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Abstract
This paper concerns the null controllability of a semilinear control system governed
by degenerate parabolic equation with a gradient term, where the nonlinearity of the
problem is involved with the first derivative. We first establish the well-posedness and
prove the approximate null controllability of the linearized system, then we can get
the approximate null controllability of the semilinear control system by a fixed point
argument. Finally, the semilinear control system with a gradient term is shown to be
null controllable.
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1 Introduction
In this paper, we investigate the null controllability of the following semilinear degenerate
system:

ut –
(
xαux

)
x + g(x, t, u, ux) = h(x, t)χω, (x, t) ∈ QT , (1.1)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (1.2)

xαux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (1.3)

u(x, 0) = u0(x), x ∈ (0, 1), (1.4)

where QT = (0, 1) × (0, T), ω is a nonempty open subset of (0,1), u0 ∈ L2(0, 1), h(x, t) ∈
L2(QT ) is a control function, g(x, t, s, p) is Lebesgue measurable in QT × R × R and C1

continuous with respect to s, p uniformly for (x, t) ∈ QT . Furthermore, we assume that g
satisfies g(·, ·, 0, 0) = 0 and

∣
∣gs(x, t, s, p)

∣
∣ + x–α/2∣∣gp(x, t, s, p)

∣
∣ ≤ K , ∀(x, t, s, p) ∈ QT ×R×R, (1.5)

where K > 0 is a constant. Equation (1.1) is degenerate at the boundary x = 0, and it can
be used to describe some physical models, for example, in [6, 8], we can find a motivating
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example of a Crocco-type equation coming from the study on the velocity field of a laminar
flow on a flat plate.

In the last forty years, many authors have been devoted to studying control systems, the
interested readers can refer to [1–26] and the references therein. For instance, Wang in
[27–29] studied the approximate controllability of a class of systems governed by degener-
ate parabolic equations. In 2013, Du and Wang in [11] investigated the null controllability
of a class of coupled degenerate systems. Later, Du and Xu in [13] studied the bound-
ary controllability of a semilinear degenerate system with convection term. Recently, Xu,
Wang and Nie in [30] considered the Carleman estimate and null controllability of a cas-
cade control system with convection terms. For degenerate equations, one must overcome
some technical difficulties to get some necessary estimates for controllability theory. In
particular, the following system governed by a single degenerate parabolic equation has
been widely studied:

wt –
(
xαwx

)
x + k(x, t)w = h(x, t)χω, (x, t) ∈ QT , (1.6)

w(0, t) = 0 if 0 < α < 1,
(
xαwx

)
(0, t) = 0 if α ≥ 1, t ∈ (0, T), (1.7)

w(1, t) = 0, t ∈ (0, T), (1.8)

w(x, 0) = w0(x), x ∈ (0, 1), (1.9)

where k ∈ L∞(QT ). The system is null controllable if 0 < α < 2 [8, 9, 26], while not if α ≥ 2
[7]. It is noted that the degeneracy of (1.6) is weak if 0 < α < 1 and strong if α ≥ 1. The
null controllability of system (1.6)–(1.9) for 0 < α < 2 is based on the Carleman estimate
for solutions to its conjugate problem

–Wt –
(
xαWx

)
x + k(x, t)W = F(x, t), (x, t) ∈ QT , (1.10)

W (0, t) = 0 if 0 < α < 1,
(
xαWx

)
(0, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (1.11)

W (1, t) = 0, t ∈ (0, T), (1.12)

W (x, T) = WT (x), x ∈ (0, 1). (1.13)

Since the problem may be not null controllable, the authors introduced some new con-
cepts on controllability, the regional null controllability and the persistent regional null
controllability, which is weaker than the null controllability [7]. They proved that the prob-
lem is regional null controllable and persistent regional null controllable for all α > 0. For
semilinear problem (1.1)–(1.4), the authors also showed the regional and persistent re-
gional null controllability in [3, 5]. Moreover, the approximate controllability of degenerate
equation (1.1) with suitable boundary and initial conditions has been proved in [12, 27–
29] for all α > 0. In [1, 19], the authors proved the null controllability of problem (1.1)–(1.4)
with

g(x, t, u, ux) = f (x, t, u)

and

g(x, t, u, ux) = xα/2b(x, t)ux + c(x, t)u, (1.14)

respectively.
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In this paper, we investigate the null controllability of semilinear problem (1.1)–(1.4).
First, we prove the approximate null controllability of linear problem (1.1)–(1.4) with
(1.14). Next, we prove the approximate null controllability of semilinear problem (1.1)–
(1.4) by using the Schauder fixed point theorem. At last, we state the null controllability
of semilinear problem (1.1)–(1.4) with the method inspired by [3]. The paper is organized
as follows: In Sect. 2, we introduce function spaces that are needed for the well-posedness
and prove the well-posedness of system (1.1)–(1.4). In Sect. 3, we prove that the semilinear
system is null controllable.

