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Abstract
We consider the geometric inverse problem of determining an immersed obstacle in
a two-dimensional non-stationary Stokes fluid flow. We use the topological gradient
method to solve this problem. The unknown obstacle is located and reconstructed
using the leading term of the Khon–Vogelius shape function variation. We propose a
simple and fast detection algorithm. The efficiency and accuracy of the proposed
approach are illustrated by some numerical examples.
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1 Introduction
In this work, we study the problem of detecting submerged obstacles in a viscous fluid in
the case where the movement of the fluid is governed by the unsteady Stokes equations.
Here we want to detect the position and reconstruct the shape of an unknown obstacle
(can be defined by multiple components) from boundary measurements. The unknown
obstacle Q∗ is assumed to be located in a larger area in which a viscous, incompress-
ible, and non-stationary fluid flows. We then perform a measurement on Γa a part of the
boundary ∂Ω (i.e., on the surface of the fluid Ω) (see Fig. 1).

To reconstruct the obstacle, we define a cost form functional allowing the error between
the real solution (through the measurement) and the approximate solution to be evaluated.
We are working here with the Kohn–Vogelius type functional [1] which rephrases the
geometric inverse problem into a shape optimization one. The objective is to minimize
these functionals using an optimization algorithm in order to get closer to the real solution.
For the minimization procedure, we use the topological asymptotic analysis technique
[2–7].

This problem has been studied in the case of stationary Stokes flow [8–10]. This work
corresponds to the time dependent case. We begin by describing the used technique in
Sect. 2. The theoretical result associated with the topological asymptotic expansion is pre-
sented in Sect. 3. In the last section, we propose a numerical investigation. A numerical
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Figure 1 Study case

algorithm is presented and used for different cases in order to illustrate the efficiency of
the proposed method.

2 Problem formulation
Let Ω be a bounded domain of R2 containing an obstacle Q∗ and ∂Ω = Γi ∪ Γa be its
boundary.

This paper is concerned with the following geometric inverse problem:
– Knowing Neumann and Dirichlet data on an accessible part Γa of the boundary; an

imposed force F and a measured velocity field Um on Γa such that Γa ⊂ ∂Ω and
mes(Γa) �= 0.

– Detect the location and the shape of the unknown obstacles Q∗ such that the solution
(uQ∗ , pQ∗ ) of the non-stationary Stokes equations satisfies the following
over-determined boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uQ∗
∂t – ν�uQ∗ + ∇pQ∗ = G in Ω \Q∗× ]0, T[,

div uQ∗ = 0 in Ω \Q∗× ]0, T[,

σ (uQ∗ , pQ∗ ).n = F on Γa× ]0, T[,

uQ∗ = Um on Γa× ]0, T[,

uQ∗ = 0 on Γi× ]0, T[,

uQ∗ = 0 on ∂Q× ]0, T[,

uQ∗ (·, 0) = u0 in Ω \Q∗,

where ν is the kinematic viscosity coefficient of the fluid, G is the gravitational force,
u0 is the initial fluid flow velocity, σ (uQ∗ , pQ∗ ) := (∇uQ∗ + ∇uT

Q∗ ) – pQ∗I, and n is the
outside unit normal vector at ∂Ω .

In this work, we propose a reconstruction approach based on the Kohn–Vogelius for-
mulation and the topological gradient method.

Let Q⊂ Ω be an arbitrary obstacle. The Kohn–Vogelius function is defined by

K(Ω \Q) =
∫ T

0

∫

Ω\Q
ν
∣
∣∇uN

Q(·, t) – ∇uD
Q(·, t)

∣
∣2 dx dt, (1)



Malek et al. Boundary Value Problems         (2020) 2020:45 Page 3 of 14

where uN
Q and uD

Q are respectively solutions of the following unsteady Stokes problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uN
Q

∂t – ν�uN
Q + ∇pN

Q = G in Ω \Q× ]0, T[,

div uN
Q = 0 in Ω \Q× ]0, T[,

σ (uN
Q, pN

Q).n = F on Γa× ]0, T[,

uN
Q = 0 on Γi× ]0, T[,

uN
Q = 0 on ∂Q× ]0, T[,

uN
Q(·, 0) = u0 in Ω \Q

(2)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uD
Q

∂t – ν�uD
Q + ∇pD

Q = G in Ω \Q× ]0, T[,

div uD
Q = 0 in Ω \Q× ]0, T[,

uD
Q = Um on Γa× ]0, T[,

uD
O = 0 on Γi× ]0, T[,

uD
Q = 0 on ∂Q× ]0, T[,

uD
Q(·, 0) = u0 in Ω \Q.

