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Abstract
In this paper, we concerned the existence of solutions of the following nonlinear
mixed fractional differential equation with the integral boundary value problem:

{
CDα

1–D
β
0+u(t) = f (t,u(t),Dβ+1

0+ u(t),Dβ
0+u(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1
0 u(t)dA(t),

where CDα
1– is the left Caputo fractional derivative of order α ∈ (1, 2], and Dβ

0+ is the
right Riemann–Liouville fractional derivative of order β ∈ (0, 1]. The coincidence
degree theory is the main theoretical basis to prove the existence of solutions of such
problems.
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1 Introduction
In this paper, we study the following integral boundary value problems of the mixed frac-
tional differential equations under resonance:

{
CDα

1–Dβ
0+u(t) = f (t, u(t), Dβ+1

0+ u(t), Dβ
0+u(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1

0 u(t) dA(t),
(1.1)

where CDα
1– and Dβ

0+ are the left Caputo fractional derivative of order α ∈ (1, 2] and
the right Riemann–Liouville fractional derivative of order β ∈ (0, 1], respectively, f ∈
C([0, 1] × R

3,R), A(t) is a bounded-variation function,
∫ 1

0 x(t) dA(t) is the Riemann–
Stieltjes integral of x with respect to A. From the Lemma 2.3 we know that problem (1.1)
is resonance if

∫ 1
0 tβ+1 dA(t) = 1.

Due to the existence of solutions for boundary value problems of fractional differen-
tial equations widely used in applied science and technological science [1–5], they have
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become a popular research field. At present, many researchers study the existence of solu-
tions of fractional differential equations such as the Riemann–Liouville fractional deriva-
tive problem at nonresonance [6–16], the Riemann–Liouville fractional derivative prob-
lem at resonance [17–23], the Caputo fractional boundary value problem [6, 24, 25], the
Hadamard fractional boundary value problem [26–28], conformable fractional boundary
value problems [29–32], impulsive problems [33–35], boundary value problems [8, 36–
43], and variational structure problems [44, 45].

For example, Tang et al. [24] investigated the existence of solutions for the four-point
boundary value problems of fractional differential equations

{
Dα

0+u(t) = f (t, u(t), u′(t)), 0 ≤ t ≤ 1,
u′(0) – βu(ξ ) = 0, u′(1) + γ u(η) = 0,

where Dα
0+ denotes the Caputo fractional derivative with 1 < α ≤ 2.

Zou and He [23] investigated the integral boundary value problem for resonant frac-
tional differential equation

⎧⎪⎨
⎪⎩

–Dp
0+x(t) = f (t, x(t), Dp–1

0+ x(t), Dp–2
0+ x(t)), 0 < t < 1,

x(0) = x′(0) = 0,
x(1) =

∫ 1
0 x(t) dA(t), 2 < p < 3,

where Dp
0+ is the standard Riemann–Liouville differentiation. Using Mawhin’s coincidence

degree theory, they proved the existence of solutions.
In recent paper [9], the existence and uniqueness results for integral boundary value

problem of two-term fractional differential equations

{
Dδx(t) + f (t, x(t)) = Dτ g(t, x(t)), t ∈ (0, 1),
x(0) = 0, x(1) = 1

Γ (δ–τ )
∫ 1

0 (1 – s)δ–τ–1g(s, x(s)) ds

were considered by the Schauder fixed point theorem and the Banach contraction map-
ping principle.

Among several types of fractional differential equations found in the literature, the Ca-
puto and Riemann–Liouville derivatives are studied separately in many cases. However,
the study of resonant boundary value problems involving mixed fractional-order deriva-
tives have not been extensively studied (see [26, 46]). Motivated by the literature men-
tioned, we consider the existence of solutions for the resonant integral boundary value
problem (1.1) involving the left Caputo and right Riemann–Liouville fractional deriva-
tives by using the Mawhin’s coincidence degree theory.