2 Well-posedness
In this section, we first consider the linear problem

ut –
(
xαux

)
x + xα/2b(x, t)ux + c(x, t)u = f (x, t), (x, t) ∈ QT , (2.1)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (2.2)

xαux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (2.3)

u(x, 0) = u0(x), x ∈ (0, 1), (2.4)

where b, c ∈ L∞(QT ), f ∈ L2(QT ), and u0 ∈ L2(0, 1).
Define that H1

α(0, 1) and H2
α(0, 1) are the closure of C∞

0 (0, 1) with respect to the following
norm:

‖u‖H1
α (0,1) =

(∫ 1

0

(
u2 + xαu2

x
)

dx
)1/2

, u ∈ H1
α(0, 1)

and

‖u‖H2
α (0,1) =

(∫ 1

0

(
u2 + xαu2

x +
(
xαux

)2
x

)
dx

)1/2

, u ∈ H2
α(0, 1),

respectively.
For readers’ convenience, we denote

M = C
(
0, T ; L2(0, 1)

) ∩ L2(0, T ; H1
α(0, 1)

)

and

N = H1(0, T ; L2(0, 1)
) ∩ L2(0, T ; H2

α(0, 1)
)
.

Lemma 2.1 N is compactly imbedded in M.

Proof Using Aubin’s theorem ([3], Theorem 4.3) with r0 = r1 = 2, X0 = H2
α(0, 1), X1 =

H1
α(0, 1), X2 = L2(0, 1), and a = 0, b = T , one can get that N is compactly imbedded in

L2(0, T ; H1
α(0, 1)).

Since H1(0, T ; L2(0, 1)) is compactly imbedded in C(0, T ; L2(0, 1)) and N is continuously
imbedded in H1(0, T ; L2(0, 1)), one has that N is compactly imbedded in C(0, T ; L2(0, 1)).
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Moreover, since N is compactly imbedded in L2(0, T ; H1
α(0, 1)) and C(0, T ; L2(0, 1)),

respectively, it is obvious that N is compactly imbedded in M = C(0, T ; L2(0, 1)) ∩
L2(0, T ; H1

α(0, 1)), the proof is complete. �

Due to the degeneracy of the coefficient xα , problem (2.1)–(2.4) may not have classical
solutions, so we need to give the definition of weak solutions.

Definition 2.1 If u ∈ M, for any function ϕ ∈ M with ϕt ∈ L2(QT ) and ϕ(·, T)|(0,1) = 0, it
holds that

∫∫

QT

(
–uϕt + xαuxϕx + xα/2buxϕ + cuϕ

)
dx dt =

∫∫

QT

f ϕ dx dt +
∫ 1

0
u0(x)ϕ(x, 0) dx,

then the function u is called the weak solution of the system (2.1)–(2.4).

On the basis of Theorem 2.4 [3] and Lemma 2.1 [12], the problem (2.1)–(2.4) is well
posed. Furthermore, we can get the following proposition.

Proposition 2.1 If ‖b‖L∞(QT ) ≤ C1, ‖c‖L∞(QT ) ≤ C2, f ∈ L2(QT ), and u0 ∈ L2(0, 1), then the
problem (2.1)–(2.4) uniquely admits a weak solution u ∈M. Furthermore, u satisfies that

(i)

sup
t∈(0,T]

∫ 1

0
u2(x, t) dx +

∫∫

QT

xαu2
x dx dt ≤ C

(∫∫

QT

f 2(x, t) dx dt +
∫ 1

0
u2

0(x) dx
)

,

where C > 0 is a constant depending on T , C1, and C2.
(ii) If u0 ∈ H1

α(0, 1), then u ∈N and it holds that
∫∫

QT

(
u2

t +
(
xαux

)2
x

)
dx dt

≤ C
(∫∫

QT

f 2(x, t) dx dt +
∫ 1

0

(
u2

0(x) + xα
(
u′

0
)2(x)

)
dx

)
,

where C > 0 is a constant depending on T , C1, and C2.

