k)

i (t) dt
∑N

i=1
1

| cos(παi)| |u
(k)
i |2

∣
∣v(k)

i (t)
∣
∣2 dt

– lim
k→∞

∑N
i=1

∑l
j=1 Iij(u(k)

i (tj))u(k)
i (tj)

∑N
i=1

1
| cos(παi)| ‖u(k)

i ‖2
αi

≥ lim
k→∞

∫

∑
1

∑N
i=1 Fu(k)

i
(t, u(t))u(k)

i (t) dt
∑N

i=1
1

| cos(παi)| |u
(k)
i |2

∣
∣v(k)

i (t)
∣
∣2 dt. (3.4)

By (F2), we have, for any t ∈ [0, T],

lim
k→∞

∑N
i=1

∫ T
0 Fu(k)

i
(t, u(t))u(k)

i (t) dt
∑N

i=1
1

| cos(παi)| |u
(k)
i |2

∣
∣v(k)

i (t)
∣
∣2 = +∞.

From Fatou’s lemma, we can get

lim
k→∞

∫

∑
1

∑N
i=1 Fu(k)

i
(t, u(t))u(k)

i (t) dt
∑N

i=1
1

| cos(παi)| |u
(k)
i |2

∣
∣v(k)

i (t)
∣
∣2 dt = +∞,

which is contradictory with (3.4), thus {u(k)} is bounded in X.
Second, we verify C sequence {u(k)} have convergent subsequence in X.
Since X is reflexive, we know that {u(k)} have a weakly convergent subsequence in X.

Hence, we have

u(k)
i ⇀ u0i ∈ Eαi

0 , i = 1, . . . , N , as k → ∞, u0 = (u01, . . . , u0i, . . . , u0N ),

u(k)
i → u0i in C

(
[0, T]

)
, i = 1, . . . , N , a.e. t ∈ [0, T].

Thus ‖u(k)
i – u01‖∞ → 0, as k → ∞. According to (2.2), it is easy to prove

〈
Φ ′(u(k)) – Φ ′(u0), u(k) – u0

〉 → 0, k → ∞.

From Lemma 2.5, we can get

0 ← 〈
Φ ′(u(k)) – Φ ′(u0), u(k) – u0

〉

=
N∑

i=1

∫ T

0

{
–
[c

0Dαi
t

(
u(k)

i – u0i
)c

t Dαi
T

(
u(k)

i – u0i
)]

– ai(t)
(
u(k)

i – u0i
)(

u(k)
i – u0i

)}
dt
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+
N∑

i=1

l∑

j=1

[
Iij

(
u(k)

i (tj) – u0i(tj)
)](

u(k)
i (tj) – u0i(tj)

)

–
N∑

i=1

∫ T

0

[
Fu(k)

i

(
t, u(t)

)
– Fu0i

(
t, u0(t)

)](
u(k)

i – u0i
)

dt

≥
N∑

i=1

∣
∣cos(παi)

∣
∣
∥
∥u(k)

i – u0i
∥
∥2

αi
+

∣
∣
∣
∣
∣

N∑

i=1

l∑

j=1

[
Iij

(
u(k)

i (tj) – u0i(tj)
)]

∣
∣
∣
∣
∣

∥
∥u(k)

i – u0i
∥
∥∞

–

∣
∣
∣
∣
∣

N∑

i=1

∫ T

0

[
Fu(k)

i

(
t, u(t)

)
– Fu0i

(
t, u0(t)

)]
∣
∣
∣
∣
∣

∥
∥u(k)

i – u0i
∥
∥∞.

Combining (I0), (F0) and ‖u(k)
i – u0i‖∞ → 0, we know

∑N
i=1 ‖u(k)

i – u0i‖αi → 0 as k → ∞
and u(k)

i → u0i in Eαi
0 , i = 1, . . . , N . Thus, {u(k)} admits a convergent subsequence, which

implies that Φ satisfies the C-condition. �

Corollary 3.2 Assume (I0), (F0), (F3) hold, then Φ satisfies the C-condition.

Lemma 3.3 Assume (I0), (I1), (F1), (F3) hold, then Cq(Φ ,∞) = 0 for every q ∈ N .