(3)

One can observe that if Q coincides with the exact obstacle Q∗, then uD
Q = uN

Q. Starting
from this observation, the inverse problem can be formulated as follows:

find Q∗ ⊂ Ω , such that K
(
Ω \Q∗) = min

Q∈Dad
K(Ω \Q), (4)

where Dad is a given set of admissible domains.
To solve problem (4) and detect the location of the unknown obstacle Q∗, we use the

topological sensitivity analysis method [11–15]. It consists in determining the asymptotic
development of the solution of the considered non-stationary Stokes problem when we
add a small obstacle inside the domain Ω . We deduce a characterization of the topolog-
ical derivative of the Kohn–Vogelius functional K. We can then minimize it to solve our
initial inverse problem using a gradient optimization algorithm. The use of this notion of
topological gradient makes it possible to determine the number of objects present and
their approximate positions.

The idea of using the topological derivative is as follows. We consider the Kohn–Vogelius
functionalK in the case of unsteady Stokes equations presented above (see (1)). For a small
parameter ε > 0 and a point z ∈ Ω , we consider a perturbed domain Ω \ Qz,ε created by
inserting a small obstacle (will be modeled by a small hole) inside the initial domain Ω

near the point z such that Qz,ε = z + εQ, where Q is a given, fixed, and bounded domain
of R2 containing the origin.

We then begin by studying the influence of the modification of the topology on the vari-
ations of K. One can usually obtain an asymptotic development of the functional K of the
following form:

K(Ω \Qz,ε) – K(Ω) = ρ(ε)δK(z) + o
(
ρ(ε)

)
, ∀z ∈ Ω ,
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where ρ is a positive scalar function tending to 0 with ε and δK is called the topological
gradient (or topological derivative). It provides information on the insertion of a small
hole at point z which corresponds to the point where K reaches its minimum.

3 Asymptotic development
In this work, we extend the sensitivity analysis approach to the non-stationary regime, and
we derive a topological asymptotic expansion for the considered Kohn–Vogelius shape
function.

In the presence of a small obstacle Qz,ε = z + εQ, the function K is defined by

K(Ω \Qz,ε) =
∫ T

0

∫

Ω\Qz,ε

ν
∣
∣∇uN

ε (·, t) – ∇uD
ε (·, t)

∣
∣2 dx dt,

with
– (uN

ε , pN
ε ) is the solution to the perturbed Neumann problem

(
PN

ε

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uN
ε

∂t – ν�uN
ε + ∇pN

ε = G in Ω \Qz,ε× ]0, T[,

div uN
ε = 0 in Ω \Qz,ε× ]0, T[,

σ (uN
ε , pN

ε ).n = F on Γa× ]0, T[,

uN
ε = 0 on Γi× ]0, T[,

uN
ε = 0 on ∂Qz,ε× ]0, T[,

uN
ε (·, 0) = u0 in Ω \Qz,ε .

– (uD
ε , pD

ε ) is the solution to the perturbed Dirichlet problem

(
PD

ε

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uD
ε

∂t – ν�uD
ε + ∇pD

ε = G in Ω \Qz,ε× ]0, T[,

div uD
ε = 0 in Ω \Qz,ε× ]0, T[,

uD
ε = Um on Γa× ]0, T[,

uD
ε = 0 on Γi× ]0, T[,

uD
ε = 0 on ∂Qz,ε× ]0, T[,

uD
ε (·, 0) = u0 in Ω \Qz,ε .

The Kohn–Vogelius functional K satisfies the following theorem (see [16] for the proof ).

Theorem 1 Let Qz,ε be a small obstacle inserted in the fluid flow domain Ω . Then the
Kohn–Vogelius functional K admits the following topological asymptotic expansion:

K(Ω \Qz,ε) = K(Ω) –
4πν

log(ε)
δK(z) + o

(
–1

log(ε)

)

,

where δK is the topological gradient defined by

δK(z) =
∫ T

0
uN

0 (z, t).ΦN
0 (z, t) + uD

0 (z, t).ΦD
0 (z, t) dt

+
∫ T

0

∣
∣uN

0 (z, t) – uD
0 (z, t)

∣
∣2 dt, z ∈ Ω .
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In the last expression
• uD

0 and uN
0 are respectively solutions of problems (PD

ε ) and (PN
ε ) for ε = 0.

• ΦN
0 is the Neumann adjoint state, solution to

(
AN)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂ΦN
0

∂t – ν�ΦN
0 + ∇πN

0 = –DF (uN
0 – uD

0 ) in Ω× ]0, T[,

divΦN
0 = 0 in Ω× ]0, T[,

σ (ΦN
0 ,πN

0 )n = 0 on Γa× ]0, T[,

ΦN
0 = 0 on Γi× ]0, T[,

ΦN
0 (·, T) = 0 in Ω .