Similar to the linear problem (2.1)–(2.4), one can give the definition of weak solution to
the following semilinear problem:

ut –
(
xαux

)
x + g(x, t, u, ux) = f (x, t), (x, t) ∈ QT , (2.5)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (2.6)

xαux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (2.7)

u(x, 0) = u0(x), x ∈ (0, 1). (2.8)

Definition 2.2 A function u is called the weak solution of the problem (2.5)–(2.8) if u ∈
M, and for any function ϕ ∈Mwith ϕt ∈ L2(QT ) and ϕ(·, T)|(0,1) = 0, the following integral
equality holds:

∫∫

QT

(
–uϕt + xαuxϕx + g(x, t, u, ux)ϕ

)
dx dt =

∫∫

QT

f ϕ dx dt +
∫ 1

0
u0(x)ϕ(x, 0) dx.



Xu et al. Boundary Value Problems         (2020) 2020:55 Page 5 of 14

The semilinear problem (2.5)–(2.8) is well posed, which is proved in Theorem 3.1 [12]
and Theorem 3.7 [3].

For any w ∈ L2(0, T ; H1
α(0, 1)), define the functions

c(x, t, w) =
∫ 1

0
gs(x, t,λw,λwx) dλ,

b(x, t, w) = x–α/2
∫ 1

0
gp(x, t,λw,λwx) dλ.

Then (1.5) yields that

∥
∥c(x, t, w)

∥
∥

L∞(QT ×R) ≤ K ,
∥
∥b(x, t, w)

∥
∥

L∞(QT ×R) ≤ K . (2.9)

Moreover, we can obtain that

g(x, t, u, ux) – g(x, t, 0, 0) =
∫ 1

0

∂g(x, t,λu,λux)
∂λ

dλ

=
∫ 1

0

∂g(x, t,λu,λux)
∂s

u dλ +
∫ 1

0

∂g(x, t,λu,λux)
∂p

ux dλ

= c(x, t, u)u + xα/2b(x, t, u)ux.

Furthermore, c(x, t, w) and b(x, t, w) satisfy the following property.

Lemma 2.2 Assume that {wk}∞k=1 converges to w in L2(0, T ; H1
α(0, 1)), then

c
(
x, t, wk(x, t)

)
⇀ c

(
x, t, w(x, t)

)
weakly ∗ in L∞(QT ), as k → ∞, (2.10)

b
(
x, t, wk(x, t)

)
⇀ b

(
x, t, w(x, t)

)
weakly ∗ in L∞(QT ), as k → ∞ (2.11)

and

(c(x, t, wk(x, t) – c
(
x, t, w(x, t)

)2
⇀ 0 weakly ∗ in L∞(QT ), as k → ∞, (2.12)

(b(x, t, wk(x, t) – b
(
x, t, w(x, t)

)2
⇀ 0 weakly ∗ in L∞(QT ), as k → ∞. (2.13)

Proof For convenience, we denote

c[w](x, t) = c
(
x, t, w(x, t)

)
, b[w](x, t) = b

(
x, t, w(x, t)

)
, w ∈ L2(0, T ; H1

α(0, 1)
)
.

First, we will prove

lim
k→∞

∫∫

QT

∣∣c[wk](x, t) – c[w](x, t)
∣∣dx dt = 0. (2.14)

For each δ > 0, let

Eδ =
{

(x, t) ∈ QT : xα ≤ δ
}

, Fδ =
{

(x, t) ∈ QT : xα > δ
}

.
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Combined lim
δ→0

meas Eδ = 0 with (2.9), we only need to prove

lim
k→∞

∫∫

Fδ

∣
∣c[wk](x, t) – c[w](x, t)

∣
∣dx dt = 0, δ > 0. (2.15)

Fix δ > 0, since {wk}∞k=1 converges to w in L2(0, T ; H1
α(0, 1)), then

lim
k→∞

∫∫

Fδ

(wk – w)2 dx dt = 0, lim
k→∞

∫∫

Fδ

(wkx – wx)2 dx dt = 0. (2.16)

For any integers m, j > 0, denote

Fδ,m =
{

(x, t) ∈ Fδ ,
∣∣w(x, t)

∣∣ +
∣∣wx(x, t)

∣∣ > m
}

and

Fδ,m,j =
{

(x, t) ∈ Fδ : there exsits k ≥ j, such that
∣∣wk(x, t)

∣∣ +
∣∣wkx(x, t)

∣∣ > m + 1
}

,

then

lim
m→∞ meas Fδ,m = 0. (2.17)

Furthermore, (2.16) shows that

lim
j→∞ meas(Fδ,m,j \ Fδ,m) = 0, m = 1, 2, · · · . (2.18)