In this paper, we always suppose that the following condition is satisfied:
(H1)

∫ 1
0 tβ+1 dA(t) = 1,

∫ 1
0 tβ dA(t) – 1 �= 0.

2 Preliminaries
In this paper, we first need the following necessary basic definitions.
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Definition 2.1 ([2]) The left and right Riemann–Liouville fractional integrals of order
α > 0 of a function g : (0,∞) → R are respectively given by

Iα
0+g(t) =

∫ t

0

(t – s)α–1

Γ (α)
g(s) ds

and

Iα
1–g(t) =

∫ 1

t

(s – t)α–1

Γ (α)
g(s) ds,

where the right-hand sides are pointwise defined on (0, ∞), and Γ is the gamma function.

Definition 2.2 ([2]) The left Riemann-Liouville fractional derivative and the right Caputo
fractional derivative of order α > 0 of a function g ∈ Cn((0,∞), R) are given by

Dα
0+g(t) =

dn

dtn

(
In–α

0+ g
)
(t)

and

CDα
1–g(t) = (–1)nIn–α

1– g(n)(t), n – 1 < α < n,

respectively.

Lemma 2.1 Let α ∈ (1, 2] and β ∈ (0, 1]. For y ∈ C[0, 1], the fractional differential equation

CDα
1–Dβ

0+u(t) = y(t) (2.1)

has the general solution

u(t) = Iβ
0+Iα

1–y(t) + c0
tβ

Γ (β + 1)
+ c1

tβ+1

Γ (β + 2)
+ c2tβ–1. (2.2)

Proof Applying the right fractional integral Iα
1– to (2.1) and using the properties of Caputo

fractional derivatives, we can obtain that

Dβ
0+u(t) = Iα

1–y(t) + c0 + c1t, c0, c1 ∈R.

Applying the left fractional integral Iβ
0+ to this equation and using the properties of

Riemann–Liouville fractional derivatives, we have

u(t) = Iβ
0+Iα

1–y(t) + Iβ
0+(c0 + c1t) + c2tβ–1

= Iβ
0+Iα

1–y(t) + c0
tβ

Γ (β + 1)
+ c1

tβ+1

Γ (β + 2)
+ c2tβ–1, c2 ∈R. �

Lemma 2.2 Let α ∈ (1, 2] and β ∈ (0, 1]. If y ∈ C[0, 1], then u is a solution of the fractional
differential equation

{
CDα

1–Dβ
0+u(t) = y(t), 0 < t < 1,

u(0) = u′(0) = u(1) = 0,
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if and only if

u(t) = Iβ
0+Iα

1–y(t) – tβ+1Iβ
0+Iα

1–y(1), t ∈ [0, 1].

Proof Conditions u(0) = u′(0) = 0 in (2.2) yield c0 = c2 = 0. Consequently, (2.2) reduces to

u(t) = Iβ
0+Iα

1–y(t) + c1
tβ+1

Γ (β + 2)
, t ∈ [0, 1].

By the boundary condition u(1) = 0 we have

c1 = –Γ (β + 2)Iβ
0+Iα

1–y(1).

Therefore

u(t) = Iβ
0+Iα

1–y(t) – tβ+1Iβ
0+Iα

1–y(1), t ∈ [0, 1].

This process is reversible. �

Let L : Dom L ⊂ X → Y be a Fredholm operator of index zero, where X and Y are two
real Banach spaces, and let N : X → Y be a nonlinear continuous map. If P : X → X and Q :
Y → Y are continuous projectors such that Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P,
and Y = Im L ⊕ Im Q, then LP = L|Dom L∩Ker P : Dom L ∩ Ker P → Im L is invertible. By KP we
denote the inverse of the operator LP .

Let Ω is an open bounded subset of X with Dom L ∩ Ω �= ∅. If QN(Ω) is bounded and
KP(I – Q)N : Ω → X is compact, then we call the mapping N : X → Y L-compact on Ω .