• ΦD
0 is the Dirichlet adjoint state, solves

(
AD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂ΦD
0

∂t – ν�ΦD
0 + ∇πD

0 = –DF (uD
0 – uN

0 ) in Ω× ]0, T[,

divΦD
0 = 0 in Ω× ]0, T[,

ΦD
0 = 0 on Γa× ]0, T[,

ΦD
0 = 0 on Γi× ]0, T[,

ΦD
0 (·, T) = 0 in Ω .

Here, F is the cost function defined on H1(Ω)2 by

F (w) =
∫

Ω

∣
∣∇w(x)

∣
∣2 dx.

4 Numerical results
In this section, we reconstruct numerically one (or more) small submerged obstacle in a
non-stationary fluid when the movement of the fluid is governed by the incompressible
non-stationary Stokes equations. We use the topological derivative of the Kohn–Vogelius
functional presented in Theorem 1 to solve the minimization problem (4). We begin by
validating the asymptotic behavior established in Theorem 1. Then, we present a numeri-
cal algorithm to detect the unknown obstacles with different forms from over-determined
boundary data. The numerical simulations presented here are made in two dimensions
using the finite elements library Freefem++ [17].

4.1 Numerical validation of the asymptotic expansion
To validate the theoretical asymptotic expansion established in Theorem 1, we introduce
the function �z(ε) defined by

�z(ε) = K(Ω \Qz,ε) – K(Ω) +
1

log(ε)
δK(z).

We study the variation of this function with respect to ε for different locations of obstacles
Qzi ,ε = zi + εB(0, 1), i = 1, . . . , 4. The coordinates zi = (xi, yi) of considered obstacles are
described in Table 1. We expect to prove numerically that �zi (ε) satisfies the obtained
theoretical estimate �zi (ε) = o( –1

log(ε) ).
Let αi be such that �zi (ε) = O((– log(ε))αi ). In Fig. 2, we illustrate the variation of the

function log(|�zi (ε)|) with respect to log(– log(ε)). Then αi is the slope of the line approx-
imating the variation ε 	→ log(|�zi (ε)|) with respect to log(– log(ε)).
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Table 1 The locations zi of the considered obstaclesQzi ,ε , i = 1, . . . , 4

zi = (xi , yi) z1 z2 z3 z4

xi 0.2 0.8 0.7 0.6
yi 0.8 0.2 0.7 0.4

The obtained slopes are presented in Table 2. They confirm the behavior predicted by
the theoretical estimate.

4.2 Reconstruction procedure from boundary measurement
We present in this section a numerical algorithm for detecting the unknown obstacle Q
inserted inside the fluid flow domain Ω from over-determined data on Γ . Next, we present
some reconstruction results obtained in one iteration, showing the efficiency and accuracy
of our approach.

4.2.1 Identification procedure
The used numerical procedure is based on the asymptotic formula described by Theo-
rem 1. The unknown object Q is likely to be located at the zone where the topological
gradient δK is most negative. The obstacle shape will be reconstructed using a level set
curve of a scalar function.

Let δmin be the most negative value of the function δK in the domain Ω , i.e.,

δmin < 0 and δmin ≤ δK(x), ∀x ∈ Ω .

For each β ∈ [0, 1], we denote by Qβ the subset of Ω defined by

Qβ =
{

x ∈ Ω ; δK(x) ≤ βδmin
}

.

The proposed numerical algorithm is based on the following steps.

Reconstruction algorithm
• Solve the two problems (PN

0 ) and (PD
0 ).

• Solve the two adjoint problems (AN ) and (AD).
• Compute the topological gradient δK.
• Reconstruct the unknown obstacle Q∗:

– find β∗ ∈ [0, 1] such that K(Ω \Qβ∗ ) ≤K(Ω \Qβ ), ∀β ∈ [0, 1];
– set Q∗ = {x ∈ Ω ; such that δK(x) ≤ β∗δmin}.

This one-iteration procedure has already been illustrated in [18] for the identification
of cracks from over-determined boundary data and in [11, 19] for the detection of small
gas bubbles in stationary Stokes flow. Next, we will apply this reconstruction algorithm
for the non-stationary Stokes case.