It follows from the definition of c[w](x, t) and (2.9) that

∫∫

Fδ

∣∣c[wk](x, t) – c[w](x, t)
∣∣dx dt

=
∫∫

Fδ\(Fδ,m∪Fδ,m,j)

∣
∣c[wk](x, t) – c[w](x, t)

∣
∣dx dt +

∫∫

Fδ,m

∣
∣c[wk](x, t) – c[w](x, t)

∣
∣dx dt

+
∫∫

Fδ,m,j\Fδ,m

∣∣c[wk](x, t) – c[w](x, t)
∣∣dx dt

≤
∫∫

Fδ\(Fδ,m∪Fδ,m,j)

∣∣c[wk](x, t) – c[w](x, t)
∣∣dx dt

+ 2K meas Fδ,m + 2K meas(Fδ,m,j \ Fδ,m). (2.19)

Since g(x, t, s, p) is C1 continuous with respect to s, p uniformly for (x, t) ∈ QT , then

lim
k→∞

∫∫

Fδ\(Fδ,m∪Fδ,m,j)

∣
∣∣∣
∂g
∂s

(x, t,λwk ,λwkx) –
∂g
∂s

(x, t,λw,λwx) dλ

∣
∣∣∣dx dt = 0,

m, j = 1, 2, · · · . (2.20)

Let k → ∞, j → ∞, m → ∞ in turn in (2.19), one can deduce (2.15) from (2.17), (2.18),
(2.20), and thus (2.14) holds.
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Fix ϕ(x, t) ∈ L1(QT ), for any integer n > 0, we can deduce from (2.9) that

∫∫

QT

(
c[wk](x, t) – c[w](x, t)

)
ϕ(x, t) dx dt

=
∫∫

{(x,t)∈QT :|ϕ(x,t)|>n}

(
c[wk] – c[w]

)
ϕ(x, t) dx dt

+
∫∫

{(x,t)∈QT :|ϕ(x,t)|≤n}

(
c[wk] – c[w]

)
ϕ(x, t) dx dt

≤ 2K
∫∫

{(x,t)∈QT :|ϕ(x,t)|>n}

∣∣ϕ(x, t)
∣∣dx dt

+ n
∫∫

{(x,t)∈QT :|ϕ(x,t)|≤n}

∣
∣c[wk](x, t) – c[w](x, t)

∣
∣dx dt (2.21)

and
∫∫

QT

(
c[wk](x, t) – c[w](x, t)

)2
ϕ(x, t) dx dt

=
∫∫

{(x,t)∈QT :|ϕ(x,t)|>n}

(
c[wk] – c[w]

)2
ϕ(x, t) dx dt

+
∫∫

{(x,t)∈QT :|ϕ(x,t)|≤n}

(
c[wk] – c[w]

)2
ϕ(x, t) dx dt

≤ 4K2
∫∫

{(x,t)∈QT :|ϕ(x,t)|>n}

∣∣ϕ(x, t)
∣∣dx dt

+ 2nK
∫∫

{(x,t)∈QT :|ϕ(x,t)|≤n}

∣∣c[wk](x, t) – c[w](x, t)
∣∣dx dt. (2.22)

Let k → ∞ and then n → ∞ in (2.21) and (2.22), it follows from ϕ ∈ L1(QT ) and (2.14)
that

lim
k→∞

∫∫

QT

(
c[wk](x, t) – c[w](x, t)

)
ϕ(x, t) dx dt = 0

and

lim
k→∞

∫∫

QT

(
c[wk](x, t) – c[w](x, t)

)2
ϕ(x, t) dx dt = 0.

The convergence for b[w](x, t) can be proved similarly, the proof is complete. �

Theorem 2.1 For any f ∈ L2(QT ) and u0 ∈ L2(0, 1), the problem (2.5)–(2.8) has a unique
weak solution.