Theorem 2.1 ([47]) Let L be a Fredholm operator of index zero, and let N be L-compact
on Ω . Assume that the following conditions are satisfied:

(i) Lu �= λNu for every (u,λ) ∈ [(dom L \ Ker L) ∩ ∂Ω] × (0, 1);
(ii) Nu /∈ Im L for every u ∈ Ker L ∩ ∂Ω ;

(iii) deg(JQN |Ker L,Ω ∩ Ker L, 0) �= 0, where J : Im Q → Ker L is an isomorphism.
Then the equation Lu = Nu has at least one solution in dom L ∩ Ω .

We use the classical Banach space Y = C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1] |u(t)|
and the Banach space X = {u : [0, 1] →R | u, Dβ+1

0+ u, Dβ
0+u ∈ C[0, 1]} with the norm ‖x‖X =

max{‖u‖∞,‖Dβ+1
0+ u‖∞,‖Dβ

0+u‖∞} (see [22, 23]).
After further discussion for problems (1.1), we define two operators L and N as follows:

(Lu)(t) = CDα
1–Dβ

0+u(t), u ∈ Dom L,

(Nu)(t) = f
(
t, u(t), Dβ+1

0+ u(t), Dβ
0+u(t)

)
, u ∈ X,

(2.3)

where

Dom L =
{

u ∈ X
∣∣∣ CDα

1–Dβ
0+u ∈ Y , u(0) = u′(0) = 0, u(1) =

∫ 1

0
u(t) dA(t)

}
,

then we can write problem (1.1) as Lx = Nx.
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Next, the following lemmas play an important role in proving the existence of solutions
to (1.1).

Lemma 2.3 Let L be defined as in (2.3). Then

ker L =
{

u ∈ X | u(t) = ctβ+1, c ∈R, t ∈ [0, 1]
}

, (2.4)

Im L =
{

y ∈ Y
∣∣∣ ∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(t)

∣∣
t=1 = 0

}
. (2.5)

Proof By Lemma 2.1 CDα
1–Dβ

0+u(t) = 0 has the solution

u(t) = c0
tβ

Γ (β + 1)
+ c1

tβ+1

Γ (β + 2)
+ c2tβ–1. (2.6)

By the boundary value condition u(0) = u′(0) = 0 we can infer that c0 = c2 = 0. Conse-
quently, (2.6) reduces to

u(t) = c1
tβ+1

Γ (β + 2)
.

Then, combining with the boundary value condition u(1) =
∫ 1

0 u(t) dA(t), we have that (2.4)
holds.

If y ∈ Im L, then there exists u ∈ dom L such that y(t) = CDα
1–Dβ

0+u(t). It follows from
Lemma 2.1 and the boundary value condition u(0) = u′(0) = 0 that

u(t) = Iβ
0+Iα

1–y(t) + c1
tβ+1

Γ (β + 2)
.

Thus we have

u(1) = Iβ
0+Iα

1–y(t)
∣∣
t=1 + c1

1
Γ (β + 2)

and

∫ 1

0
u(t) dA(t) =

∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) + c1

∫ 1
0 tβ+1 dA(t)
Γ (β + 2)

=
∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) + c1

1
Γ (β + 2)

.

Using the condition u(1) =
∫ 1

0 u(t) dA(t), we obtain that

∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(t)

∣∣
t=1 = 0,

so that Im L ⊂ {y ∈ Y | ∫ 1
0 Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(t)|t=1 = 0}.

On the other hand, suppose y ∈ Y satisfies

∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(t)

∣∣
t=1 = 0.
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Let

u(t) = Iβ
0+Iα

1–y(t) + tβ+1.

Then CDα
1–Dβ

0+u(t) = y(t), u(0) = u′(0) = 0, and u(1) =
∫ 1

0 u(t) dA(t). So we obtain that y ∈
Im L.