In the following, we describe some reconstruction results obtained by the presented
numerical algorithm for different test cases. The considered fluid domain Ω is defined by
the square [0, 1] × [0, 1].
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Figure 2 Variation of log(|�zi (ε)|) with respect to log(– log(ε))
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Table 2 Slopes of the lines associated with the obstaclesQzi ,ε , i = 1, . . . , 4

ObstacleQzi ,ε Qz1,ε Qz2,ε Qz3,ε Qz4,ε

Obtained slope αi –1.2 –1.197 –1.216 –1.23

Figure 3 Reconstruction of circle and ellipse shapes

4.2.2 Influence of the shape of the obstacle
First, we suppose that the true obstacle is centered at (0.5, 0.5). We study the influence of
the shape of the obstacle immersed inside the fluid flow domain on the efficiency of the
detection.

(a) Elliptical shape
In Fig. 3, we present the reconstruction results for circular and elliptical shaped
unknown obstacles. The exact geometry (to be reconstructed) is described by a
black line. As one can see, the unknown obstacle is located at the negative zone and
well approximated by a level set curve of the topological gradient δK. In the circular
case, we have δmin = –0.015 and the reconstructed obstacle is obtained using
β∗ = 0.96. For the elliptical case, we have used δmin = –0.08 and β∗ = 0.977.

(b) Shape with corners
In the case of an obstacle with irregular boundary (with corners), our one-iteration
algorithm can identify efficiently the location of this unknown obstacle but not its
exact shape (see Fig. 4).

(c) Nontrivial shape
In Fig. 5, we illustrate the case of a complex regular geometry. As one can observe,
the reconstruction result for this nontrivial shape is quite good. In fact, we detect
the location of the unknown obstacle but not its shape. The obtained result can
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Figure 4 Reconstruction of shape with corners

Figure 5 Reconstruction of a complex shape

serve as a good initial guess for an iterative optimization process based on the shape
derivative.

In conclusion of these first simulations, as we expected, our one-iteration algorithm per-
mits to reconstruct the location of the unknown obstacle that we have to determine and
its rough shape in the case of elliptical shapes. Moreover, the location detection is efficient
for different types of shapes, including shapes with corners.

4.2.3 Effect of the location of the obstacle
We consider a circular obstacle Q = B(z∗, r∗) centered at z∗ and having a fixed radius r∗ =
0.1. The aim of this numerical experiment is to study the effect of the obstacle location on
the reconstruction results.

We remark that the detection of obstacle location is efficient (see Fig. 6). For the shape,
the result is good when the obstacle is not close enough to the boundary of the domain.

4.2.4 Effect of the size of the obstacle
Here we consider two cases: The first one is a circular obstacle Q = B(z∗, r∗) centered at
z∗ = (0.4, 0.4) and having variable radius r∗

i , i = 1, . . . , 6 (see Fig. 7). The aim here is to dis-
cuss the effect of the size of the obstacle on the reconstruction results. These simulations
show that if the characteristic size of the object becomes too large, the method becomes
not precise enough. These results are not surprising since the smallness assumption is an
essential argument to obtain the asymptotic expansion result presented in Theorem 1 and
used in the numerical algorithm.
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Figure 6 Reconstruction of a circular shape: effect of
the location
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Figure 7 Reconstruction of a circular shaped
obstacle: effect of the size

4.2.5 Sensitivity to the relative position of two obstacles
We consider two circular obstacles Q1 = B(z∗

1, r∗) and Q2 = B(z∗
2, r∗) having the same size

r∗ = 0.05 and separated by a variable distance d. Our aim here is to study the effect of the
parameter ρ = d/r∗.

We remark that the two obstacles are accurately detected when they are well-separated
(see Fig. 8(a)). When the obstacles are close enough, the algorithm detects only a single
area containing the two obstacles (see Fig. 8(c)).

4.2.6 Effect of the relative size of two obstacles
This test is devoted to studying the relative size effect of two obstacles. We consider here
two circular obstacles Q∗

1 = B(z∗
1, r∗

1) and Q∗
2 = B(z∗

2, r∗
2) separated by a fixed distance and
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Figure 8 Isovalues of the topological gradient
showing the obtained obstacle locations

having a different radius r∗
1 and r∗

2 with r∗
1 = 0.05 ≤ r∗

2 . Here we study the effects of the
parameter R = r∗

2/r∗
1 on the detection result.

We observe in Fig. 9 that the bigger obstacle is much better located than the small one;
however, the identification process is sensitive to the relative size of the two obstacles.
When the ratio R decreases the information seems to be “captured” only by the biggest
one as it can be viewed in Fig. 9(d).

5 Conclusion
The numerical study of the obstacle detection in a non-stationary fluid flow has been per-
formed. The used technique consists in studying the asymptotic expansion of the Khon–
Vogelius function with respect to small perturbations of the domain. A fast and accurate
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Figure 9 Effect of the size of the two unknown
obstacles
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algorithm is proposed and used for different configuration cases. The presented numerical
simulations show the efficiency of the suggested approach.
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