Proof We divide the proof into two steps.
Step 1. Let us prove the existence of the weak solution to the problem by using the

Schauder fixed point theorem. It follows from Proposition 2.1 that the problem

ut –
(
xαux

)
x + xα/2b(x, t, w)ux + c(x, t, w)u = f (x, t) – g(x, t, 0, 0), (x, t) ∈ QT , (2.23)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (2.24)
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xα/2ux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (2.25)

u(x, 0) = 0, x ∈ (0, 1) (2.26)

admits a unique weak solution. Define an operator Λ:

Λ(w) = u, w ∈ L2(0, T ; H1
α(0, 1)

)
,

where u is the weak solution to problem (2.23)–(2.26). For any {wk}∞k=1 ⊂ L2(0, T ; H1
α(0, 1)),

it follows from (1.5) that {c(x, t, wk)}∞k=1 and {b(x, t, wk)}∞k=1 are uniformly bounded in
L∞(QT ), respectively. Therefore, there exists a subsequence of the integer set k, denoted
by itself for convenience, such that {c(x, t, wk)}∞k=1 and {b(x, t, wk)}∞k=1 converge weakly ∗
in L∞(QT ), respectively. Then, it is deduced from Corollary 2.3 in [12] that there exists a
subsequence of {Λ(wk)}∞k=1, which converges in L2(0, T ; H1

α(0, 1)), hence Λ is precompact.
Now we assume that {wk}∞k=1 converges to w in L2(0, T ; H1

α(0, 1)), it follows from
Lemma 2.2 that

(
c
(
x, t, wk(x, t)

)
– c

(
x, t, w(x, t)

))2
⇀ 0 weakly ∗ in L∞(QT ),

(
b
(
x, t, wk(x, t)

)
– b

(
x, t, w(x, t)

))2
⇀ 0 weakly ∗ in L∞(QT ).

From the convergence above and Corollary 2.4 in [12], Λ(wk) converges to Λ(w) in
L2(0, T ; H1

α(0, 1)), therefore Λ is continuous.
According to the discussion above, we know that Λ is precompact and continuous on

the closed and convex hull of its range, then Λ satisfies the hypotheses of the Schauder
fixed point theorem. Therefore, there exists a function u ∈ L2(0, T ; H1

α(0, 1)) such that u =
Λ(u) ∈M is the weak solution to the problem (2.5)–(2.8).

Step 2. Let us prove the uniqueness of the weak solution. Assume that u and v are two
weak solutions to the problem (2.5)–(2.8) and set

w(x, t) = u(x, t) – v(x, t), (x, t) ∈ QT .

Note that

g(x, t, u, ux) – g(x, t, v, vx) =
∫ 1

0

∂

∂λ
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ

=
∫ 1

0
(u – v)

∂

∂s
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ

+
∫ 1

0
(u – v)x

∂

∂p
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ

= w
∫ 1

0

∂

∂s
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ

+ wx

∫ 1

0

∂

∂p
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ

= θ (x, t)w + xα/2ψ(x, t)wx, (x, t) ∈ QT ,
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where

θ (x, t) =
∫ 1

0

∂

∂s
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ,

ψ(x, t) = x–α/2
∫ 1

0

∂

∂p
g
(
x, t,λu + (1 – λ)v,λux + (1 – λ)vx

)
dλ.

Then w(x, t) is the solution to the following problem:

wt –
(
xαwx

)
x + θ (x, t)w + xα/2ψ(x, t)wx = 0, (x, t) ∈ QT ,

w(0, t) = w(1, t) = 0 if 0 < α < 1, t ∈ (0, T),

xαwx(0, t) = w(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T),

w(x, 0) = 0, x ∈ (0, 1).

It follows from Proposition 2.1 that

w(x, t) = 0, (x, t) ∈ QT ,

which yields

u(x, t) = v(x, t), (x, t) ∈ QT .

The proof is complete. �

3 Null controllability
In this section, we first consider the approximate null controllability of the linear problem

ut –
(
xαux

)
x + xα/2b(x, t)ux + c(x, t)u = h(x, t)χω, (x, t) ∈ QT , (3.1)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (3.2)

xαux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (3.3)

u(x, 0) = u0(x), x ∈ (0, 1), (3.4)

where b, c ∈ L∞(QT ), h ∈ L2(QT ), and u0 ∈ H1
α(0, 1).

Theorem 3.1 The problem (3.1)–(3.4) is approximately null controllable, which means
that, for any ε > 0, there exists a function hε ∈ L2(QT ) such that

∫ T

0

∫

ω

h2
ε dx dt ≤ C

∫ 1

0
u2

0(x) dx,
∥∥uε(x, T)

∥∥
L2(0,1) ≤ ε, (3.5)

where C > 0 is a constant independent of ε and uε is the solution of (3.1)–(3.4) with h = hε .