Proof Let Ω = {ui ∈ Eαi
0 : ‖ui‖αi = 1}. For ui ∈ Ω , by (I0) we have

∣
∣
∣
∣

∫ τui(tj)

0
Iij(s) ds

∣
∣
∣
∣ ≤ aj

γj + 1
∣
∣τui(tj)

∣
∣γj+1 ≤ Aγj+1

0 aj

γj + 1
|τ |γj+1‖ui‖γj+1

αi ≤ Aγj+1
0 aj

γj + 1
|τ |γj+1,

where A0 = Tαi– 1
2

Γ (αi)
√

2αi–1 . According to Fatou’s lemma and (F3), we can get

lim
τ→∞

∫ T

0

F(t, τu)
|τ |2 dt ≥

∫ T

0
lim

τ→∞
F(t, τu)
|τu|2 |u|2 dt = +∞. (3.5)

Hence ∀ui ∈ Ω , by (3.5) and Lemma 2.5, we obtain

Φ(τu) =
N∑

i=1

∫ T

0
–

1
2

c
0Dαi

t (τui)(t)c
t Dαi

T (τui)(t) dt –
N∑

i=1

1
2

ai(t)
(
τ 2u2

i
)
(t)

–
∫ T

0
F
(
t, τu(t)

)
dt +

N∑

i=1

l∑

j=1

∫ τu(tj)

0
Iij(s) ds

≤ τ 2

2

N∑

i=1

1
| cos(παi)| ‖ui‖2

αi
–

∫ T

0

F(t, τu)
|τ |2 |τ |2 dt +

N∑

i=1

l∑

j=1

Aγj+1
0 aj

γj + 1
|τ |γj+1

= τ 2

(
1
2

N∑

i=1

1
| cos(παi)| ‖ui‖2

αi
–

∫ T

0

F(t, τu)
|τ |2 dt +

N∑

i=1

l∑

j=1

Aγj+1
0 aj

(γj + 1)|τ |1–γj

)

→ –∞,

as τ → ∞.
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Let a < min{inf‖ui‖αi≤1Φ(u), 0}, for any ui ∈ Ω , then there exists τ0 > 1 such that
Φ(τu) ≤ a for τ > τ0. We can derive

N∑

i=1

∫ T

0
–c

0Dαi
t (τui)c

t Dαi
T (τui) dt

≤ 2a +
N∑

i=1

ai(t)τ 2u2
i + 2

∫ T

0
F(t, τu) dt – 2

N∑

i=1

l∑

j=1

∫ τui(tj)

0
Iij(s) ds. (3.6)

Combining (I1), (F1) with (3.6), we obtain

F∗(t, x) ≥ 0, for ∀(t, x) ∈ [0, T] × R, and I∗
j (x) ≥ 0, for ∀x ∈ R, j = 1, 2, . . . , l.

It follows (3.6) that

d
dτ

Φ(τu)

=
1
τ

( N∑

i=1

∫ T

0
–c

0Dαi
t (τui)c

t Dαi
T (τui) dt –

N∑

i=1

ai(t)
(
τ 2u2

i (t)
)

dt

+
N∑

i=1

l∑

j=1

Iij
(
τui(tj)

)
τui(tj)

–
N∑

i=1

∫ T

0
Fui (t, τu)τui dt

)

≤ 1
τ

(

2a + 2
∫ T

0
F(t, τu) dt –

N∑

i=1

∫ T

0
Fui (t, τu)τui dt +

N∑

i=1

l∑

j=1

Iij
(
τui(tj)

)
τui(tj)

– 2
N∑

i=1

l∑

j=1

∫ τui(tj)

0
Iij(s) ds

)

≤ 1
τ

(

2a –
∫ T

0
F∗(t, τu) dt –

N∑

i=1

l∑

j=1

I∗
ij
(
τui(tj)

)
)

< 0.

According to the implicit function theorem, there exists a unique S ∈ C(Ω , R), such that
Φ(S(u)u) = a. Similarly to discussing in [29], there exists a strong deformation retract from
Eαi

0 \{0} to Φai . Thus

Cq(Φ ,∞) = Hq
(
Eαi

0 , Eαi
0 \{0}) = 0, ∀q ∈ N .