Thus the proof of

Im L =
{

y ∈ Y
∣∣∣ ∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(t)

∣∣
t=1 = 0

}

is completed. �

Lemma 2.4 Assume that (H1) is satisfied. Then the operator L is a Fredholm operator with
index zero, and two linear continuous projectors P : X → X and Q : Y → Y are respectively
defined by

(Pu)(t) = u(1)tβ+1, u ∈ X,

Qy =
1

θ (
∫ 1

0 dA(t) – 1)

(∫ 1

0
Iβ

0+Iα
1–y(t) dA(t) – Iβ

0+Iα
1–y(1)

)
, y ∈ Y ,

where θ = Iβ
0+Iα

1–1 = 1
(α+β)Γ (α+1)Γ (β) . Furthermore, let KP : Im L → Dom L ∩ Ker P be a linear

operator defined by

KPy(t) = Iβ
0+Iα

1–y(t) – tβ+1Iβ
0+Iα

1–y(1)

=
∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(τ – s)α–1

Γ (α)
y(τ ) dτ ds

– tβ+1
∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(τ – s)α–1

Γ (α)
y(τ ) dτ ds.

Then KP is the inverse of LP = L|Dom L∩Ker P .

Proof For u ∈ X, we have

(
P2u

)
(t) = P(Pu)(t) = tβ+1[tβ+1u(1)

]∣∣
t=1 = (Pu)(t).

So P : X → X is a linear continuous projector operator with Ker P = Im L.
Since u = u–Pu+Pu, it is easy to see that u–Pu ∈ Ker P and Pu ∈ Ker L. Thus X = Ker P +

Ker L. If u ∈ Ker P ∩Ker L and so u(t) = ctβ+1, then we can conclude that (Pu)(t) = ctβ+1 = 0,
and so c = 0. Then

X = Ker P ⊕ Ker L.

Take z(t) ≡ 1 for t ∈ [0, 1]. For y ∈ Y , we have

Q2y(t) =
Qy(t)

θ (
∫ 1

0 dA(t) – 1)

(∫ 1

0
Iβ

0+Iα
1–z(t) dA(t) – Iβ

0+Iα
1–z(1)

)
= Qy(t),

which implies that Q2 = Q and Ker Q = Im L.
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For y ∈ Y , y = y – Qy + Qy, we have Y = Im L + Im Q. Moreover, by direct computation
we get Im L ∩ Im Q = {0}. Thus Y = Im L ⊕ Im Q. Therefore

dim Ker L = dim Im Q = codim Im L = 1.

This shows that L is a Fredholm operator of index zero.
Next, we will prove that KP : Im L → Dom L ∩ Ker P is the inverse of LP = L|Dom L∩Ker P .
In fact, for y ∈ Im L, we have

LPKPy = CDα
1–Dβ

0+Iβ
0+Iα

1–y = y,

and for u ∈ dom L ∩ ker P, we know that there exists y ∈ Y such that

{
CDα

1–Dβ
0+u(t) = y(t), 0 < t < 1,

u(0) = u′(0) = u(1) = 0.

In view of Lemma 2.2, we get

(KpL)u(t) = (Kpy)(t) = u(t),

which shows that KP = (L|dom L∩ker P)–1.
Thus the proof that KP is the inverse of LP = L|Dom L∩Ker P is complete. �

By standard arguments we have the following lemma.

Lemma 2.5 KP(I – Q)N : Y → Y is completely continuous.

Lemma 2.6 For y ∈ Y , let

(Ty)(t) = Iβ
0+Iα

1–y(t) =
∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(τ – s)α–1

Γ (α)
y(τ ) dτ ds. (2.7)

Then

‖Ty‖∞ ≤ 1
Γ (β + 1)Γ (α + 1)

‖y‖∞,

∥∥Dβ
0+(Ty)

∥∥∞ ≤ 1
Γ (α + 1)

‖y‖∞,

∥∥Dβ+1
0+ (Ty)

∥∥∞ ≤ 1
Γ (α)

‖y‖∞.