Proof Define a functional

Jε(h) =
1
2

∫ T

0

∫

ω

h2 dx dt +
1

2ε

∫ 1

0
u2(x, T) dx, h ∈ L2(QT ),
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where u is the solution to problem (3.1)–(3.4). It is not hard to prove that the functional
has a unique minimum point

hε = –ϕεχω, (3.6)

where ϕε is the solution to the conjugate problem

(ϕε)t +
(
xα(ϕε)x

)
x +

(
xα/2bϕε

)
x – cϕ = 0, (x, t) ∈ QT , (3.7)

ϕε(0, t) = ϕε(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (3.8)

xα(ϕε)x(0, t) = ϕε(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (3.9)

ϕε(x, T) =
1
ε

uε(x, T), x ∈ (0, 1). (3.10)

Multiplying (3.7) by uε and then integrating by parts, one can get that

∫ 1

0
uε(x, T)ϕε(x, T) dx –

∫ 1

0
u0(x)ϕε(x, 0) dx

=
∫∫

QT

(
(uε)t –

(
xα(uε)x

)
x + xα/2b(x, t)(uε)x + c(x, t)uε

)
ϕε dx dt

=
∫ T

0

∫

ω

hεϕε dx dt. (3.11)

A combination of (3.6), (3.10) and (3.11) implies that

∫ T

0

∫

ω

h2
ε dx dt +

1
ε

∫ 1

0
u2

ε(x, T) dx =
∫ 1

0
u0(x)ϕε(x, 0) dx. (3.12)

As shown in Lemma 3.1 [19], there exists a constant C such that

∫ 1

0
ϕ2

ε (x, 0) dx ≤ C
∫ T

0

∫

ω

(ϕε)2(x, t) dx dt. (3.13)

Using Hölder’s inequality with (3.12) and (3.13), one has

∫ T

0

∫

ω

h2
ε ≤

∫ 1

0
u0(x)ϕε(x, 0) dx

≤
(∫ 1

0
u2

0(x) dx
)1/2(∫ 1

0
ϕ2

ε (x, 0) dx
)1/2

≤
(∫ 1

0
u2

0(x) dx
)1/2(

C
∫ T

0

∫

ω

ϕ2
ε (x, t) dx dt

)1/2

≤ C1/2
(∫ 1

0
u2

0(x) dx
)1/2(∫ T

0

∫

ω

h2
ε(x, t) dx dt

)1/2
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and
∫ 1

0
u2

ε(x, T) dx ≤ ε

∫ 1

0
u0(x)ϕε(x, 0) dx

≤ ε

(∫ 1

0
u2

0(x) dx
)1/2(∫ 1

0
ϕ2

ε (x, 0) dx
)1/2

≤ ε

(∫ 1

0
u2

0(x) dx
)1/2(

C
∫ T

0

∫

ω

h2
ε dx

)1/2

,

thus (3.5) holds and the proof is complete. �

Theorem 3.2 If u0 ∈ H1
α(0, 1), then the semilinear system (1.1)–(1.4) is approximately null

controllable, it means that, for any ε > 0, there exists a control function hε ∈ L2(QT ) such
that

∫ T

0

∫

ω

h2
ε dx dt ≤ C

∫ 1

0
u2

0(x) dx,
∥
∥uε(x, T)

∥
∥

L2(0,1) ≤ ε, (3.14)

where C > 0 is a constant independent of ε and uε is the solution of (1.1)–(1.4) with h = hε .

Proof For any w ∈M, we first consider the following problem:

ut –
(
xαux

)
x + xα/2b

(
x, t, w(x, t)

)
ux + c

(
x, t, w(x, t)

)
u = hχω, (x, t) ∈ QT , (3.15)

u(0, t) = u(1, t) = 0 if 0 < α < 1, t ∈ (0, T), (3.16)

xαux(0, t) = u(1, t) = 0 if 1 ≤ α < 2, t ∈ (0, T), (3.17)

u(x, 0) = u0(x), x ∈ (0, 1). (3.18)

For any h ∈ L2(QT ), we denote u[w] to be the solution to the problem (3.15)–(3.18). The-
orem 3.1 shows that, for any ε > 0, there exists a function hε[w] = min

h∈L2(QT )
Jε[w](h) such

that
∫ T

0

∫

ω

(
hε[w]

)2 dx dt ≤ C
∫ 1

0
u2

0(x) dx,
∥∥uε[w](x, T)

∥∥
L2(0,1) ≤ ε, (3.19)

where

Jε[w](h) =
1
2

∫ T

0

∫

ω

h2 dx dt +
1

2ε

∫ 1

0
u2[w](x, T) dx, h ∈ L2(QT )

and uε[w] is the solution to problem (3.15)–(3.18) with h = hε . Define an operator as fol-
lows:

Γ : w ∈M �→ uε[w] ∈M.