So we completed the conclusion. �

Corollary 3.4 Assume (I0), (I1), (F1), (F2) hold, then Cq(Φ ,∞) = 0 for every q ∈ N .
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Since Eαi
0 (i = 1, . . . , N ) is a reflexive and separable Banach space, there exists an orthog-

onal basis {eik} of Eαi
0 such that Eαi

0 = span{eik : k = 1, 2, . . .}. For m = 1, 2, . . . , denote

Yik := span{eik}, Vim =
m⊕

k=1

Yik , Zim =
∞⊕

k=m

Yik ,

V = V1m × · · · × VNm, W = Z1m × · · · × ZNm.

Then Eαi
0 = Vim ⊕ Zim, i = 1, . . . , N , X = V ⊕ W .

Lemma 3.5 Assume (I0), (F0) hold, then there exists k0 ∈ N such that Ck0 (Φ , 0) �= 0.

Proof From (I0), (F0) we know, Fui (t, 0) = 0, Iij(0) = 0 (i = 1, . . . , N ; j = 1, . . . , l). Then we
found that the functional Φ has a trivial critical point at zero. So it has a local linking at
zero in X.

Owing to the fact that all norms of a finite dimensional normed space are equivalent,
there exist positive constants M1, M2, M′

1, M′
2, such that

M1‖ui‖αi ≤ ‖ui‖∞ ≤ M2‖ui‖αi , M′
1‖ui‖αi ≤ ‖ui‖Lγ ≤ M′

2‖ui‖αi , ui ∈ Vik .

First, we verify there exists 0 < ρ1 < 1, such that

Φ(u) < 0 for ‖u‖X < ρ1,∀u = (u1, . . . , uN ), ui ∈ Vim, i = 1, . . . , N .

Because Vim is finite dimensional, then, for given r0, such that

∣
∣ui(t)

∣
∣ ≤ r0

N
, for ‖ui‖αi ≤ ρ1

N
,∀1 ≤ i ≤ N ,

|u| ≤ r0, for ‖u‖X < ρ1 (3.7)

For any r ∈ (0, r0), we set

Ω1 =
{

t ∈ [0, T] : |u| ≤ r
}

,

Ω2 =
{

t ∈ [0, T] : r ≤ |u| ≤ r0
}

,

Ω3 =
{

t ∈ [0, T] : r0 ≤ |u|}.

Then [0, T] =
⋃3

i=1 Ωi and Ωi (i = 1, 2, 3) are pairwise disjoint.
Set F∗(t, u) = F(t, u) – C|ui|γ , it follows from (I0), (F0) and Lemma 2.5 that

Φ(u) =
N∑

i=1

∫ T

0

{

–
1
2

c
0Dαi

t ui(t)c
t Dαi

T ui(t) –
1
2

ai(t)u2
i (t)

}

dt +
N∑

i=1

l∑

j=1

∫ ui(tj)

0
Iij(s) ds

–
∫ T

0
C|ui|γ dt –

∫

Ω1

F∗(t, u(t)
)

dt –
∫

Ω2

F∗(t, u(t)
)

dt –
∫

Ω3

F∗(t, u(t)
)

dt

≤
N∑

i=1

∫ T

0

{

–
1
2

c
0Dαi

t ui(t)c
t Dαi

T ui(t) –
1
2

ai(t)u2
i (t)

}

d +
N∑

i=1

l∑

j=1

aj

γj + 1
∣
∣ui(tj)

∣
∣γj+1
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–
∫ T

0
C|ui|γ dt –

∫

Ω1

F∗(t, u(t)
)

dt –
∫

Ω2

F∗(t, u(t)
)

dt

–
∫

Ω3

F∗(t, u(t)
)

dt. (3.8)

According to (3.7) and the definition of Ω3, we have
∫

Ω3
F∗(t, u(t)) dt = 0, ∀ui ∈ Vim.