Moreover,

‖Ty‖X ≤ �‖y‖∞,

where � = max{ 1
αΓ (β+1) , 1} 1

Γ (α) .
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Proof Applying the left fractional derivative Dβ
0+ and Dβ+1

0+ , respectively, and using the
properties of Riemann–Liouville fractional derivatives, we get

Dβ
0+(Ty)(t) = Iα

1–y(t) =
∫ 1

t

(s – t)α–1

Γ (α)
y(s) ds

and

Dβ+1
0+ (Ty)(t) = –

∫ 1

t

(s – t)α–2

Γ (α – 1)
y(s) ds.

Consequently,

∣∣(Ty)(t)
∣∣ ≤

∣∣∣∣
∫ t

0

(t – s)β–1

Γ (β)
(1 – s)α

Γ (α + 1)
ds

∣∣∣∣‖y‖∞ ≤
∣∣∣∣
∫ t

0

(t – s)β–1

Γ (β)Γ (α + 1)
ds

∣∣∣∣‖y‖∞

=
∣∣∣∣ tβ

Γ (β + 1)Γ (α + 1)

∣∣∣∣‖y‖∞ ≤ 1
Γ (β + 1)Γ (α + 1)

‖y‖∞,

∣∣Dβ
0+(Ty)(t)

∣∣ ≤
∣∣∣∣
∫ 1

t

(s – t)α–1

Γ (α)
ds

∣∣∣∣‖y‖∞ ≤ 1
Γ (α + 1)

‖y‖∞,

and

∣∣Dβ+1
0+ (Ty)(t)

∣∣ ≤
∣∣∣∣
∫ 1

t

(s – t)α–2

Γ (α – 1)
ds

∣∣∣∣‖y‖∞ ≤ 1
Γ (α)

‖y‖∞,

which, on taking the norm for t ∈ [0, 1], yields

‖Ty‖X = max
{‖Ty‖∞,

∥∥Dβ
0+(Ty)

∥∥∞,
∥∥Dβ+1

0+ (Ty)
∥∥∞

} ≤ �‖y‖∞. �

3 Main results
In this section, we use Theorem 2.1 to prove the existence of solutions to IBVP (1.1).

To get our main result, we need the following conditions:
(H2) There exists a constant B > 0 such that either for each c ∈R : |c| > B,

cQN
(
ctβ+1) > 0 (3.1)

or for each c ∈R : |c| > B,

cQN
(
ctβ+1) < 0. (3.2)

(H3) There exist functions ρ,σ , τ ,γ ∈ C[0, 1] such that, for all (u, v, w) ∈R
3 and t ∈ [0, 1],

∣∣f (t, u, v, w)
∣∣ ≤ ρ(t) + σ (t)|u| + τ (t)|v| + γ (t)|w|.

(H4) There exists a constant M > 0 such that if |Dβ+1
0+ u(t)| > M for all t ∈ [0, 1], and then

QNu �= 0.
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Theorem 3.1 If (H1), (H2), (H3), (H4) hold, then IBVP (1.1) has at least one solution in
X, provided that

‖σ‖∞ + ‖τ‖∞ + ‖γ ‖∞ <
Γ (α)

Γ (α) + �
. (3.3)

Proof Set

Ω1 =
{

u ∈ dom L \ Ker L : Lu = λNu for some λ ∈ [0, 1]
}

.

For u ∈ Ω1, since Lu = λNu and so λ �= 0, Nu ∈ Im L = Ker Q, and hence

QNu = 0.

Thus, By (H4) there exists t0 ∈ [0, 1] such that

∣∣Dβ+1
0+ u(t0)

∣∣ ≤ M.