It is easy to prove that Γ is a bounded and compact operator from Proposition 2.1 and
Lemma 2.1.

Now we will focus on proving the continuity of Γ . If {wk}∞k=1 converges to w in M, then
we have (2.10) and (2.11) from Lemma 2.2. Since hε[wk] is bounded due to (3.19), then
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there exists a subsequence of {hε[wk]}∞k=1, denoted by itself for convenience, such that
{hε[wk]}∞k=1 converges weakly to h̄ε in L2(QT ). Moreover, it follows from Proposition 2.1
and Lemma 2.1 that there exists a subsequence of {uε[wk]}∞k=1, denoted by itself for con-
venience, such that {uε[wk]}∞k=1 converges to ūε in M. Similarly, we can get that, for any
h ∈ L2(QT ), {u[wk]}∞k=1 converges to u[w] in M. From Definition 2.1, we know that, for
any function ϕ ∈ M with ϕt ∈ L2(QT ) and ϕ(·, T)|(0,1) = 0, the following integral equality
holds:

∫∫

QT

(
–uε[wk]ϕt + xα

(
uε[wk]

)
xϕx + xα/2b(x, t, wk)

(
uε[wk]

)
xϕ

+ c(x, t, wk)uε[wk]ϕ
)

dx dt

=
∫∫

QT

hε[wk]χωϕ dx dt +
∫ 1

0
u0(x)ϕ(x, 0) dx. (3.20)

Letting k → ∞ in (3.20), we have

∫∫

QT

(
–ūεϕt + xα(ūε)xϕx + xα/2b(x, t, w)(ūε)xϕ + c(x, t, w)ūεϕ

)
dx dt

=
∫∫

QT

h̄εχωϕ dx dt +
∫ 1

0
u0(x)ϕ(x, 0) dx,

which means that ūε is the weak solution to the problem (3.15)–(3.18) with h = h̄ε . To
prove the continuity of Γ , we only need to prove h̄ε = hε[w]. Since hε[wk] is the minimum
of Jε[wk], then for all h ∈ L2(QT ), it is obvious that

1
2

∫ T

0

∫

ω

(
hε[wk]

)2 dx dt +
1

2ε

∫ 1

0

(
uε[wk]

)2(x, T) dx

≤ 1
2

∫ T

0

∫

ω

h2 dx dt +
1

2ε

∫ 1

0

(
u[wk]

)2(x, T) dx. (3.21)

Note that

hε[wk] ⇀ h̄ε in L2(QT ), uε[wk] → ūε in M, u[wk] → u[w] in M, as k → ∞.

Let k → ∞ in (3.21), we obtain that

1
2

∫ T

0

∫

ω

(h̄ε)2 dx dt +
1

2ε

∫ 1

0
(ūε)2(x, T) dx

≤ 1
2

∫ T

0

∫

ω

h2 dx dt +
1

2ε

∫ 1

0

(
u[w]

)2(x, T) dx.

Thus, h̄ε = hε[w] = min
h∈L2(QT )

Jε[w](h), so Γ is continuous.

From the discussion above, one can get that Γ satisfies the hypotheses of the Schauder
fixed point theorem. Therefore, there exists a fixed point u ∈ M such that Γ (u) = u, it
means that u is the solution to problem (1.1)–(1.4) and satisfies (3.14). The proof is com-
plete. �
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Inspired by the proof of Theorem 3.6 and Theorem 3.8 in [3], one can prove the null
controllability of system (1.1)–(1.4).

Theorem 3.3 The problem (1.1)–(1.4) is null controllable. More precisely, for any u0 ∈
L2(0, 1), there exists a control function h ∈ L2(QT ) such that the solution u to the problem
(1.1)–(1.4) satisfies

u(x, T) = 0, a.e. x ∈ (0, 1).

Acknowledgements
The authors would like to thank the referees for their valuable comments and suggestions which improved the original
manuscript.

Funding
This work is supported by the National Nature Science Foundation of China (No. 11601182, Yuanyuan Nie), by the
National Nature Science Foundation of China (No. 11801211, Qian Zhou), by the Science and Technology Development
Project of Jilin Province (20180520213JH, Yuanyuan Nie), and by the Scientific and Technological Project of Jilin
Provinces’s Education Department in Thirteenth-five-Year (JJKH20180114KJ, Yuanyuan Nie).