From (F0), we have F∗ > 0 on Ω2, |u| < r on Ω1. From (F0), one has

F∗(t, u) ≤
N∑

i=1

[
Γ 2(αi + 1)

2T2αi

∣
∣cos(παi)

∣
∣|u|2 – C|ui|γ

]

→ 0, as r → 0.

Hence, we can obtain
∫

Ω1
F∗(t, u(t)) dt → 0. Then, ∀u ∈ X, ‖u‖X ≤ ρ1 ≤ 1, 1 < γ <

max{γj + 1} < 2, r ∈ (0, r0), from (3.8), we can get

Φ(u) ≤ 1
2

N∑

i=1

1
| cos(παi)| ‖ui‖2

αi
+

N∑

i=1

l∑

j=1

ajA
γj+1
o

γj + 1
‖ui‖γj+1

αi – Mγ
1 C‖ui‖γ

αi

≤ max
1≤i≤N

‖ui‖γ
αi

(
1
2

N∑

i=1

1
| cos(παi)| ‖ui‖2–γ

αi
+

N∑

i=1

l∑

j=1

ajA
γj+1
o

γj + 1
‖ui‖γj+1–γ

αi – Mγ
1 C

)

≤ 0.

Next, we will prove that there exists 0 < ρ2 < 1, ∀u ∈ X, such that ‖u‖X < ρ2, and we have
Φ(u) ≥ 0.

Because the continuous embedding X → C∞
0 ([0, T], RN ) is compact. ∀u ∈ X, then, for

given ε > 0, there exists 0 < ρ2 < 1 such that |u| < ‖u‖∞ < ε, for ‖u‖X ≤ ρ2, t ∈ [0, T].
From (F0), ∀|u| < ε, for ‖u‖X ≤ ρ2, t ∈ [0, T], there exists ζ ∈ (0, 1) we know that

F(t, u) ≤
N∑

i=1

(1 – ζ )
Γ 2(αi + 1)

2T2αi

∣
∣cos(παi)

∣
∣|u|2. (3.9)

Let c = min1≤j≤l bj, c = max1≤j≤l cj. By (I0), we know e ∈ [0, 1). ∀u ∈ X, |u| < ε combining
(I0), Lemma 2.3 and (3.9), we obtain

Φ(u) ≥ 1
2

N∑

i=1

∣
∣cos(παi)

∣
∣‖ui‖2

αi
–

1
2

N∑

i=1

(1 – ζ )
∣
∣cos(παi)

∣
∣‖ui‖2

αi

–
1
2

AT
∣
∣ui(ξ )

∣
∣2 +

1
2

bl
c + 1

|ui|c+1

≥ 1
2

( N∑

i=1

∣
∣cos(παi)

∣
∣ζ‖ui‖2

αi
+ |ui|c+1

(
bl

e + 1
– AT |ui|1–c

))

> 0.

Then,

Φ(u) > 0, ∀u ∈ X, ‖u‖X ≤ ρ2 ≤ 1, t ∈ [0, T]. (3.10)

Let ρ = min{ρ1,ρ2}, according to (3.8), (3.10), we can get

Φ(u) ≤ 0, ∀u ∈ V ,‖u‖X ≤ ρ; Φ(u) > 0, ∀u ∈ W , 0 < ‖u‖X ≤ ρ,
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From Lemma 2.9, we have, Ck(Φ , 0) � 0. �

Proof of Theorem 1.1 It follows from Lemma 3.1 that Φ satisfies the C-condition. By Corol-
lary 3.4 and Lemma 3.5, we have Ck0 (Φ ,∞) �= Ck0 (Φ , 0) for some k0 ∈ N . Then we can
conclude Φ has a nontrivial critical point from Lemma 2.8. Hence, problem (1.2) has at
least one nontrivial weak solution. �

Proof of Theorem 1.1 It follows from Corollary 3.2 that Φ satisfies the C-condition. By
Lemma 3.3 and Lemma 3.5, we have Ck0 (Φ ,∞) �= Ck0 (Φ , 0) for some k0 ∈ N . Then we can
conclude Φ have a nontrivial critical point from Lemma 2.8. Hence, problem (1.2) has at
least one nontrivial weak solution. �
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