It follows from Lemma 2.1 and u(0) = u′(0) = 0 that there exists c1 ∈R such that the func-
tion u satisfies

u(t) = λIβ
0+Iα

1–Nu(t) + c1
tβ+1

Γ (β + 2)
= λT(Nu)(t) + c1

tβ+1

Γ (β + 2)
,

where the operator T is defined by (2.7). Applying the left fractional derivative Dβ+1
0+ to

this equation and using the properties of fractional derivative, we get

Dβ+1
0+ u(t) = λDβ+1

0+ Iβ
0+Iα

1–Nu(t) + c1 = –λIα–1
1– Nu(t) + c1.

Therefore

|c1| ≤
∣∣Dβ+1

0+ u(t0)
∣∣ +

∣∣Iα–1
1– Nu(t0)

∣∣ ≤ M +
1

Γ (α)
‖Nu‖∞.

This, together with Lemma 2.6, yields

‖u‖X = max
{‖u‖∞,

∥∥Dβ
0+u

∥∥∞,
∥∥Dβ+1

0+ u
∥∥∞

}
≤ max

{∥∥T(Nu)
∥∥∞,

∥∥Dβ
0+T(Nu)

∥∥∞,
∥∥Dβ+1

0+ T(Nu)
∥∥∞

}
+ |c1|

≤ M +
(

1
Γ (α)

+ �

)
‖Nu‖∞

≤ M +
(

1
Γ (α)

+ �

)(‖σ‖∞ + ‖τ‖∞ + ‖γ ‖∞
)‖u‖X .

Thus from (3.3) we obtain that

‖u‖X ≤ MΓ (α)
Γ (α) – (Γ (α) + �)(‖σ‖∞ + ‖τ‖∞ + ‖γ ‖∞)

.

Therefore Ω1 is bounded.
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Now we denote Ω2 = {u ∈ Ker L : Nu ∈ Im L}. If u ∈ Ω2, then u = ctβ+1, c ∈ R, and it is
easy to deduce that QNu(t) = 0. By (H2) we obtain |c| ≤ B. Therefore Ω2 is a bounded set.

Now we define the isomorphism J : Im Q → Ker L by

J(c) = ctβ+1.

If (3.1) holds, then let

Ω3 =
{

u ∈ Ker L : λu + (1 – λ)JQNu = 0,λ ∈ [0, 1]
}

.

For u = ctβ+1 ∈ Ω3, we have

λctβ+1 = –(1 – λ)tβ+1QN
(
ctβ+1).

So we get

λc = –(1 – λ)QN
(
ctβ+1).

If λ = 1, then c = 0. Otherwise, if |c| > B, in view of (H2), we have

c(1 – λ)QN
(
ctβ+1) > 0,

which contradicts λc2 ≥ 0. Thus Ω3 is bounded.
If (3.2) holds, then define the set

Ω3 =
{

u ∈ Ker L : –λu + (1 – λ)JQNu = 0,λ ∈ [0, 1]
}

,

where J is as before. Similarly to the previous argument, we can show that Ω3 also is
bounded.

Next, we will prove that all the assumptions of Theorem 2.1 are satisfied. Let Ω be any
bounded open subset of Y such that

⋃3
i=1 Ωi ⊂ Ω . By Lemma 2.5 KP(I – Q)N : Ω → Y is

compact, and thus N is L-compact on Ω .
Clearly, assumptions (i) and (ii) of Theorem 2.1 are fulfilled.
Finally, we will prove that (iii) of Theorem 2.1 is satisfied.
Let F(u,λ) = ±λx + (1 – λ)JQNu. According to previous argument, we have

F(u,λ) �= 0 for u ∈ Ker L ∩ ∂Ω .

Thus by the homotopy property of degree we have

deg(JQN |Ker L, Ker L ∩ Ω , 0) = deg
(
F(·, 0), Ker L ∩ Ω , 0

)
= deg

(
F(·, 1), Ker L ∩ Ω , 0

)
= deg(±I, Ker L ∩ Ω , 0) �= 0.

Then by Theorem 2.1 Lu = Nu has at least one solution in dom L ∩ Ω , so that IBVP (1.1)
has a solution. �
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