Availability of data and materials
No applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed to each part of this study equally, read and approved the final version of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 November 2019 Accepted: 27 February 2020

References
1. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with

applications to null controllability. J. Evol. Equ. 6(2), 161–204 (2006)
2. Cannarasa, P., Tort, J., Yamamoto, M.: Unique continuation and approximate controllability for a degenerate parabolic

equation. Appl. Anal. 91(8), 1409–1425 (2012)
3. Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains.

Electron. J. Differ. Equ. 2006, Article ID 136 (2006)
4. Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Linear degenerate parabolic equations in bounded domains:

controllability and observability. In: Systems, Control, Modeling and Optimization. IFIP Int. Fed. Inf. Process., vol. 202,
pp. 163–173. Springer, New York (2006)

5. Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Regional controllability of semilinear degenerate parabolic equations in
bounded domains. J. Math. Anal. Appl. 320(2), 804–818 (2006)

6. Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of degenerate parabolic
equations. Commun. Pure Appl. Anal. 4, 607–635 (2004)

7. Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional controllability for a class of degenerate parabolic
equations. Commun. Pure Appl. Anal. 3(4), 607–635 (2004)

8. Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv. Differ. Equ. 2,
153–190 (2005)

9. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J.
Control Optim. 47(1), 1–19 (2008)

10. Du, R.: Approximate controllability of a class of semilinear degenerate systems with boundary control. J. Differ. Equ.
256, 3141–3165 (2014)

11. Du, R., Wang, C.: Null controllability of a class of systems governed by coupled degenerate equations. Appl. Math.
Lett. 26(1), 113–119 (2013)

12. Du, R., Wang, C., Zhou, Q.: Approximate controllability of a semilinear system involving a fully nonlinear gradient term.
Appl. Math. Optim. 70, 165–183 (2014)

13. Du, R., Xu, F.: On the boundary controllability of a semilinear degenerate system with the convection term. Appl.
Math. Comput. 303, 113–127 (2017)

14. Du, R., Xu, F.: Null controllability of a coupled degenerate system with the first order terms. J. Dyn. Control Syst. 24,
83–92 (2018)

15. Fabre, C.: Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems.
ESAIM Control Optim. Calc. Var. 1, 267–302 (1996)



Xu et al. Boundary Value Problems         (2020) 2020:55 Page 14 of 14

16. Fabre, C., Puel, J., Zuazua, E.: Approximate controllability of a semilinear heat equation. Proc. R. Soc. Edinb., Sect. A
125(1), 31–61 (1995)

17. Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ.
Equ. 5, 465–514 (2000)

18. Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations.
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17(5), 583–616 (2000)

19. Flores, C., Teresa, L.: Carleman estimates for degenerate parabolic equations with first order terms and applications.
C. R. Acad. Sci. Paris, Ser. I 348, 391–396 (2010)

20. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National
University, Seoul (1996)

21. Gao, H., Hou, X., Pavel, N.H.: Optimal control and controllability problems for a class of nonlinear degenerate diffusion
equations. Panam. Math. J. 13(1), 103–126 (2003)

22. Lin, P., Gao, H., Liu, X.: Some results on controllability of a nonlinear degenerate parabolic system by bilinear control.
J. Math. Anal. Appl. 326(2), 1149–1160 (2007)

23. Lions, J.L.: Remarques sur la contrôlabilité approchée. In: Proceedings of “Jornadas Hispano-Francesas sobre Control
de Sistemas Distribuidos”, University of Málaga, Spain (1990)

24. Lions, J.L.: Remarks on approximate controllability. J. Anal. Math. 59, 103–116 (1992)
25. Martinez, P., Raymond, J.P., Vancostenoble, J.: Regional null controllability of a linearized Crocco-type equation. SIAM J.

Control Optim. 42(2), 709–728 (2003)
26. Martinez, P., Vancostenoble, J.: Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6(2),

325–362 (2006)
27. Wang, C.: Approximate controllability of a class of degenerate systems. Appl. Math. Comput. 203(1), 447–456 (2008)
28. Wang, C.: Approximate controllability of a class of semilinear systems with boundary degeneracy. J. Evol. Equ. 10(1),

163–193 (2010)
29. Wang, C., Du, R.: Approximate controllability of a class of semilinear degenerate systems with convection term.

J. Differ. Equ. 254(9), 3665–3689 (2013)
30. Xu, J., Wang, C., Nie, Y.: Carleman estimate and null controllability of a cascade degenerate parabolic system with

general convection terms. Electron. J. Differ. Equ. 2018, Article ID 195 (2018)


	Null controllability of a semilinear degenerate parabolic equation with a gradient term
	Abstract
	Keywords

	Introduction
	Well-posedness
	Null controllability
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


